dify/api/core/tool/dataset_retriever_tool.py
takatost d069c668f8
Model Runtime (#1858)
Co-authored-by: StyleZhang <jasonapring2015@outlook.com>
Co-authored-by: Garfield Dai <dai.hai@foxmail.com>
Co-authored-by: chenhe <guchenhe@gmail.com>
Co-authored-by: jyong <jyong@dify.ai>
Co-authored-by: Joel <iamjoel007@gmail.com>
Co-authored-by: Yeuoly <admin@srmxy.cn>
2024-01-02 23:42:00 +08:00

238 lines
11 KiB
Python

import threading
from typing import Type, Optional, List
from flask import current_app
from langchain.tools import BaseTool
from pydantic import Field, BaseModel
from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
from core.embedding.cached_embedding import CacheEmbedding
from core.index.keyword_table_index.keyword_table_index import KeywordTableIndex, KeywordTableConfig
from core.model_manager import ModelManager
from core.model_runtime.entities.model_entities import ModelType
from core.model_runtime.errors.invoke import InvokeAuthorizationError
from core.rerank.rerank import RerankRunner
from extensions.ext_database import db
from models.dataset import Dataset, DocumentSegment, Document
from services.retrieval_service import RetrievalService
default_retrieval_model = {
'search_method': 'semantic_search',
'reranking_enable': False,
'reranking_model': {
'reranking_provider_name': '',
'reranking_model_name': ''
},
'top_k': 2,
'score_threshold_enabled': False
}
class DatasetRetrieverToolInput(BaseModel):
query: str = Field(..., description="Query for the dataset to be used to retrieve the dataset.")
class DatasetRetrieverTool(BaseTool):
"""Tool for querying a Dataset."""
name: str = "dataset"
args_schema: Type[BaseModel] = DatasetRetrieverToolInput
description: str = "use this to retrieve a dataset. "
tenant_id: str
dataset_id: str
top_k: int = 2
score_threshold: Optional[float] = None
hit_callbacks: List[DatasetIndexToolCallbackHandler] = []
return_resource: bool
retriever_from: str
@classmethod
def from_dataset(cls, dataset: Dataset, **kwargs):
description = dataset.description
if not description:
description = 'useful for when you want to answer queries about the ' + dataset.name
description = description.replace('\n', '').replace('\r', '')
return cls(
name=f'dataset-{dataset.id}',
tenant_id=dataset.tenant_id,
dataset_id=dataset.id,
description=description,
**kwargs
)
def _run(self, query: str) -> str:
dataset = db.session.query(Dataset).filter(
Dataset.tenant_id == self.tenant_id,
Dataset.id == self.dataset_id
).first()
if not dataset:
return ''
for hit_callback in self.hit_callbacks:
hit_callback.on_query(query, dataset.id)
# get retrieval model , if the model is not setting , using default
retrieval_model = dataset.retrieval_model if dataset.retrieval_model else default_retrieval_model
if dataset.indexing_technique == "economy":
# use keyword table query
kw_table_index = KeywordTableIndex(
dataset=dataset,
config=KeywordTableConfig(
max_keywords_per_chunk=5
)
)
documents = kw_table_index.search(query, search_kwargs={'k': self.top_k})
return str("\n".join([document.page_content for document in documents]))
else:
# get embedding model instance
try:
model_manager = ModelManager()
embedding_model = model_manager.get_model_instance(
tenant_id=dataset.tenant_id,
provider=dataset.embedding_model_provider,
model_type=ModelType.TEXT_EMBEDDING,
model=dataset.embedding_model
)
except InvokeAuthorizationError:
return ''
embeddings = CacheEmbedding(embedding_model)
documents = []
threads = []
if self.top_k > 0:
# retrieval source with semantic
if retrieval_model['search_method'] == 'semantic_search' or retrieval_model['search_method'] == 'hybrid_search':
embedding_thread = threading.Thread(target=RetrievalService.embedding_search, kwargs={
'flask_app': current_app._get_current_object(),
'dataset_id': str(dataset.id),
'query': query,
'top_k': self.top_k,
'score_threshold': retrieval_model['score_threshold'] if retrieval_model[
'score_threshold_enabled'] else None,
'reranking_model': retrieval_model['reranking_model'] if retrieval_model[
