mirror of
https://github.com/langgenius/dify.git
synced 2024-11-16 19:59:50 +08:00
651 lines
27 KiB
Python
651 lines
27 KiB
Python
import json
|
|
import re
|
|
from collections.abc import Generator
|
|
from typing import Literal, Union
|
|
|
|
from core.application_queue_manager import PublishFrom
|
|
from core.entities.application_entities import AgentPromptEntity, AgentScratchpadUnit
|
|
from core.features.assistant_base_runner import BaseAssistantApplicationRunner
|
|
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
|
|
from core.model_runtime.entities.message_entities import (
|
|
AssistantPromptMessage,
|
|
PromptMessage,
|
|
PromptMessageTool,
|
|
SystemPromptMessage,
|
|
ToolPromptMessage,
|
|
UserPromptMessage,
|
|
)
|
|
from core.model_runtime.utils.encoders import jsonable_encoder
|
|
from core.tools.errors import (
|
|
ToolInvokeError,
|
|
ToolNotFoundError,
|
|
ToolNotSupportedError,
|
|
ToolParameterValidationError,
|
|
ToolProviderCredentialValidationError,
|
|
ToolProviderNotFoundError,
|
|
)
|
|
from models.model import Conversation, Message
|
|
|
|
|
|
class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
|
|
def run(self, conversation: Conversation,
|
|
message: Message,
|
|
query: str,
|
|
inputs: dict[str, str],
|
|
) -> Union[Generator, LLMResult]:
|
|
"""
|
|
Run Cot agent application
|
|
"""
|
|
app_orchestration_config = self.app_orchestration_config
|
|
self._repack_app_orchestration_config(app_orchestration_config)
|
|
|
|
agent_scratchpad: list[AgentScratchpadUnit] = []
|
|
self._init_agent_scratchpad(agent_scratchpad, self.history_prompt_messages)
|
|
|
|
# check model mode
|
|
if self.app_orchestration_config.model_config.mode == "completion":
|
|
# TODO: stop words
|
|
if 'Observation' not in app_orchestration_config.model_config.stop:
|
|
app_orchestration_config.model_config.stop.append('Observation')
|
|
|
|
# override inputs
|
|
inputs = inputs or {}
|
|
instruction = self.app_orchestration_config.prompt_template.simple_prompt_template
|
|
instruction = self._fill_in_inputs_from_external_data_tools(instruction, inputs)
|
|
|
|
iteration_step = 1
|
|
max_iteration_steps = min(self.app_orchestration_config.agent.max_iteration, 5) + 1
|
|
|
|
prompt_messages = self.history_prompt_messages
|
|
|
|
# convert tools into ModelRuntime Tool format
|
|
prompt_messages_tools: list[PromptMessageTool] = []
|
|
tool_instances = {}
|
|
for tool in self.app_orchestration_config.agent.tools if self.app_orchestration_config.agent else []:
|
|
try:
|
|
prompt_tool, tool_entity = self._convert_tool_to_prompt_message_tool(tool)
|
|
except Exception:
|
|
# api tool may be deleted
|
|
continue
|
|
# save tool entity
|
|
tool_instances[tool.tool_name] = tool_entity
|
|
# save prompt tool
|
|
prompt_messages_tools.append(prompt_tool)
|
|
|
|
# convert dataset tools into ModelRuntime Tool format
|
|
for dataset_tool in self.dataset_tools:
|
|
prompt_tool = self._convert_dataset_retriever_tool_to_prompt_message_tool(dataset_tool)
|
|
# save prompt tool
|
|
prompt_messages_tools.append(prompt_tool)
|
|
# save tool entity
|
|
tool_instances[dataset_tool.identity.name] = dataset_tool
|
|
|
|
function_call_state = True
|
|
llm_usage = {
|
|
'usage': None
|
|
}
|
|
final_answer = ''
|
|
|
|
def increase_usage(final_llm_usage_dict: dict[str, LLMUsage], usage: LLMUsage):
|
|
if not final_llm_usage_dict['usage']:
|
|
final_llm_usage_dict['usage'] = usage
|
|
else:
|
|
llm_usage = final_llm_usage_dict['usage']
|
|
llm_usage.prompt_tokens += usage.prompt_tokens
|
|
llm_usage.completion_tokens += usage.completion_tokens
|
|
