mirror of
https://github.com/langgenius/dify.git
synced 2024-11-16 11:42:29 +08:00
dcb72e0067
Co-authored-by: -LAN- <laipz8200@outlook.com>
878 lines
38 KiB
Python
878 lines
38 KiB
Python
import concurrent.futures
|
|
import datetime
|
|
import json
|
|
import logging
|
|
import re
|
|
import threading
|
|
import time
|
|
import uuid
|
|
from typing import Optional, cast
|
|
|
|
from flask import Flask, current_app
|
|
from flask_login import current_user
|
|
from sqlalchemy.orm.exc import ObjectDeletedError
|
|
|
|
from core.errors.error import ProviderTokenNotInitError
|
|
from core.llm_generator.llm_generator import LLMGenerator
|
|
from core.model_manager import ModelInstance, ModelManager
|
|
from core.model_runtime.entities.model_entities import ModelType, PriceType
|
|
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
|
|
from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
|
|
from core.rag.datasource.keyword.keyword_factory import Keyword
|
|
from core.rag.docstore.dataset_docstore import DatasetDocumentStore
|
|
from core.rag.extractor.entity.extract_setting import ExtractSetting
|
|
from core.rag.index_processor.index_processor_base import BaseIndexProcessor
|
|
from core.rag.index_processor.index_processor_factory import IndexProcessorFactory
|
|
from core.rag.models.document import Document
|
|
from core.rag.splitter.fixed_text_splitter import (
|
|
EnhanceRecursiveCharacterTextSplitter,
|
|
FixedRecursiveCharacterTextSplitter,
|
|
)
|
|
from core.rag.splitter.text_splitter import TextSplitter
|
|
from extensions.ext_database import db
|
|
from extensions.ext_redis import redis_client
|
|
from extensions.ext_storage import storage
|
|
from libs import helper
|
|
from models.dataset import Dataset, DatasetProcessRule, DocumentSegment
|
|
from models.dataset import Document as DatasetDocument
|
|
from models.model import UploadFile
|
|
from services.feature_service import FeatureService
|
|
|
|
|
|
class IndexingRunner:
|
|
|
|
def __init__(self):
|
|
self.storage = storage
|
|
self.model_manager = ModelManager()
|
|
|
|
def run(self, dataset_documents: list[DatasetDocument]):
|
|
"""Run the indexing process."""
|
|
for dataset_document in dataset_documents:
|
|
try:
|
|
# get dataset
|
|
dataset = Dataset.query.filter_by(
|
|
id=dataset_document.dataset_id
|
|
).first()
|
|
|
|
if not dataset:
|
|
raise ValueError("no dataset found")
|
|
|
|
# get the process rule
|
|
processing_rule = db.session.query(DatasetProcessRule). \
|
|
filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id). \
|
|
first()
|
|
index_type = dataset_document.doc_form
|
|
index_processor = IndexProcessorFactory(index_type).init_index_processor()
|
|
# extract
|
|
text_docs = self._extract(index_processor, dataset_document, processing_rule.to_dict())
|
|
|
|
# transform
|
|
documents = self._transform(index_processor, dataset, text_docs, dataset_document.doc_language,
|
|
processing_rule.to_dict())
|
|
# save segment
|
|
self._load_segments(dataset, dataset_document, documents)
|
|
|
|
# load
|
|
self._load(
|
|
index_processor=index_processor,
|
|
dataset=dataset,
|
|
dataset_document=dataset_document,
|
|
documents=documents
|
|
)
|
|
except DocumentIsPausedException:
|
|
raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id))
|
|
except ProviderTokenNotInitError as e:
|
|
dataset_document.indexing_status = 'error'
|
|
dataset_document.error = str(e.description)
|
|
dataset_document.stopped_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
|
|
db.session.commit()
|
|
except ObjectDeletedError:
|
|
logging.warning('Document deleted, document id: {}'.format(dataset_document.id))
|
|
except Exception as e:
|
|
logging.exception("consume document failed")
|
|
dataset_document.indexing_status = 'error'
|
|
dataset_document.error = str(e)
|
|
dataset_document.stopped_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
|
|
db.session.commit()
|
|
|
|
def run_in_splitting_status(self, dataset_document: DatasetDocument):
|
|
"""Run the indexing process when the index_status is splitting."""
