mirror of
https://github.com/langgenius/dify.git
synced 2024-11-16 19:59:50 +08:00
109 lines
3.9 KiB
Python
109 lines
3.9 KiB
Python
from core.model_runtime.entities.model_entities import DefaultParameterName
|
||
|
||
PARAMETER_RULE_TEMPLATE: dict[DefaultParameterName, dict] = {
|
||
DefaultParameterName.TEMPERATURE: {
|
||
'label': {
|
||
'en_US': 'Temperature',
|
||
'zh_Hans': '温度',
|
||
},
|
||
'type': 'float',
|
||
'help': {
|
||
'en_US': 'Controls randomness. Lower temperature results in less random completions. As the temperature approaches zero, the model will become deterministic and repetitive. Higher temperature results in more random completions.',
|
||
'zh_Hans': '温度控制随机性。较低的温度会导致较少的随机完成。随着温度接近零,模型将变得确定性和重复性。较高的温度会导致更多的随机完成。',
|
||
},
|
||
'required': False,
|
||
'default': 0.0,
|
||
'min': 0.0,
|
||
'max': 1.0,
|
||
'precision': 2,
|
||
},
|
||
DefaultParameterName.TOP_P: {
|
||
'label': {
|
||
'en_US': 'Top P',
|
||
'zh_Hans': 'Top P',
|
||
},
|
||
'type': 'float',
|
||
'help': {
|
||
'en_US': 'Controls diversity via nucleus sampling: 0.5 means half of all likelihood-weighted options are considered.',
|
||
'zh_Hans': '通过核心采样控制多样性:0.5表示考虑了一半的所有可能性加权选项。',
|
||
},
|
||
'required': False,
|
||
'default': 1.0,
|
||
'min': 0.0,
|
||
'max': 1.0,
|
||
'precision': 2,
|
||
},
|
||
DefaultParameterName.PRESENCE_PENALTY: {
|
||
'label': {
|
||
'en_US': 'Presence Penalty',
|
||
'zh_Hans': '存在惩罚',
|
||
},
|
||
'type': 'float',
|
||
'help': {
|
||
'en_US': 'Applies a penalty to the log-probability of tokens already in the text.',
|
||
'zh_Hans': '对文本中已有的标记的对数概率施加惩罚。',
|
||
},
|
||
'required': False,
|
||
'default': 0.0,
|
||
'min': 0.0,
|
||
'max': 1.0,
|
||
'precision': 2,
|
||
},
|
||
DefaultParameterName.FREQUENCY_PENALTY: {
|
||
'label': {
|
||
'en_US': 'Frequency Penalty',
|
||
'zh_Hans': '频率惩罚',
|
||
},
|
||
'type': 'float',
|
||
'help': {
|
||
'en_US': 'Applies a penalty to the log-probability of tokens that appear in the text.',
|
||
'zh_Hans': '对文本中出现的标记的对数概率施加惩罚。',
|
||
},
|
||
'required': False,
|
||
'default': 0.0,
|
||
'min': 0.0,
|
||
'max': 1.0,
|
||
'precision': 2,
|
||
},
|
||
DefaultParameterName.MAX_TOKENS: {
|
||
'label': {
|
||
'en_US': 'Max Tokens',
|
||
'zh_Hans': '最大标记',
|
||
},
|
||
'type': 'int',
|
||
'help': {
|
||
'en_US': 'Specifies the upper limit on the length of generated results. If the generated results are truncated, you can increase this parameter.',
|
||
'zh_Hans': '指定生成结果长度的上限。如果生成结果截断,可以调大该参数。',
|
||
},
|
||
'required': False,
|
||
'default': 64,
|
||
'min': 1,
|
||
'max': 2048,
|
||
'precision': 0,
|
||
},
|
||
DefaultParameterName.RESPONSE_FORMAT: {
|
||
'label': {
|
||
'en_US': 'Response Format',
|
||
'zh_Hans': '回复格式',
|
||
},
|
||
'type': 'string',
|
||
'help': {
|
||
'en_US': 'Set a response format, ensure the output from llm is a valid code block as possible, such as JSON, XML, etc.',
|
||
'zh_Hans': '设置一个返回格式,确保llm的输出尽可能是有效的代码块,如JSON、XML等',
|
||
},
|
||
'required': False,
|
||
'options': ['JSON', 'XML'],
|
||
},
|
||
DefaultParameterName.JSON_SCHEMA: {
|
||
'label': {
|
||
'en_US': 'JSON Schema',
|
||
},
|
||
'type': 'text',
|
||
'help': {
|
||
'en_US': 'Set a response json schema will ensure LLM to adhere it.',
|
||
'zh_Hans': '设置返回的json schema,llm将按照它返回',
|
||
},
|
||
'required': False,
|
||
},
|
||
}
|