llm_usage.prompt_price += usage.prompt_price
|
|
llm_usage.completion_price += usage.completion_price
|
|
|
|
model_instance = self.model_instance
|
|
|
|
while function_call_state and iteration_step <= max_iteration_steps:
|
|
# continue to run until there is not any tool call
|
|
function_call_state = False
|
|
|
|
if iteration_step == max_iteration_steps:
|
|
# the last iteration, remove all tools
|
|
prompt_messages_tools = []
|
|
|
|
message_file_ids = []
|
|
|
|
agent_thought = self.create_agent_thought(
|
|
message_id=message.id,
|
|
message='',
|
|
tool_name='',
|
|
tool_input='',
|
|
messages_ids=message_file_ids
|
|
)
|
|
|
|
if iteration_step > 1:
|
|
self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER)
|
|
|
|
# update prompt messages
|
|
prompt_messages = self._organize_cot_prompt_messages(
|
|
mode=app_orchestration_config.model_config.mode,
|
|
prompt_messages=prompt_messages,
|
|
tools=prompt_messages_tools,
|
|
agent_scratchpad=agent_scratchpad,
|
|
agent_prompt_message=app_orchestration_config.agent.prompt,
|
|
instruction=instruction,
|
|
input=query
|
|
)
|
|
|
|
# recale llm max tokens
|
|
self.recale_llm_max_tokens(self.model_config, prompt_messages)
|
|
# invoke model
|
|
chunks: Generator[LLMResultChunk, None, None] = model_instance.invoke_llm(
|
|
prompt_messages=prompt_messages,
|
|
model_parameters=app_orchestration_config.model_config.parameters,
|
|
tools=[],
|
|
stop=app_orchestration_config.model_config.stop,
|
|
stream=True,
|
|
user=self.user_id,
|
|
callbacks=[],
|
|
)
|
|
|
|
# check llm result
|
|
if not chunks:
|
|
raise ValueError("failed to invoke llm")
|
|
|
|
usage_dict = {}
|
|
react_chunks = self._handle_stream_react(chunks, usage_dict)
|
|
scratchpad = AgentScratchpadUnit(
|
|
agent_response='',
|
|
thought='',
|
|
action_str='',
|
|
observation='',
|
|
action=None
|
|
)
|
|
|
|
# publish agent thought if it's first iteration
|
|
if iteration_step == 1:
|
|
self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER)
|
|
|
|
for chunk in react_chunks:
|
|
if isinstance(chunk, dict):
|
|
scratchpad.agent_response += json.dumps(chunk)
|
|
try:
|
|
if scratchpad.action:
|
|
raise Exception("")
|
|
scratchpad.action_str = json.dumps(chunk)
|
|
scratchpad.action = AgentScratchpadUnit.Action(
|
|
action_name=chunk['action'],
|
|
action_input=chunk['action_input']
|
|
)
|
|
except:
|
|
scratchpad.thought += json.dumps(chunk)
|
|
yield LLMResultChunk(
|
|
model=self.model_config.model,
|
|
prompt_messages=prompt_messages,
|
|
system_fingerprint='',
|
|
delta=LLMResultChunkDelta(
|
|
index=0,
|
|
message=AssistantPromptMessage(
|
|
content=json.dumps(chunk)
|
|
),
|
|
usage=None
|
|
)
|
|
)
|
|
else:
|
|
scratchpad.agent_response += chunk
|
|
scratchpad.thought += chunk
|
|
yield LLMResultChunk(
|
|
model=self.model_config.model,
|
|
prompt_messages=prompt_messages,
|
|
system_fingerprint='',
|
|
delta=LLMResultChunkDelta(
|
|
index=0,
|
|
message=AssistantPromptMessage(
|
|
content=chunk
|
|
),
|
|
usage=None
|
|
)
|
|
)
|
|
|
|
agent_scratchpad.append(scratchpad)
|
|
|
|
# get llm usage
|
|
if 'usage' in usage_dict:
|
|
increase_usage(llm_usage, usage_dict['usage'])
|
|
else:
|
|
usage_dict['usage'] = LLMUsage.empty_usage()
|
|
|
|
self.save_agent_thought(agent_thought=agent_thought,
|
|
tool_name=scratchpad.action.action_name if scratchpad.action else '',
|
|
tool_input=scratchpad.action.action_input if scratchpad.action else '',
|
|
thought=scratchpad.thought,
|
|
observation='',
|
|
answer=scratchpad.agent_response,
|
|
messages_ids=[],
|
|
llm_usage=usage_dict['usage'])
|
|
|
|
