mirror of
https://github.com/langgenius/dify.git
synced 2024-11-16 11:42:29 +08:00
186 lines
6.8 KiB
Python
186 lines
6.8 KiB
Python
import math
|
|
from collections import Counter
|
|
from typing import Optional
|
|
|
|
import numpy as np
|
|
|
|
from core.model_manager import ModelManager
|
|
from core.model_runtime.entities.model_entities import ModelType
|
|
from core.rag.datasource.keyword.jieba.jieba_keyword_table_handler import JiebaKeywordTableHandler
|
|
from core.rag.embedding.cached_embedding import CacheEmbedding
|
|
from core.rag.models.document import Document
|
|
from core.rag.rerank.entity.weight import VectorSetting, Weights
|
|
from core.rag.rerank.rerank_base import BaseRerankRunner
|
|
|
|
|
|
class WeightRerankRunner(BaseRerankRunner):
|
|
def __init__(self, tenant_id: str, weights: Weights) -> None:
|
|
self.tenant_id = tenant_id
|
|
self.weights = weights
|
|
|
|
def run(
|
|
self,
|
|
query: str,
|
|
documents: list[Document],
|
|
score_threshold: Optional[float] = None,
|
|
top_n: Optional[int] = None,
|
|
user: Optional[str] = None,
|
|
) -> list[Document]:
|
|
"""
|
|
Run rerank model
|
|
:param query: search query
|
|
:param documents: documents for reranking
|
|
:param score_threshold: score threshold
|
|
:param top_n: top n
|
|
:param user: unique user id if needed
|
|
|
|
:return:
|
|
"""
|
|
docs = []
|
|
doc_id = []
|
|
unique_documents = []
|
|
for document in documents:
|
|
if document.metadata["doc_id"] not in doc_id:
|
|
doc_id.append(document.metadata["doc_id"])
|
|
docs.append(document.page_content)
|
|
unique_documents.append(document)
|
|
|
|
documents = unique_documents
|
|
|
|
rerank_documents = []
|
|
query_scores = self._calculate_keyword_score(query, documents)
|
|
|
|
query_vector_scores = self._calculate_cosine(self.tenant_id, query, documents, self.weights.vector_setting)
|
|
for document, query_score, query_vector_score in zip(documents, query_scores, query_vector_scores):
|
|
# format document
|
|
score = (
|
|
self.weights.vector_setting.vector_weight * query_vector_score
|
|
+ self.weights.keyword_setting.keyword_weight * query_score
|
|
)
|
|
if score_threshold and score < score_threshold:
|
|
continue
|
|
document.metadata["score"] = score
|
|
rerank_documents.append(document)
|
|
rerank_documents = sorted(rerank_documents, key=lambda x: x.metadata["score"], reverse=True)
|
|
return rerank_documents[:top_n] if top_n else rerank_documents
|
|
|
|
def _calculate_keyword_score(self, query: str, documents: list[Document]) -> list[float]:
|
|
"""
|
|
Calculate BM25 scores
|
|
:param query: search query
|
|
:param documents: documents for reranking
|
|
|
|
:return:
|
|
"""
|
|
keyword_table_handler = JiebaKeywordTableHandler()
|
|
query_keywords = keyword_table_handler.extract_keywords(query, None)
|
|
documents_keywords = []
|
|
for document in documents:
|
|
# get the document keywords
|
|
document_keywords = keyword_table_handler.extract_keywords(document.page_content, None)
|
|
document.metadata["keywords"] = document_keywords
|
|
documents_keywords.append(document_keywords)
|
|
|
|
# Counter query keywords(TF)
|
|
query_keyword_counts = Counter(query_keywords)
|
|
|
|
# total documents
|
|
total_documents = len(documents)
|
|
|
|
# calculate all documents' keywords IDF
|
|
all_keywords = set()
|
|
for document_keywords in documents_keywords:
|
|
all_keywords.update(document_keywords)
|
|
|
|
keyword_idf = {}
|
|
for keyword in all_keywords:
|
|
# calculate include query keywords' documents
|
|
doc_count_containing_keyword = sum(1 for doc_keywords in documents_keywords if keyword in doc_keywords)
|
|
# IDF
|
|
keyword_idf[keyword] = math.log((1 + total_documents) / (1 + doc_count_containing_keyword)) + 1
|
|
|
|
query_tfidf = {}
|
|
|
|
for keyword, count in query_keyword_counts.items():
|
|
tf = count
|
|
idf = keyword_idf.get(keyword, 0)
|
|
query_tfidf[keyword] = tf * idf
|
|
|
|
# calculate all documents' TF-IDF
|
|
documents_tfidf = []
|
|
for document_keywords in documents_keywords:
|
|
document_keyword_counts = Counter(document_keywords)
|
|
document_tfidf = {}
|
|
for keyword, count in document_keyword_counts.items():
|
|
tf = count
|
|
idf = keyword_idf.get(keyword, 0)
|
|
document_tfidf[keyword] = tf * idf
|
|
documents_tfidf.append(document_tfidf)
|
|
|
|
def cosine_similarity(vec1, vec2):
|
|
intersection = set(vec1.keys()) & set(vec2.keys())
|
|
numerator = sum(vec1[x] * vec2[x] for x in intersection)
|
|
|
|
sum1 = sum(vec1[x] ** 2 for x in vec1)
|
|
sum2 = sum(vec2[x] ** 2 for x in vec2)
|
|
denominator = math.sqrt(sum1) * math.sqrt(sum2)
|
|
|
|
if not denominator:
|
|
return 0.0
|
|
else:
|
|
return float(numerator) / denominator
|
|
|
|
similarities = []
|
|
for document_tfidf in documents_tfidf:
|
|
similarity = cosine_similarity(query_tfidf, document_tfidf)
|
|
similarities.append(similarity)
|
|
|
|
# for idx, similarity in enumerate(similarities):
|
|
# print(f"Document {idx + 1} similarity: {similarity}")
|
|
|
|
return similarities
|
|
|
|
def _calculate_cosine(
|
|
self, tenant_id: str, query: str, documents: list[Document], vector_setting: VectorSetting
|
|
) -> list[float]:
|
|
"""
|
|
Calculate Cosine scores
|
|
:param query: search query
|
|
:param documents: documents for reranking
|
|
|
|
:return:
|
|
"""
|
|
query_vector_scores = []
|
|
|
|
model_manager = ModelManager()
|
|
|
|
embedding_model = model_manager.get_model_instance(
|
|
tenant_id=tenant_id,
|
|
provider=vector_setting.embedding_provider_name,
|
|
model_type=ModelType.TEXT_EMBEDDING,
|
|
model=vector_setting.embedding_model_name,
|
|
)
|
|
cache_embedding = CacheEmbedding(embedding_model)
|
|
query_vector = cache_embedding.embed_query(query)
|
|
for document in documents:
|
|
# calculate cosine similarity
|
|
if "score" in document.metadata:
|
|
query_vector_scores.append(document.metadata["score"])
|
|
else:
|
|
# transform to NumPy
|
|
vec1 = np.array(query_vector)
|
|
vec2 = np.array(document.vector)
|
|
|
|
# calculate dot product
|
|
dot_product = np.dot(vec1, vec2)
|
|
|
|
# calculate norm
|
|
norm_vec1 = np.linalg.norm(vec1)
|
|
norm_vec2 = np.linalg.norm(vec2)
|
|
|
|
# calculate cosine similarity
|
|
cosine_sim = dot_product / (norm_vec1 * norm_vec2)
|
|
query_vector_scores.append(cosine_sim)
|
|
|
|
return query_vector_scores
|