Create claude_stock_analyzer.py

This commit is contained in:
Eric Ciarla 2024-10-29 15:38:57 -04:00
parent c96b36d045
commit 983f344fa8

View File

@ -0,0 +1,180 @@
import os
from firecrawl import FirecrawlApp
import json
from dotenv import load_dotenv
import anthropic
from e2b_code_interpreter import Sandbox
import base64
# ANSI color codes
class Colors:
CYAN = '\033[96m'
YELLOW = '\033[93m'
GREEN = '\033[92m'
RED = '\033[91m'
MAGENTA = '\033[95m'
BLUE = '\033[94m'
RESET = '\033[0m'
# Load environment variables
load_dotenv()
# Retrieve API keys from environment variables
firecrawl_api_key = os.getenv("FIRECRAWL_API_KEY")
anthropic_api_key = os.getenv("ANTHROPIC_API_KEY")
e2b_api_key = os.getenv("E2B_API_KEY")
# Initialize the FirecrawlApp and Anthropic client
app = FirecrawlApp(api_key=firecrawl_api_key)
client = anthropic.Anthropic(api_key=anthropic_api_key)
sandbox = Sandbox(api_key=e2b_api_key)
# Find the relevant stock pages via map
def find_relevant_page_via_map(stock_search_term, url, app):
try:
print(f"{Colors.CYAN}Searching for stock: {stock_search_term}{Colors.RESET}")
print(f"{Colors.CYAN}Initiating search on the website: {url}{Colors.RESET}")
map_search_parameter = stock_search_term
print(f"{Colors.GREEN}Search parameter: {map_search_parameter}{Colors.RESET}")
print(f"{Colors.YELLOW}Mapping website using the identified search parameter...{Colors.RESET}")
map_website = app.map_url(url, params={"search": map_search_parameter})
print(f"{Colors.GREEN}Website mapping completed successfully.{Colors.RESET}")
print(f"{Colors.GREEN}Located {len(map_website['links'])} relevant links.{Colors.RESET}")
return map_website['links']
except Exception as e:
print(f"{Colors.RED}Error encountered during relevant page identification: {str(e)}{Colors.RESET}")
return None
# Function to plot the scores using e2b
def plot_scores(stock_names, stock_scores):
print(f"{Colors.YELLOW}Plotting scores...{Colors.RESET}")
code_to_run = f"""
import matplotlib.pyplot as plt
stock_names = {stock_names}
stock_scores = {stock_scores}
plt.figure(figsize=(10, 5))
plt.bar(stock_names, stock_scores, color='blue')
plt.xlabel('Stock Names')
plt.ylabel('Scores')
plt.title('Stock Investment Scores')
plt.xticks(rotation=45)
plt.tight_layout()
plt.savefig('chart.png')
plt.show()
"""
# Run the code inside the sandbox
execution = sandbox.run_code(code_to_run)
# Check if there are any results
if execution.results and execution.results[0].png:
first_result = execution.results[0]
# Get the directory where the current python file is located
current_dir = os.path.dirname(os.path.abspath(__file__))
# Save the png to a file in the examples directory. The png is in base64 format.
with open(os.path.join(current_dir, 'chart.png'), 'wb') as f:
f.write(base64.b64decode(first_result.png))
print('Chart saved as examples/chart.png')
else:
print(f"{Colors.RED}No results returned from the sandbox execution.{Colors.RESET}")
# Analyze the top stocks and provide investment recommendation
def analyze_top_stocks(map_website, app, client):
try:
# Get top 5 links from the map result
top_links = map_website[:10]
print(f"{Colors.CYAN}Proceeding to analyze top {len(top_links)} links: {top_links}{Colors.RESET}")
# Scrape the pages in batch
batch_scrape_result = app.batch_scrape_urls(top_links, {'formats': ['markdown']})
print(f"{Colors.GREEN}Batch page scraping completed successfully.{Colors.RESET}")
# Prepare content for LLM
stock_contents = []
for scrape_result in batch_scrape_result['data']:
stock_contents.append({
'content': scrape_result['markdown']
})
# Pass all the content to the LLM to analyze and decide which stock to invest in
analyze_prompt = f"""
Based on the following information about different stocks from their Robinhood pages, analyze and determine which stock is the best investment opportunity. DO NOT include any other text, just the JSON.
Return the result in the following JSON format. Only return the JSON, nothing else. Do not include backticks or any other formatting, just the JSON.
{{
"scores": [
{{
"stock_name": "<stock_name>",
"score": <score-out-of-100>
}},
...
]
}}
Stock Information:
"""
for stock in stock_contents:
analyze_prompt += f"Content:\n{stock['content']}\n"
print(f"{Colors.YELLOW}Analyzing stock information with LLM...{Colors.RESET}")
analyze_prompt += f"\n\nStart JSON:\n"
completion = client.messages.create(
model="claude-3-5-sonnet-20240620",
max_tokens=1000,
temperature=0,
system="You are a financial analyst. Only return the JSON, nothing else.",
messages=[
{
"role": "user",
"content": analyze_prompt
}
]
)
result = completion.content[0].text
print(f"{Colors.GREEN}Analysis completed. Here is the recommendation:{Colors.RESET}")
print(f"{Colors.MAGENTA}{result}{Colors.RESET}")
# Plot the scores using e2b
try:
result_json = json.loads(result)
scores = result_json['scores']
stock_names = [score['stock_name'] for score in scores]
stock_scores = [score['score'] for score in scores]
plot_scores(stock_names, stock_scores)
except json.JSONDecodeError as json_err:
print(f"{Colors.RED}Error decoding JSON response: {str(json_err)}{Colors.RESET}")
except Exception as e:
print(f"{Colors.RED}Error encountered during stock analysis: {str(e)}{Colors.RESET}")
# Main function to execute the process
def main():
# Get user input
stock_search_term = input(f"{Colors.BLUE}Enter the stock you're interested in: {Colors.RESET}")
if not stock_search_term.strip():
print(f"{Colors.RED}No stock entered. Exiting.{Colors.RESET}")
return
url = "https://robinhood.com/stocks"
print(f"{Colors.YELLOW}Initiating stock analysis process...{Colors.RESET}")
# Find the relevant pages
map_website = find_relevant_page_via_map(stock_search_term, url, app)
if map_website:
print(f"{Colors.GREEN}Relevant stock pages identified. Proceeding with detailed analysis...{Colors.RESET}")
# Analyze top stocks
analyze_top_stocks(map_website, app, client)
else:
print(f"{Colors.RED}No relevant stock pages identified. Consider refining the search term or trying a different stock.{Colors.RESET}")
if __name__ == "__main__":
main()