if scratchpad.action and scratchpad.action.action_name.lower() != "final answer":
|
|
self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER)
|
|
|
|
if not scratchpad.action:
|
|
# failed to extract action, return final answer directly
|
|
final_answer = scratchpad.agent_response or ''
|
|
else:
|
|
if scratchpad.action.action_name.lower() == "final answer":
|
|
# action is final answer, return final answer directly
|
|
try:
|
|
final_answer = scratchpad.action.action_input if \
|
|
isinstance(scratchpad.action.action_input, str) else \
|
|
json.dumps(scratchpad.action.action_input)
|
|
except json.JSONDecodeError:
|
|
final_answer = f'{scratchpad.action.action_input}'
|
|
else:
|
|
function_call_state = True
|
|
|
|
# action is tool call, invoke tool
|
|
tool_call_name = scratchpad.action.action_name
|
|
tool_call_args = scratchpad.action.action_input
|
|
tool_instance = tool_instances.get(tool_call_name)
|
|
if not tool_instance:
|
|
answer = f"there is not a tool named {tool_call_name}"
|
|
self.save_agent_thought(agent_thought=agent_thought,
|
|
tool_name='',
|
|
tool_input='',
|
|
thought=None,
|
|
observation=answer,
|
|
answer=answer,
|
|
messages_ids=[])
|
|
self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER)
|
|
else:
|
|
# invoke tool
|
|
error_response = None
|
|
try:
|
|
tool_response = tool_instance.invoke(
|
|
user_id=self.user_id,
|
|
tool_parameters=tool_call_args if isinstance(tool_call_args, dict) else json.loads(tool_call_args)
|
|
)
|
|
# transform tool response to llm friendly response
|
|
tool_response = self.transform_tool_invoke_messages(tool_response)
|
|
# extract binary data from tool invoke message
|
|
binary_files = self.extract_tool_response_binary(tool_response)
|
|
# create message file
|
|
message_files = self.create_message_files(binary_files)
|
|
# publish files
|
|
for message_file, save_as in message_files:
|
|
if save_as:
|
|
self.variables_pool.set_file(tool_name=tool_call_name,
|
|
value=message_file.id,
|
|
name=save_as)
|
|
self.queue_manager.publish_message_file(message_file, PublishFrom.APPLICATION_MANAGER)
|
|
|
|
message_file_ids = [message_file.id for message_file, _ in message_files]
|
|
except ToolProviderCredentialValidationError as e:
|
|
error_response = "Please check your tool provider credentials"
|
|
except (
|
|
ToolNotFoundError, ToolNotSupportedError, ToolProviderNotFoundError
|
|
) as e:
|
|
error_response = f"there is not a tool named {tool_call_name}"
|
|
except (
|
|
ToolParameterValidationError
|
|
) as e:
|
|
error_response = f"tool parameters validation error: {e}, please check your tool parameters"
|
|
except ToolInvokeError as e:
|
|
error_response = f"tool invoke error: {e}"
|
|
except Exception as e:
|
|
error_response = f"unknown error: {e}"
|
|
|
|
if error_response:
|
|
observation = error_response
|
|
else:
|
|
observation = self._convert_tool_response_to_str(tool_response)
|
|
|
|
# save scratchpad
|
|
scratchpad.observation = observation
|
|
|
|
# save agent thought
|
|
self.save_agent_thought(
|
|
agent_thought=agent_thought,
|
|
tool_name=tool_call_name,
|
|
tool_input=tool_call_args,
|
|
thought=None,
|
|
observation=observation,
|
|
answer=scratchpad.agent_response,
|
|
messages_ids=message_file_ids,
|
|
)
|
|
self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER)
|
|
|
|
# update prompt tool message
|
|
for prompt_tool in prompt_messages_tools:
|
|
self.update_prompt_message_tool(tool_instances[prompt_tool.name], prompt_tool)
|
|
|
|
iteration_step += 1
|
|
|
|
yield LLMResultChunk(
|
|
model=model_instance.model,
|
|
prompt_messages=prompt_messages,