|
|
try:
|
|
# get dataset
|
|
dataset = Dataset.query.filter_by(
|
|
id=dataset_document.dataset_id
|
|
).first()
|
|
|
|
if not dataset:
|
|
raise ValueError("no dataset found")
|
|
|
|
# get exist document_segment list and delete
|
|
document_segments = DocumentSegment.query.filter_by(
|
|
dataset_id=dataset.id,
|
|
document_id=dataset_document.id
|
|
).all()
|
|
|
|
for document_segment in document_segments:
|
|
db.session.delete(document_segment)
|
|
db.session.commit()
|
|
# get the process rule
|
|
processing_rule = db.session.query(DatasetProcessRule). \
|
|
filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id). \
|
|
first()
|
|
|
|
index_type = dataset_document.doc_form
|
|
index_processor = IndexProcessorFactory(index_type).init_index_processor()
|
|
# extract
|
|
text_docs = self._extract(index_processor, dataset_document, processing_rule.to_dict())
|
|
|
|
# transform
|
|
documents = self._transform(index_processor, dataset, text_docs, dataset_document.doc_language,
|
|
processing_rule.to_dict())
|
|
# save segment
|
|
self._load_segments(dataset, dataset_document, documents)
|
|
|
|
# load
|
|
self._load(
|
|
index_processor=index_processor,
|
|
dataset=dataset,
|
|
dataset_document=dataset_document,
|
|
documents=documents
|
|
)
|
|
except DocumentIsPausedException:
|
|
raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id))
|
|
except ProviderTokenNotInitError as e:
|
|
dataset_document.indexing_status = 'error'
|
|
dataset_document.error = str(e.description)
|
|
dataset_document.stopped_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
|
|
db.session.commit()
|
|
except Exception as e:
|
|
logging.exception("consume document failed")
|
|
dataset_document.indexing_status = 'error'
|
|
dataset_document.error = str(e)
|
|
dataset_document.stopped_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
|
|
db.session.commit()
|
|
|
|
def run_in_indexing_status(self, dataset_document: DatasetDocument):
|
|
"""Run the indexing process when the index_status is indexing."""
|
|
try:
|
|
# get dataset
|
|
dataset = Dataset.query.filter_by(
|
|
id=dataset_document.dataset_id
|
|
).first()
|
|
|
|
if not dataset:
|
|
raise ValueError("no dataset found")
|
|
|
|
# get exist document_segment list and delete
|
|
document_segments = DocumentSegment.query.filter_by(
|
|
dataset_id=dataset.id,
|
|
document_id=dataset_document.id
|
|
).all()
|
|
|
|
documents = []
|
|
if document_segments:
|
|
for document_segment in document_segments:
|
|
# transform segment to node
|
|
if document_segment.status != "completed":
|
|
document = Document(
|
|
page_content=document_segment.content,
|
|
metadata={
|
|
"doc_id": document_segment.index_node_id,
|
|
"doc_hash": document_segment.index_node_hash,
|
|
"document_id": document_segment.document_id,
|
|
"dataset_id": document_segment.dataset_id,
|
|
}
|
|
)
|
|
|
|
documents.append(document)
|
|
|
|
# build index
|
|
# get the process rule
|
|
processing_rule = db.session.query(DatasetProcessRule). \
|
|
filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id). \
|
|
first()
|
|
|
|
index_type = dataset_document.doc_form
|
|
index_processor = IndexProcessorFactory(index_type).init_index_processor()
|
|
self._load(
|
|
index_processor=index_processor,
|
|
dataset=dataset,
|
|
dataset_document=dataset_document,
|
|
documents=documents
|
|
)
|
|
except DocumentIsPausedException:
|
|
raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id))
|
|
except ProviderTokenNotInitError as e:
|
|
dataset_document.indexing_status = 'error'
|
|
dataset_document.error = str(e.description)
|
|
dataset_document.stopped_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
|
|
db.session.commit()
|
|
except Exception as e:
|
|
logging.exception("consume document failed")
|
|
dataset_document.indexing_status = 'error'
|
|
dataset_document.error = str(e)
|
|
dataset_document.stopped_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
|
|
db.session.commit()
|
|
|
|
def indexing_estimate(self, tenant_id: str, extract_settings: list[ExtractSetting], tmp_processing_rule: dict,
|
|
doc_form: str = None, doc_language: str = 'English', dataset_id: str = None,
|
|
indexing_technique: str = 'economy') -> dict:
|
|
"""
|
|
Estimate the indexing for the document.
|
|
"""
|
|
# check document limit
|
|
features = FeatureService.get_features(tenant_id)
|
|
if features.billing.enabled:
|
|
count = len(extract_settings)
|
|
batch_upload_limit = int(current_app.config['BATCH_UPLOAD_LIMIT'])
|
|
if count > batch_upload_limit:
|
|
raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
|
|
|
|
embedding_model_instance = None
|
|
if dataset_id:
|
|
dataset = Dataset.query.filter_by(
|
|
id=dataset_id
|
|
).first()
|
|
if not dataset:
|
|
raise ValueError('Dataset not found.')