'reranking_enable'] else None,
'all_documents': documents,
'search_method': retrieval_model['search_method'],
'embeddings': embeddings
})
threads.append(embedding_thread)
embedding_thread.start()
# retrieval_model source with full text
if retrieval_model['search_method'] == 'full_text_search' or retrieval_model['search_method'] == 'hybrid_search':
full_text_index_thread = threading.Thread(target=RetrievalService.full_text_index_search, kwargs={
'flask_app': current_app._get_current_object(),
'dataset_id': str(dataset.id),
'query': query,
'search_method': retrieval_model['search_method'],
'embeddings': embeddings,
'score_threshold': retrieval_model['score_threshold'] if retrieval_model[
'score_threshold_enabled'] else None,
'top_k': self.top_k,
'reranking_model': retrieval_model['reranking_model'] if retrieval_model[
'reranking_enable'] else None,
'all_documents': documents
})
threads.append(full_text_index_thread)
full_text_index_thread.start()
for thread in threads:
thread.join()
# hybrid search: rerank after all documents have been searched
if retrieval_model['search_method'] == 'hybrid_search':
# get rerank model instance
try:
model_manager = ModelManager()
rerank_model_instance = model_manager.get_model_instance(
tenant_id=dataset.tenant_id,
provider=retrieval_model['reranking_model']['reranking_provider_name'],
model_type=ModelType.RERANK,
model=retrieval_model['reranking_model']['reranking_model_name']
)
except InvokeAuthorizationError:
return ''
rerank_runner = RerankRunner(rerank_model_instance)
documents = rerank_runner.run(
query=query,
documents=documents,
score_threshold=retrieval_model['score_threshold'] if retrieval_model[
'score_threshold_enabled'] else None,
top_n=self.top_k
)
else:
documents = []
for hit_callback in self.hit_callbacks:
hit_callback.on_tool_end(documents)
document_score_list = {}
if dataset.indexing_technique != "economy":
for item in documents:
if 'score' in item.metadata and item.metadata['score']:
document_score_list[item.metadata['doc_id']] = item.metadata['score']
document_context_list = []
index_node_ids = [document.metadata['doc_id'] for document in documents]
segments = DocumentSegment.query.filter(DocumentSegment.dataset_id == self.dataset_id,
DocumentSegment.completed_at.isnot(None),
DocumentSegment.status == 'completed',
DocumentSegment.enabled == True,
DocumentSegment.index_node_id.in_(index_node_ids)
).all()
if segments:
index_node_id_to_position = {id: position for position, id in enumerate(index_node_ids)}
sorted_segments = sorted(segments,
key=lambda segment: index_node_id_to_position.get(segment.index_node_id,
float('inf')))
for segment in sorted_segments:
if segment.answer:
document_context_list.append(f'question:{segment.content} answer:{segment.answer}')
else:
document_context_list.append(segment.content)
if self.return_resource:
context_list = []
resource_number = 1
for segment in sorted_segments:
context = {}
document = Document.query.filter(Document.id == segment.document_id,
Document.enabled == True,
Document.archived == False,
).first()
if dataset and document:
source = {
'position': resource_number,
'dataset_id': dataset.id,
'dataset_name': dataset.name,
'document_id': document.id,
'document_name': document.name,
'data_source_type': document.data_source_type,
'segment_id': segment.id,
'retriever_from': self.retriever_from,
'score': document_score_list.get(segment.index_node_id, None)
}
if self.retriever_from == 'dev':
source['hit_count'] = segment.hit_count
source['word_count'] = segment.word_count
source['segment_position'] = segment.position
source['index_node_hash'] = segment.index_node_hash
if segment.answer:
source['content'] = f'question:{segment.content} \nanswer:{segment.answer}'
else:
source['content'] = segment.content
context_list.append(source)
resource_number += 1
for hit_callback in self.hit_callbacks:
hit_callback.return_retriever_resource_info(context_list)
return str("\n".join(document_context_list))
async def _arun(self, tool_input: str) -> str:
raise NotImplementedError()