|
|
delta=LLMResultChunkDelta(
|
|
index=0,
|
|
message=AssistantPromptMessage(
|
|
content=final_answer
|
|
),
|
|
usage=llm_usage['usage']
|
|
),
|
|
system_fingerprint=''
|
|
)
|
|
|
|
# save agent thought
|
|
self.save_agent_thought(
|
|
agent_thought=agent_thought,
|
|
tool_name='',
|
|
tool_input='',
|
|
thought=final_answer,
|
|
observation='',
|
|
answer=final_answer,
|
|
messages_ids=[]
|
|
)
|
|
|
|
self.update_db_variables(self.variables_pool, self.db_variables_pool)
|
|
# publish end event
|
|
self.queue_manager.publish_message_end(LLMResult(
|
|
model=model_instance.model,
|
|
prompt_messages=prompt_messages,
|
|
message=AssistantPromptMessage(
|
|
content=final_answer
|
|
),
|
|
usage=llm_usage['usage'] if llm_usage['usage'] else LLMUsage.empty_usage(),
|
|
system_fingerprint=''
|
|
), PublishFrom.APPLICATION_MANAGER)
|
|
|
|
def _handle_stream_react(self, llm_response: Generator[LLMResultChunk, None, None], usage: dict) \
|
|
-> Generator[Union[str, dict], None, None]:
|
|
def parse_json(json_str):
|
|
try:
|
|
return json.loads(json_str.strip())
|
|
except:
|
|
return json_str
|
|
|
|
def extra_json_from_code_block(code_block) -> Generator[Union[dict, str], None, None]:
|
|
code_blocks = re.findall(r'```(.*?)```', code_block, re.DOTALL)
|
|
if not code_blocks:
|
|
return
|
|
for block in code_blocks:
|
|
json_text = re.sub(r'^[a-zA-Z]+\n', '', block.strip(), flags=re.MULTILINE)
|
|
yield parse_json(json_text)
|
|
|
|
code_block_cache = ''
|
|
code_block_delimiter_count = 0
|
|
in_code_block = False
|
|
json_cache = ''
|
|
json_quote_count = 0
|
|
in_json = False
|
|
got_json = False
|
|
|
|
for response in llm_response:
|
|
response = response.delta.message.content
|
|
if not isinstance(response, str):
|
|
continue
|
|
|
|
# stream
|
|
index = 0
|
|
while index < len(response):
|
|
steps = 1
|
|
delta = response[index:index+steps]
|
|
if delta == '`':
|
|
code_block_cache += delta
|
|
code_block_delimiter_count += 1
|
|
else:
|
|
if not in_code_block:
|
|
if code_block_delimiter_count > 0:
|
|
yield code_block_cache
|
|
code_block_cache = ''
|
|
else:
|
|
code_block_cache += delta
|
|
code_block_delimiter_count = 0
|
|
|
|
if code_block_delimiter_count == 3:
|
|
if in_code_block:
|
|
yield from extra_json_from_code_block(code_block_cache)
|
|
code_block_cache = ''
|
|
|
|
in_code_block = not in_code_block
|
|
code_block_delimiter_count = 0
|
|
|
|
if not in_code_block:
|
|
# handle single json
|
|
if delta == '{':
|
|
json_quote_count += 1
|
|
in_json = True
|
|
json_cache += delta
|
|
elif delta == '}':
|
|
json_cache += delta
|
|
if json_quote_count > 0:
|
|
json_quote_count -= 1
|
|
if json_quote_count == 0:
|
|
in_json = False
|
|
got_json = True
|
|
index += steps
|
|
continue
|
|
else:
|
|
if in_json:
|
|
json_cache += delta
|
|
|
|
if got_json:
|
|
got_json = False
|
|
yield parse_json(json_cache)
|
|
json_cache = ''
|
|
json_quote_count = 0
|
|
in_json = False
|
|
|
|
if not in_code_block and not in_json:
|
|
yield delta.replace('`', '')
|
|
|
|
index += steps
|
|
|
|
if code_block_cache:
|
|
yield code_block_cache
|
|
|
|
if json_cache:
|
|
yield parse_json(json_cache)
|
|
|
|
def _fill_in_inputs_from_external_data_tools(self, instruction: str, inputs: dict) -> str:
|
|
"""
|
|
fill in inputs from external data tools
|
|
"""
|
|
for key, value in inputs.items():
|
|
try:
|
|
instruction = instruction.replace(f'{{{{{key}}}}}', str(value))
|
|
except Exception as e:
|
|
continue
|
|
|
|
return instruction
|
|
|
|
def _init_agent_scratchpad(self,
|
|
agent_scratchpad: list[AgentScratchpadUnit],
|
|