|
|
if dataset.indexing_technique == 'high_quality' or indexing_technique == 'high_quality':
|
|
if dataset.embedding_model_provider:
|
|
embedding_model_instance = self.model_manager.get_model_instance(
|
|
tenant_id=tenant_id,
|
|
provider=dataset.embedding_model_provider,
|
|
model_type=ModelType.TEXT_EMBEDDING,
|
|
model=dataset.embedding_model
|
|
)
|
|
else:
|
|
embedding_model_instance = self.model_manager.get_default_model_instance(
|
|
tenant_id=tenant_id,
|
|
model_type=ModelType.TEXT_EMBEDDING,
|
|
)
|
|
else:
|
|
if indexing_technique == 'high_quality':
|
|
embedding_model_instance = self.model_manager.get_default_model_instance(
|
|
tenant_id=tenant_id,
|
|
model_type=ModelType.TEXT_EMBEDDING,
|
|
)
|
|
tokens = 0
|
|
preview_texts = []
|
|
total_segments = 0
|
|
total_price = 0
|
|
currency = 'USD'
|
|
index_type = doc_form
|
|
index_processor = IndexProcessorFactory(index_type).init_index_processor()
|
|
all_text_docs = []
|
|
for extract_setting in extract_settings:
|
|
# extract
|
|
text_docs = index_processor.extract(extract_setting, process_rule_mode=tmp_processing_rule["mode"])
|
|
all_text_docs.extend(text_docs)
|
|
processing_rule = DatasetProcessRule(
|
|
mode=tmp_processing_rule["mode"],
|
|
rules=json.dumps(tmp_processing_rule["rules"])
|
|
)
|
|
|
|
# get splitter
|
|
splitter = self._get_splitter(processing_rule, embedding_model_instance)
|
|
|
|
# split to documents
|
|
documents = self._split_to_documents_for_estimate(
|
|
text_docs=text_docs,
|
|
splitter=splitter,
|
|
processing_rule=processing_rule
|
|
)
|
|
|
|
total_segments += len(documents)
|
|
for document in documents:
|
|
if len(preview_texts) < 5:
|
|
preview_texts.append(document.page_content)
|
|
if indexing_technique == 'high_quality' or embedding_model_instance:
|
|
tokens += embedding_model_instance.get_text_embedding_num_tokens(
|
|
texts=[self.filter_string(document.page_content)]
|
|
)
|
|
|
|
if doc_form and doc_form == 'qa_model':
|
|
model_instance = self.model_manager.get_default_model_instance(
|
|
tenant_id=tenant_id,
|
|
model_type=ModelType.LLM
|
|
)
|
|
|
|
model_type_instance = model_instance.model_type_instance
|
|
model_type_instance = cast(LargeLanguageModel, model_type_instance)
|
|
|
|
if len(preview_texts) > 0:
|
|
# qa model document
|
|
response = LLMGenerator.generate_qa_document(current_user.current_tenant_id, preview_texts[0],
|
|
doc_language)
|
|
document_qa_list = self.format_split_text(response)
|
|
price_info = model_type_instance.get_price(
|
|
model=model_instance.model,
|
|
credentials=model_instance.credentials,
|
|
price_type=PriceType.INPUT,
|
|
tokens=total_segments * 2000,
|
|
)
|
|
return {
|
|
"total_segments": total_segments * 20,
|
|
"tokens": total_segments * 2000,
|
|
"total_price": '{:f}'.format(price_info.total_amount),
|
|
"currency": price_info.currency,
|
|
"qa_preview": document_qa_list,
|
|
"preview": preview_texts
|
|
}
|
|
if embedding_model_instance:
|
|
embedding_model_type_instance = cast(TextEmbeddingModel, embedding_model_instance.model_type_instance)
|
|
embedding_price_info = embedding_model_type_instance.get_price(
|
|
model=embedding_model_instance.model,
|
|
credentials=embedding_model_instance.credentials,
|
|
price_type=PriceType.INPUT,
|
|
tokens=tokens
|
|
)
|
|
total_price = '{:f}'.format(embedding_price_info.total_amount)
|
|
currency = embedding_price_info.currency
|
|
return {
|
|
"total_segments": total_segments,
|
|
"tokens": tokens,
|
|
"total_price": total_price,
|
|
"currency": currency,
|
|
"preview": preview_texts
|
|
}
|
|
|
|
def _extract(self, index_processor: BaseIndexProcessor, dataset_document: DatasetDocument, process_rule: dict) \
|
|
-> list[Document]:
|
|
# load file
|
|
if dataset_document.data_source_type not in ["upload_file", "notion_import", "website_crawl"]:
|
|
return []
