dify/api/core/features/assistant_base_runner.py
2024-02-01 18:11:57 +08:00

582 lines
26 KiB
Python

import json
import logging
from datetime import datetime
from mimetypes import guess_extension
from typing import List, Optional, Tuple, Union, cast
from core.app_runner.app_runner import AppRunner
from core.application_queue_manager import ApplicationQueueManager
from core.callback_handler.agent_tool_callback_handler import DifyAgentCallbackHandler
from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
from core.entities.application_entities import (AgentEntity, AgentToolEntity, ApplicationGenerateEntity,
AppOrchestrationConfigEntity, InvokeFrom, ModelConfigEntity)
from core.file.message_file_parser import FileTransferMethod
from core.memory.token_buffer_memory import TokenBufferMemory
from core.model_manager import ModelInstance
from core.model_runtime.entities.llm_entities import LLMUsage
from core.model_runtime.entities.message_entities import PromptMessage, PromptMessageTool
from core.model_runtime.entities.model_entities import ModelFeature
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
from core.model_runtime.utils.encoders import jsonable_encoder
from core.tools.entities.tool_entities import (ToolInvokeMessage, ToolInvokeMessageBinary, ToolParameter,
ToolRuntimeVariablePool)
from core.tools.tool.dataset_retriever_tool import DatasetRetrieverTool
from core.tools.tool.tool import Tool
from core.tools.tool_file_manager import ToolFileManager
from core.tools.tool_manager import ToolManager
from extensions.ext_database import db
from models.model import Message, MessageAgentThought, MessageFile
from models.tools import ToolConversationVariables
logger = logging.getLogger(__name__)
class BaseAssistantApplicationRunner(AppRunner):
def __init__(self, tenant_id: str,
application_generate_entity: ApplicationGenerateEntity,
app_orchestration_config: AppOrchestrationConfigEntity,
model_config: ModelConfigEntity,
config: AgentEntity,
queue_manager: ApplicationQueueManager,
message: Message,
user_id: str,
memory: Optional[TokenBufferMemory] = None,
prompt_messages: Optional[List[PromptMessage]] = None,
variables_pool: Optional[ToolRuntimeVariablePool] = None,
db_variables: Optional[ToolConversationVariables] = None,
model_instance: ModelInstance = None
) -> None:
"""
Agent runner
:param tenant_id: tenant id
:param app_orchestration_config: app orchestration config
:param model_config: model config
:param config: dataset config
:param queue_manager: queue manager
:param message: message
:param user_id: user id
:param agent_llm_callback: agent llm callback
:param callback: callback
:param memory: memory
"""
self.tenant_id = tenant_id
self.application_generate_entity = application_generate_entity
self.app_orchestration_config = app_orchestration_config
self.model_config = model_config
self.config = config
self.queue_manager = queue_manager
self.message = message
self.user_id = user_id
self.memory = memory
self.history_prompt_messages = prompt_messages
self.variables_pool = variables_pool
self.db_variables_pool = db_variables
self.model_instance = model_instance
# init callback
self.agent_callback = DifyAgentCallbackHandler()
# init dataset tools
hit_callback = DatasetIndexToolCallbackHandler(
queue_manager=queue_manager,
app_id=self.application_generate_entity.app_id,
message_id=message.id,
user_id=user_id,
invoke_from=self.application_generate_entity.invoke_from,
)
self.dataset_tools = DatasetRetrieverTool.get_dataset_tools(
tenant_id=tenant_id,
dataset_ids=app_orchestration_config.dataset.dataset_ids if app_orchestration_config.dataset else [],
retrieve_config=app_orchestration_config.dataset.retrieve_config if app_orchestration_config.dataset else None,
return_resource=app_orchestration_config.show_retrieve_source,
invoke_from=application_generate_entity.invoke_from,
hit_callback=hit_callback
)
# get how many agent thoughts have been created
self.agent_thought_count = db.session.query(MessageAgentThought).filter(
MessageAgentThought.message_id == self.message.id,
).count()
# check if model supports stream tool call
llm_model = cast(LargeLanguageModel, model_instance.model_type_instance)
model_schema = llm_model.get_model_schema(model_instance.model, model_instance.credentials)
if model_schema and ModelFeature.STREAM_TOOL_CALL in (model_schema.features or []):
self.stream_tool_call = True
else:
self.stream_tool_call = False
def _repack_app_orchestration_config(self, app_orchestration_config: AppOrchestrationConfigEntity) -> AppOrchestrationConfigEntity:
"""
Repack app orchestration config
"""
if app_orchestration_config.prompt_template.simple_prompt_template is None:
app_orchestration_config.prompt_template.simple_prompt_template = ''
return app_orchestration_config
def _convert_tool_response_to_str(self, tool_response: List[ToolInvokeMessage]) -> str:
"""
Handle tool response
"""
result = ''
for response in tool_response:
if response.type == ToolInvokeMessage.MessageType.TEXT:
result += response.message
elif response.type == ToolInvokeMessage.MessageType.LINK:
result += f"result link: {response.message}. please tell user to check it."
elif response.type == ToolInvokeMessage.MessageType.IMAGE_LINK or \
response.type == ToolInvokeMessage.MessageType.IMAGE:
result += f"image has been created and sent to user already, you should tell user to check it now."
else:
result += f"tool response: {response.message}."