messages: list[PromptMessage]
|
|
) -> list[AgentScratchpadUnit]:
|
|
"""
|
|
init agent scratchpad
|
|
"""
|
|
current_scratchpad: AgentScratchpadUnit = None
|
|
for message in messages:
|
|
if isinstance(message, AssistantPromptMessage):
|
|
current_scratchpad = AgentScratchpadUnit(
|
|
agent_response=message.content,
|
|
thought=message.content,
|
|
action_str='',
|
|
action=None,
|
|
observation=None
|
|
)
|
|
if message.tool_calls:
|
|
try:
|
|
current_scratchpad.action = AgentScratchpadUnit.Action(
|
|
action_name=message.tool_calls[0].function.name,
|
|
action_input=json.loads(message.tool_calls[0].function.arguments)
|
|
)
|
|
except:
|
|
pass
|
|
|
|
agent_scratchpad.append(current_scratchpad)
|
|
elif isinstance(message, ToolPromptMessage):
|
|
if current_scratchpad:
|
|
current_scratchpad.observation = message.content
|
|
|
|
return agent_scratchpad
|
|
|
|
def _check_cot_prompt_messages(self, mode: Literal["completion", "chat"],
|
|
agent_prompt_message: AgentPromptEntity,
|
|
):
|
|
"""
|
|
check chain of thought prompt messages, a standard prompt message is like:
|
|
Respond to the human as helpfully and accurately as possible.
|
|
|
|
{{instruction}}
|
|
|
|
You have access to the following tools:
|
|
|
|
{{tools}}
|
|
|
|
Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).
|
|
Valid action values: "Final Answer" or {{tool_names}}
|
|
|
|
Provide only ONE action per $JSON_BLOB, as shown:
|
|
|
|
```
|
|
{
|
|
"action": $TOOL_NAME,
|
|
"action_input": $ACTION_INPUT
|
|
}
|
|
```
|
|
"""
|
|
|
|
# parse agent prompt message
|
|
first_prompt = agent_prompt_message.first_prompt
|
|
next_iteration = agent_prompt_message.next_iteration
|
|
|
|
if not isinstance(first_prompt, str) or not isinstance(next_iteration, str):
|
|
raise ValueError("first_prompt or next_iteration is required in CoT agent mode")
|
|
|
|
# check instruction, tools, and tool_names slots
|
|
if not first_prompt.find("{{instruction}}") >= 0:
|
|
raise ValueError("{{instruction}} is required in first_prompt")
|
|
if not first_prompt.find("{{tools}}") >= 0:
|
|
raise ValueError("{{tools}} is required in first_prompt")
|
|
if not first_prompt.find("{{tool_names}}") >= 0:
|
|
raise ValueError("{{tool_names}} is required in first_prompt")
|
|
|
|
if mode == "completion":
|
|
if not first_prompt.find("{{query}}") >= 0:
|
|
raise ValueError("{{query}} is required in first_prompt")
|
|
if not first_prompt.find("{{agent_scratchpad}}") >= 0:
|
|
raise ValueError("{{agent_scratchpad}} is required in first_prompt")
|
|
|
|
if mode == "completion":
|
|
if not next_iteration.find("{{observation}}") >= 0:
|
|
raise ValueError("{{observation}} is required in next_iteration")
|
|
|
|
def _convert_scratchpad_list_to_str(self, agent_scratchpad: list[AgentScratchpadUnit]) -> str:
|
|
"""
|
|
convert agent scratchpad list to str
|
|
"""
|
|
next_iteration = self.app_orchestration_config.agent.prompt.next_iteration
|
|
|
|
result = ''
|
|
for scratchpad in agent_scratchpad:
|
|
result += scratchpad.thought + next_iteration.replace("{{observation}}", scratchpad.observation or '') + "\n"
|
|
|
|
return result
|
|
|
|
def _organize_cot_prompt_messages(self, mode: Literal["completion", "chat"],
|
|
prompt_messages: list[PromptMessage],
|
|
tools: list[PromptMessageTool],
|
|
agent_scratchpad: list[AgentScratchpadUnit],
|
|
agent_prompt_message: AgentPromptEntity,
|
|
instruction: str,
|
|
input: str,
|
|
) -> list[PromptMessage]:
|
|
"""
|
|
organize chain of thought prompt messages, a standard prompt message is like:
|
|
Respond to the human as helpfully and accurately as possible.