|
|
|
|
data_source_info = dataset_document.data_source_info_dict
|
|
text_docs = []
|
|
if dataset_document.data_source_type == 'upload_file':
|
|
if not data_source_info or 'upload_file_id' not in data_source_info:
|
|
raise ValueError("no upload file found")
|
|
|
|
file_detail = db.session.query(UploadFile). \
|
|
filter(UploadFile.id == data_source_info['upload_file_id']). \
|
|
one_or_none()
|
|
|
|
if file_detail:
|
|
extract_setting = ExtractSetting(
|
|
datasource_type="upload_file",
|
|
upload_file=file_detail,
|
|
document_model=dataset_document.doc_form
|
|
)
|
|
text_docs = index_processor.extract(extract_setting, process_rule_mode=process_rule['mode'])
|
|
elif dataset_document.data_source_type == 'notion_import':
|
|
if (not data_source_info or 'notion_workspace_id' not in data_source_info
|
|
or 'notion_page_id' not in data_source_info):
|
|
raise ValueError("no notion import info found")
|
|
extract_setting = ExtractSetting(
|
|
datasource_type="notion_import",
|
|
notion_info={
|
|
"notion_workspace_id": data_source_info['notion_workspace_id'],
|
|
"notion_obj_id": data_source_info['notion_page_id'],
|
|
"notion_page_type": data_source_info['type'],
|
|
"document": dataset_document,
|
|
"tenant_id": dataset_document.tenant_id
|
|
},
|
|
document_model=dataset_document.doc_form
|
|
)
|
|
text_docs = index_processor.extract(extract_setting, process_rule_mode=process_rule['mode'])
|
|
elif dataset_document.data_source_type == 'website_crawl':
|
|
if (not data_source_info or 'provider' not in data_source_info
|
|
or 'url' not in data_source_info or 'job_id' not in data_source_info):
|
|
raise ValueError("no website import info found")
|
|
extract_setting = ExtractSetting(
|
|
datasource_type="website_crawl",
|
|
website_info={
|
|
"provider": data_source_info['provider'],
|
|
"job_id": data_source_info['job_id'],
|
|
"tenant_id": dataset_document.tenant_id,
|
|
"url": data_source_info['url'],
|
|
"mode": data_source_info['mode'],
|
|
"only_main_content": data_source_info['only_main_content']
|
|
},
|
|
document_model=dataset_document.doc_form
|
|
)
|
|
text_docs = index_processor.extract(extract_setting, process_rule_mode=process_rule['mode'])
|
|
# update document status to splitting
|
|
self._update_document_index_status(
|
|
document_id=dataset_document.id,
|
|
after_indexing_status="splitting",
|
|
extra_update_params={
|
|
DatasetDocument.word_count: sum(len(text_doc.page_content) for text_doc in text_docs),
|
|
DatasetDocument.parsing_completed_at: datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
|
|
}
|
|
)
|
|
|
|
# replace doc id to document model id
|
|
text_docs = cast(list[Document], text_docs)
|
|
for text_doc in text_docs:
|
|
text_doc.metadata['document_id'] = dataset_document.id
|
|
text_doc.metadata['dataset_id'] = dataset_document.dataset_id
|
|
|
|
return text_docs
|
|
|
|
def filter_string(self, text):
|
|
text = re.sub(r'<\|', '<', text)
|
|
text = re.sub(r'\|>', '>', text)
|
|
text = re.sub(r'[\x00-\x08\x0B\x0C\x0E-\x1F\x7F\xEF\xBF\xBE]', '', text)
|
|
# Unicode U+FFFE
|
|
text = re.sub('\uFFFE', '', text)
|
|
return text
|
|
|
|
def _get_splitter(self, processing_rule: DatasetProcessRule,
|
|
embedding_model_instance: Optional[ModelInstance]) -> TextSplitter:
|
|
"""
|
|
Get the NodeParser object according to the processing rule.
|
|
"""
|
|
if processing_rule.mode == "custom":
|
|
# The user-defined segmentation rule
|
|
rules = json.loads(processing_rule.rules)
|
|
segmentation = rules["segmentation"]
|
|
max_segmentation_tokens_length = int(current_app.config['INDEXING_MAX_SEGMENTATION_TOKENS_LENGTH'])
|
|
if segmentation["max_tokens"] < 50 or segmentation["max_tokens"] > max_segmentation_tokens_length:
|
|
raise ValueError(f"Custom segment length should be between 50 and {max_segmentation_tokens_length}.")
