mirror of
https://github.com/MetaCubeX/mihomo.git
synced 2024-12-27 12:35:39 +08:00
80 lines
2.5 KiB
Go
80 lines
2.5 KiB
Go
|
package congestion
|
||
|
|
||
|
import (
|
||
|
"math"
|
||
|
"time"
|
||
|
|
||
|
"github.com/metacubex/quic-go/congestion"
|
||
|
)
|
||
|
|
||
|
const initialMaxDatagramSize = congestion.ByteCount(1252)
|
||
|
const MinPacingDelay = time.Millisecond
|
||
|
const TimerGranularity = time.Millisecond
|
||
|
const maxBurstSizePackets = 10
|
||
|
|
||
|
// The pacer implements a token bucket pacing algorithm.
|
||
|
type pacer struct {
|
||
|
budgetAtLastSent congestion.ByteCount
|
||
|
maxDatagramSize congestion.ByteCount
|
||
|
lastSentTime time.Time
|
||
|
getAdjustedBandwidth func() uint64 // in bytes/s
|
||
|
}
|
||
|
|
||
|
func newPacer(getBandwidth func() Bandwidth) *pacer {
|
||
|
p := &pacer{
|
||
|
maxDatagramSize: initialMaxDatagramSize,
|
||
|
getAdjustedBandwidth: func() uint64 {
|
||
|
// Bandwidth is in bits/s. We need the value in bytes/s.
|
||
|
bw := uint64(getBandwidth() / BytesPerSecond)
|
||
|
// Use a slightly higher value than the actual measured bandwidth.
|
||
|
// RTT variations then won't result in under-utilization of the congestion window.
|
||
|
// Ultimately, this will result in sending packets as acknowledgments are received rather than when timers fire,
|
||
|
// provided the congestion window is fully utilized and acknowledgments arrive at regular intervals.
|
||
|
return bw * 5 / 4
|
||
|
},
|
||
|
}
|
||
|
p.budgetAtLastSent = p.maxBurstSize()
|
||
|
return p
|
||
|
}
|
||
|
|
||
|
func (p *pacer) SentPacket(sendTime time.Time, size congestion.ByteCount) {
|
||
|
budget := p.Budget(sendTime)
|
||
|
if size > budget {
|
||
|
p.budgetAtLastSent = 0
|
||
|
} else {
|
||
|
p.budgetAtLastSent = budget - size
|
||
|
}
|
||
|
p.lastSentTime = sendTime
|
||
|
}
|
||
|
|
||
|
func (p *pacer) Budget(now time.Time) congestion.ByteCount {
|
||
|
if p.lastSentTime.IsZero() {
|
||
|
return p.maxBurstSize()
|
||
|
}
|
||
|
budget := p.budgetAtLastSent + (congestion.ByteCount(p.getAdjustedBandwidth())*congestion.ByteCount(now.Sub(p.lastSentTime).Nanoseconds()))/1e9
|
||
|
return Min(p.maxBurstSize(), budget)
|
||
|
}
|
||
|
|
||
|
func (p *pacer) maxBurstSize() congestion.ByteCount {
|
||
|
return Max(
|
||
|
congestion.ByteCount(uint64((MinPacingDelay+TimerGranularity).Nanoseconds())*p.getAdjustedBandwidth())/1e9,
|
||
|
maxBurstSizePackets*p.maxDatagramSize,
|
||
|
)
|
||
|
}
|
||
|
|
||
|
// TimeUntilSend returns when the next packet should be sent.
|
||
|
// It returns the zero value of time.Time if a packet can be sent immediately.
|
||
|
func (p *pacer) TimeUntilSend() time.Time {
|
||
|
if p.budgetAtLastSent >= p.maxDatagramSize {
|
||
|
return time.Time{}
|
||
|
}
|
||
|
return p.lastSentTime.Add(Max(
|
||
|
MinPacingDelay,
|
||
|
time.Duration(math.Ceil(float64(p.maxDatagramSize-p.budgetAtLastSent)*1e9/float64(p.getAdjustedBandwidth())))*time.Nanosecond,
|
||
|
))
|
||
|
}
|
||
|
|
||
|
func (p *pacer) SetMaxDatagramSize(s congestion.ByteCount) {
|
||
|
p.maxDatagramSize = s
|
||
|
}
|