|
|
|
|
{{instruction}}
|
|
|
|
You have access to the following tools:
|
|
|
|
{{tools}}
|
|
|
|
Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).
|
|
Valid action values: "Final Answer" or {{tool_names}}
|
|
|
|
Provide only ONE action per $JSON_BLOB, as shown:
|
|
|
|
```
|
|
{{{{
|
|
"action": $TOOL_NAME,
|
|
"action_input": $ACTION_INPUT
|
|
}}}}
|
|
```
|
|
"""
|
|
|
|
self._check_cot_prompt_messages(mode, agent_prompt_message)
|
|
|
|
# parse agent prompt message
|
|
first_prompt = agent_prompt_message.first_prompt
|
|
|
|
# parse tools
|
|
tools_str = self._jsonify_tool_prompt_messages(tools)
|
|
|
|
# parse tools name
|
|
tool_names = '"' + '","'.join([tool.name for tool in tools]) + '"'
|
|
|
|
# get system message
|
|
system_message = first_prompt.replace("{{instruction}}", instruction) \
|
|
.replace("{{tools}}", tools_str) \
|
|
.replace("{{tool_names}}", tool_names)
|
|
|
|
# organize prompt messages
|
|
if mode == "chat":
|
|
# override system message
|
|
overridden = False
|
|
prompt_messages = prompt_messages.copy()
|
|
for prompt_message in prompt_messages:
|
|
if isinstance(prompt_message, SystemPromptMessage):
|
|
prompt_message.content = system_message
|
|
overridden = True
|
|
break
|
|
|
|
if not overridden:
|
|
prompt_messages.insert(0, SystemPromptMessage(
|
|
content=system_message,
|
|
))
|
|
|
|
# add assistant message
|
|
if len(agent_scratchpad) > 0:
|
|
prompt_messages.append(AssistantPromptMessage(
|
|
content=(agent_scratchpad[-1].thought or '')
|
|
))
|
|
|
|
# add user message
|
|
if len(agent_scratchpad) > 0:
|
|
prompt_messages.append(UserPromptMessage(
|
|
content=(agent_scratchpad[-1].observation or ''),
|
|
))
|
|
|
|
return prompt_messages
|
|
elif mode == "completion":
|
|
# parse agent scratchpad
|
|
agent_scratchpad_str = self._convert_scratchpad_list_to_str(agent_scratchpad)
|
|
# parse prompt messages
|
|
return [UserPromptMessage(
|
|
content=first_prompt.replace("{{instruction}}", instruction)
|
|
.replace("{{tools}}", tools_str)
|
|
.replace("{{tool_names}}", tool_names)
|
|
.replace("{{query}}", input)
|
|
.replace("{{agent_scratchpad}}", agent_scratchpad_str),
|
|
)]
|
|
else:
|
|
raise ValueError(f"mode {mode} is not supported")
|
|
|
|
def _jsonify_tool_prompt_messages(self, tools: list[PromptMessageTool]) -> str:
|
|
"""
|
|
jsonify tool prompt messages
|
|
"""
|
|
tools = jsonable_encoder(tools)
|
|
try:
|
|
return json.dumps(tools, ensure_ascii=False)
|
|
except json.JSONDecodeError:
|
|
return json.dumps(tools) |