|
|
|
|
separator = segmentation["separator"]
|
|
if separator:
|
|
separator = separator.replace('\\n', '\n')
|
|
|
|
if segmentation.get('chunk_overlap'):
|
|
chunk_overlap = segmentation['chunk_overlap']
|
|
else:
|
|
chunk_overlap = 0
|
|
|
|
character_splitter = FixedRecursiveCharacterTextSplitter.from_encoder(
|
|
chunk_size=segmentation["max_tokens"],
|
|
chunk_overlap=chunk_overlap,
|
|
fixed_separator=separator,
|
|
separators=["\n\n", "。", ". ", " ", ""],
|
|
embedding_model_instance=embedding_model_instance
|
|
)
|
|
else:
|
|
# Automatic segmentation
|
|
character_splitter = EnhanceRecursiveCharacterTextSplitter.from_encoder(
|
|
chunk_size=DatasetProcessRule.AUTOMATIC_RULES['segmentation']['max_tokens'],
|
|
chunk_overlap=DatasetProcessRule.AUTOMATIC_RULES['segmentation']['chunk_overlap'],
|
|
separators=["\n\n", "。", ". ", " ", ""],
|
|
embedding_model_instance=embedding_model_instance
|
|
)
|
|
|
|
return character_splitter
|
|
|
|
def _step_split(self, text_docs: list[Document], splitter: TextSplitter,
|
|
dataset: Dataset, dataset_document: DatasetDocument, processing_rule: DatasetProcessRule) \
|
|
-> list[Document]:
|
|
"""
|
|
Split the text documents into documents and save them to the document segment.
|
|
"""
|
|
documents = self._split_to_documents(
|
|
text_docs=text_docs,
|
|
splitter=splitter,
|
|
processing_rule=processing_rule,
|
|
tenant_id=dataset.tenant_id,
|
|
document_form=dataset_document.doc_form,
|
|
document_language=dataset_document.doc_language
|
|
)
|
|
|
|
# save node to document segment
|
|
doc_store = DatasetDocumentStore(
|
|
dataset=dataset,
|
|
user_id=dataset_document.created_by,
|
|
document_id=dataset_document.id
|
|
)
|
|
|
|
# add document segments
|
|
doc_store.add_documents(documents)
|
|
|
|
# update document status to indexing
|
|
cur_time = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
|
|
self._update_document_index_status(
|
|
document_id=dataset_document.id,
|
|
after_indexing_status="indexing",
|
|
extra_update_params={
|
|
DatasetDocument.cleaning_completed_at: cur_time,
|
|
DatasetDocument.splitting_completed_at: cur_time,
|
|
}
|
|
)
|
|
|
|
# update segment status to indexing
|
|
self._update_segments_by_document(
|
|
dataset_document_id=dataset_document.id,
|
|
update_params={
|
|
DocumentSegment.status: "indexing",
|
|
DocumentSegment.indexing_at: datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
|
|
}
|
|
)
|
|
|
|
return documents
|
|
|
|
def _split_to_documents(self, text_docs: list[Document], splitter: TextSplitter,
|
|
processing_rule: DatasetProcessRule, tenant_id: str,
|
|
document_form: str, document_language: str) -> list[Document]:
|
|
"""
|
|
Split the text documents into nodes.
|
|
"""
|
|
all_documents = []
|
|
all_qa_documents = []
|
|
for text_doc in text_docs:
|
|
# document clean
|
|
document_text = self._document_clean(text_doc.page_content, processing_rule)
|
|
text_doc.page_content = document_text
|
|
|
|
# parse document to nodes
|
|
documents = splitter.split_documents([text_doc])
|
|
split_documents = []
|
|
for document_node in documents:
|
|
|
|
if document_node.page_content.strip():
|
|
doc_id = str(uuid.uuid4())
|
|
hash = helper.generate_text_hash(document_node.page_content)
|
|
document_node.metadata['doc_id'] = doc_id
|
|
document_node.metadata['doc_hash'] = hash
|
|
# delete Spliter character
|
|
page_content = document_node.page_content
|
|
if page_content.startswith(".") or page_content.startswith("。"):
|
|
page_content = page_content[1:]
|
|
else:
|
|
page_content = page_content
|
|
document_node.page_content = page_content
|
|
|
|
if document_node.page_content:
|
|
split_documents.append(document_node)
|
|
all_documents.extend(split_documents)
|
|
# processing qa document
|
|
if document_form == 'qa_model':
|
|
for i in range(0, len(all_documents), 10):
|
|
threads = []
|
|
sub_documents = all_documents[i:i + 10]
|
|
for doc in sub_documents:
|
|
document_format_thread = threading.Thread(target=self.format_qa_document, kwargs={
|
|
'flask_app': current_app._get_current_object(),
|
|
'tenant_id': tenant_id, 'document_node': doc, 'all_qa_documents': all_qa_documents,
|
|
'document_language': document_language})
|
|
threads.append(document_format_thread)
|
|
document_format_thread.start()
|
|
for thread in threads:
|
|
thread.join()
|
|
return all_qa_documents
|
|
return all_documents
|
|
|
|
def format_qa_document(self, flask_app: Flask, tenant_id: str, document_node, all_qa_documents, document_language):
|
|
format_documents = []
|
|
if document_node.page_content is None or not document_node.page_content.strip():
|
|
return
|
|
with flask_app.app_context():
|
|
try:
|
|
# qa model document
|
|
response = LLMGenerator.generate_qa_document(tenant_id, document_node.page_content, document_language)
|
|
document_qa_list = self.format_split_text(response)
|
|
qa_documents = []
|
|
for result in document_qa_list:
|
|
qa_document = Document(page_content=result['question'], metadata=document_node.metadata.model_copy())
|
|
doc_id = str(uuid.uuid4())
|
|
hash = helper.generate_text_hash(result['question'])
|
|
qa_document.metadata['answer'] = result['answer']
|
|
qa_document.metadata['doc_id'] = doc_id
|
|
qa_document.metadata['doc_hash'] = hash
|
|
qa_documents.append(qa_document)
|
|
format_documents.extend(qa_documents)
|
|
except Exception as e:
|
|
logging.exception(e)
|
|
|
|
all_qa_documents.extend(format_documents)
|
|
|
|
def _split_to_documents_for_estimate(self, text_docs: list[Document], splitter: TextSplitter,
|
|
processing_rule: DatasetProcessRule) -> list[Document]:
|
|
"""
|
|
Split the text documents into nodes.
|
|
"""
|
|
all_documents = []
|
|
for text_doc in text_docs:
|
|
# document clean
|
|
document_text = self._document_clean(text_doc.page_content, processing_rule)
|
|
text_doc.page_content = document_text
|
|
|
|
# parse document to nodes
|
|
documents = splitter.split_documents([text_doc])
|
|
|
|
split_documents = []
|
|
for document in documents:
|
|
if document.page_content is None or not document.page_content.strip():
|
|
continue
|
|
doc_id = str(uuid.uuid4())
|
|
hash = helper.generate_text_hash(document.page_content)
|
|
|
|
document.metadata['doc_id'] = doc_id
|
|
document.metadata['doc_hash'] = hash
|
|
|
|
split_documents.append(document)
|
|
|
|
all_documents.extend(split_documents)
|
|
|
|
return all_documents
|
|
|
|
def _document_clean(self, text: str, processing_rule: DatasetProcessRule) -> str:
|
|
"""
|
|
Clean the document text according to the processing rules.
|
|
"""
|
|
if processing_rule.mode == "automatic":
|
|
rules = DatasetProcessRule.AUTOMATIC_RULES
|
|
else:
|
|
rules = json.loads(processing_rule.rules) if processing_rule.rules else {}
|
|
|
|
if 'pre_processing_rules' in rules:
|
|
pre_processing_rules = rules["pre_processing_rules"]
|
|
for pre_processing_rule in pre_processing_rules:
|
|
if pre_processing_rule["id"] == "remove_extra_spaces" and pre_processing_rule["enabled"] is True:
|
|
# Remove extra spaces
|
|
pattern = r'\n{3,}'
|
|
text = re.sub(pattern, '\n\n', text)
|
|
pattern = r'[\t\f\r\x20\u00a0\u1680\u180e\u2000-\u200a\u202f\u205f\u3000]{2,}'
|
|
text = re.sub(pattern, ' ', text)
|
|
elif pre_processing_rule["id"] == "remove_urls_emails" and pre_processing_rule["enabled"] is True:
|
|
# Remove email
|
|
pattern = r'([a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+)'
|
|
text = re.sub(pattern, '', text)
|
|
|
|
# Remove URL
|
|
pattern = r'https?://[^\s]+'
|
|
text = re.sub(pattern, '', text)
|
|
|
|
return text
|
|
|
|
def format_split_text(self, text):
|
|
regex = r"Q\d+:\s*(.*?)\s*A\d+:\s*([\s\S]*?)(?=Q\d+:|$)"
|
|
matches = re.findall(regex, text, re.UNICODE)
|
|
|
|
return [
|
|
{
|
|
"question": q,
|
|
"answer": re.sub(r"\n\s*", "\n", a.strip())
|
|
}
|
|
for q, a in matches if q and a
|
|
]
|
|
|
|
def _load(self, index_processor: BaseIndexProcessor, dataset: Dataset,
|
|
dataset_document: DatasetDocument, documents: list[Document]) -> None:
|
|
"""
|
|
insert index and update document/segment status to completed
|
|
"""
|
|
|
|
embedding_model_instance = None
|
|
if dataset.indexing_technique == 'high_quality':
|
|
embedding_model_instance = self.model_manager.get_model_instance(
|
|
tenant_id=dataset.tenant_id,
|
|
provider=dataset.embedding_model_provider,
|
|
model_type=ModelType.TEXT_EMBEDDING,
|
|
model=dataset.embedding_model
|
|
)
|
|
|
|
# chunk nodes by chunk size
|
|
indexing_start_at = time.perf_counter()
|
|
tokens = 0
|
|
chunk_size = 10
|
|
|
|
# create keyword index
|
|
create_keyword_thread = threading.Thread(target=self._process_keyword_index,
|
|
args=(current_app._get_current_object(),
|
|
dataset.id, dataset_document.id, documents))
|
|
create_keyword_thread.start()
|
|
if dataset.indexing_technique == 'high_quality':
|
|
with concurrent.futures.ThreadPoolExecutor(max_workers=10) as executor:
|
|
futures = []
|
|
for i in range(0, len(documents), chunk_size):
|
|
chunk_documents = documents[i:i + chunk_size]
|
|
futures.append(executor.submit(self._process_chunk, current_app._get_current_object(), index_processor,
|
|
chunk_documents, dataset,
|
|
dataset_document, embedding_model_instance))
|
|
|
|
for future in futures:
|
|
tokens += future.result()
|
|
|
|
create_keyword_thread.join()
|
|
indexing_end_at = time.perf_counter()
|
|
|
|
# update document status to completed
|
|
self._update_document_index_status(
|
|
document_id=dataset_document.id,
|
|
after_indexing_status="completed",
|
|
extra_update_params={
|
|
DatasetDocument.tokens: tokens,
|
|
DatasetDocument.completed_at: datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
|
|
DatasetDocument.indexing_latency: indexing_end_at - indexing_start_at,
|
|
}
|
|
)
|
|
|
|
def _process_keyword_index(self, flask_app, dataset_id, document_id, documents):
|
|
with flask_app.app_context():
|
|
dataset = Dataset.query.filter_by(id=dataset_id).first()
|
|
if not dataset:
|
|
raise ValueError("no dataset found")
|
|
keyword = Keyword(dataset)
|
|
keyword.create(documents)
|
|
if dataset.indexing_technique != 'high_quality':
|
|
document_ids = [document.metadata['doc_id'] for document in documents]
|
|
db.session.query(DocumentSegment).filter(
|
|
DocumentSegment.document_id == document_id,
|
|
DocumentSegment.index_node_id.in_(document_ids),
|
|
DocumentSegment.status == "indexing"
|
|
).update({
|
|
DocumentSegment.status: "completed",
|
|
DocumentSegment.enabled: True,
|
|
DocumentSegment.completed_at: datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
|
|
})
|
|
|
|
db.session.commit()
|
|
|
|
def _process_chunk(self, flask_app, index_processor, chunk_documents, dataset, dataset_document,
|
|
embedding_model_instance):
|
|
with flask_app.app_context():
|
|
# check document is paused
|
|
self._check_document_paused_status(dataset_document.id)
|
|
|
|
tokens = 0
|
|
if dataset.indexing_technique == 'high_quality' or embedding_model_type_instance:
|
|
tokens += sum(
|
|
embedding_model_instance.get_text_embedding_num_tokens(
|
|
[document.page_content]
|
|
)
|
|
for document in chunk_documents
|
|
)
|
|
|
|
# load index
|
|
index_processor.load(dataset, chunk_documents, with_keywords=False)
|
|
|
|
document_ids = [document.metadata['doc_id'] for document in chunk_documents]
|
|
db.session.query(DocumentSegment).filter(
|
|
DocumentSegment.document_id == dataset_document.id,
|
|
DocumentSegment.index_node_id.in_(document_ids),
|
|
DocumentSegment.status == "indexing"
|
|
).update({
|
|
DocumentSegment.status: "completed",
|
|
DocumentSegment.enabled: True,
|
|
DocumentSegment.completed_at: datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
|
|
})
|
|
|
|
db.session.commit()
|
|
|
|
return tokens
|
|
|
|
def _check_document_paused_status(self, document_id: str):
|
|
indexing_cache_key = 'document_{}_is_paused'.format(document_id)
|
|
result = redis_client.get(indexing_cache_key)
|
|
if result:
|
|
raise DocumentIsPausedException()
|
|
|
|
def _update_document_index_status(self, document_id: str, after_indexing_status: str,
|
|
extra_update_params: Optional[dict] = None) -> None:
|
|
"""
|
|
Update the document indexing status.
|
|
"""
|
|
count = DatasetDocument.query.filter_by(id=document_id, is_paused=True).count()
|
|
if count > 0:
|
|
raise DocumentIsPausedException()
|
|
document = DatasetDocument.query.filter_by(id=document_id).first()
|
|
if not document:
|
|
raise DocumentIsDeletedPausedException()
|
|
|
|
update_params = {
|
|
DatasetDocument.indexing_status: after_indexing_status
|
|
}
|
|
|
|
if extra_update_params:
|
|
update_params.update(extra_update_params)
|
|
|
|
DatasetDocument.query.filter_by(id=document_id).update(update_params)
|
|
db.session.commit()
|
|
|
|
def _update_segments_by_document(self, dataset_document_id: str, update_params: dict) -> None:
|
|
"""
|
|
Update the document segment by document id.
|
|
"""
|
|
DocumentSegment.query.filter_by(document_id=dataset_document_id).update(update_params)
|
|
db.session.commit()
|
|
|
|
def batch_add_segments(self, segments: list[DocumentSegment], dataset: Dataset):
|
|
"""
|
|
Batch add segments index processing
|
|
"""
|
|
documents = []
|
|
for segment in segments:
|
|
document = Document(
|
|
page_content=segment.content,
|
|
metadata={
|
|
"doc_id": segment.index_node_id,
|
|
"doc_hash": segment.index_node_hash,
|
|
"document_id": segment.document_id,
|
|
"dataset_id": segment.dataset_id,
|
|
}
|
|
)
|
|
documents.append(document)
|
|
# save vector index
|
|
index_type = dataset.doc_form
|
|
index_processor = IndexProcessorFactory(index_type).init_index_processor()
|
|
index_processor.load(dataset, documents)
|
|
|
|
def _transform(self, index_processor: BaseIndexProcessor, dataset: Dataset,
|
|
text_docs: list[Document], doc_language: str, process_rule: dict) -> list[Document]:
|
|
# get embedding model instance
|
|
embedding_model_instance = None
|
|
if dataset.indexing_technique == 'high_quality':
|
|
if dataset.embedding_model_provider:
|
|
embedding_model_instance = self.model_manager.get_model_instance(
|
|
tenant_id=dataset.tenant_id,
|
|
provider=dataset.embedding_model_provider,
|
|
model_type=ModelType.TEXT_EMBEDDING,
|
|
model=dataset.embedding_model
|
|
)
|
|
else:
|
|
embedding_model_instance = self.model_manager.get_default_model_instance(
|
|
tenant_id=dataset.tenant_id,
|
|
model_type=ModelType.TEXT_EMBEDDING,
|
|
)
|
|
|
|
documents = index_processor.transform(text_docs, embedding_model_instance=embedding_model_instance,
|
|
process_rule=process_rule, tenant_id=dataset.tenant_id,
|
|
doc_language=doc_language)
|
|
|
|
return documents
|
|
|
|
def _load_segments(self, dataset, dataset_document, documents):
|
|
# save node to document segment
|
|
doc_store = DatasetDocumentStore(
|
|
dataset=dataset,
|
|
user_id=dataset_document.created_by,
|
|
document_id=dataset_document.id
|
|
)
|
|
|
|
# add document segments
|
|
doc_store.add_documents(documents)
|
|
|
|
# update document status to indexing
|
|
cur_time = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
|
|
self._update_document_index_status(
|
|
document_id=dataset_document.id,
|
|
after_indexing_status="indexing",
|
|
extra_update_params={
|
|
DatasetDocument.cleaning_completed_at: cur_time,
|
|
DatasetDocument.splitting_completed_at: cur_time,
|
|
}
|
|
)
|
|
|
|
# update segment status to indexing
|
|
self._update_segments_by_document(
|
|
dataset_document_id=dataset_document.id,
|
|
update_params={
|
|
DocumentSegment.status: "indexing",
|
|
DocumentSegment.indexing_at: datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
|
|
}
|
|
)
|
|
pass
|
|
|
|
|
|
class DocumentIsPausedException(Exception):
|
|
pass
|
|
|
|
|
|
class DocumentIsDeletedPausedException(Exception):
|
|
pass
|