return result
def _convert_tool_to_prompt_message_tool(self, tool: AgentToolEntity) -> Tuple[PromptMessageTool, Tool]:
"""
convert tool to prompt message tool
"""
tool_entity = ToolManager.get_tool_runtime(
provider_type=tool.provider_type, provider_name=tool.provider_id, tool_name=tool.tool_name,
tenant_id=self.application_generate_entity.tenant_id,
agent_callback=self.agent_callback
)
tool_entity.load_variables(self.variables_pool)
message_tool = PromptMessageTool(
name=tool.tool_name,
description=tool_entity.description.llm,
parameters={
"type": "object",
"properties": {},
"required": [],
}
)
runtime_parameters = {}
parameters = tool_entity.parameters or []
user_parameters = tool_entity.get_runtime_parameters() or []
# override parameters
for parameter in user_parameters:
# check if parameter in tool parameters
found = False
for tool_parameter in parameters:
if tool_parameter.name == parameter.name:
found = True
break
if found:
# override parameter
tool_parameter.type = parameter.type
tool_parameter.form = parameter.form
tool_parameter.required = parameter.required
tool_parameter.default = parameter.default
tool_parameter.options = parameter.options
tool_parameter.llm_description = parameter.llm_description
else:
# add new parameter
parameters.append(parameter)
for parameter in parameters:
parameter_type = 'string'
enum = []
if parameter.type == ToolParameter.ToolParameterType.STRING:
parameter_type = 'string'
elif parameter.type == ToolParameter.ToolParameterType.BOOLEAN:
parameter_type = 'boolean'
elif parameter.type == ToolParameter.ToolParameterType.NUMBER:
parameter_type = 'number'
elif parameter.type == ToolParameter.ToolParameterType.SELECT:
for option in parameter.options:
enum.append(option.value)
parameter_type = 'string'
else:
raise ValueError(f"parameter type {parameter.type} is not supported")
if parameter.form == ToolParameter.ToolParameterForm.FORM:
# get tool parameter from form
tool_parameter_config = tool.tool_parameters.get(parameter.name)
if not tool_parameter_config:
# get default value
tool_parameter_config = parameter.default
if not tool_parameter_config and parameter.required:
raise ValueError(f"tool parameter {parameter.name} not found in tool config")
if parameter.type == ToolParameter.ToolParameterType.SELECT:
# check if tool_parameter_config in options
options = list(map(lambda x: x.value, parameter.options))
if tool_parameter_config not in options:
raise ValueError(f"tool parameter {parameter.name} value {tool_parameter_config} not in options {options}")
# convert tool parameter config to correct type
try:
if parameter.type == ToolParameter.ToolParameterType.NUMBER:
# check if tool parameter is integer
if isinstance(tool_parameter_config, int):
tool_parameter_config = tool_parameter_config
elif isinstance(tool_parameter_config, float):
tool_parameter_config = tool_parameter_config
elif isinstance(tool_parameter_config, str):
if '.' in tool_parameter_config:
tool_parameter_config = float(tool_parameter_config)
else:
tool_parameter_config = int(tool_parameter_config)
elif parameter.type == ToolParameter.ToolParameterType.BOOLEAN:
tool_parameter_config = bool(tool_parameter_config)
elif parameter.type not in [ToolParameter.ToolParameterType.SELECT, ToolParameter.ToolParameterType.STRING]:
tool_parameter_config = str(tool_parameter_config)
elif parameter.type == ToolParameter.ToolParameterType:
tool_parameter_config = str(tool_parameter_config)
except Exception as e:
raise ValueError(f"tool parameter {parameter.name} value {tool_parameter_config} is not correct type")
# save tool parameter to tool entity memory
runtime_parameters[parameter.name] = tool_parameter_config
elif parameter.form == ToolParameter.ToolParameterForm.LLM:
message_tool.parameters['properties'][parameter.name] = {
"type": parameter_type,
"description": parameter.llm_description or '',
}
if len(enum) > 0:
message_tool.parameters['properties'][parameter.name]['enum'] = enum
if parameter.required:
message_tool.parameters['required'].append(parameter.name)
tool_entity.runtime.runtime_parameters.update(runtime_parameters)
return message_tool, tool_entity
def _convert_dataset_retriever_tool_to_prompt_message_tool(self, tool: DatasetRetrieverTool) -> PromptMessageTool:
"""
convert dataset retriever tool to prompt message tool
"""
prompt_tool = PromptMessageTool(
name=tool.identity.name,
description=tool.description.llm,
parameters={
"type": "object",
"properties": {},
"required": [],
}
)
for parameter in tool.get_runtime_parameters():
parameter_type = 'string'
prompt_tool.parameters['properties'][parameter.name] = {
"type": parameter_type,
"description": parameter.llm_description or '',
}
if parameter.required:
if parameter.name not in prompt_tool.parameters['required']:
prompt_tool.parameters['required'].append(parameter.name)
return prompt_tool
def update_prompt_message_tool(self, tool: Tool, prompt_tool: PromptMessageTool) -> PromptMessageTool:
"""
update prompt message tool
"""
# try to get tool runtime parameters
tool_runtime_parameters = tool.get_runtime_parameters() or []
for parameter in tool_runtime_parameters:
parameter_type = 'string'
enum = []
if parameter.type == ToolParameter.ToolParameterType.STRING:
parameter_type = 'string'
elif parameter.type == ToolParameter.ToolParameterType.BOOLEAN:
parameter_type = 'boolean'
elif parameter.type == ToolParameter.ToolParameterType.NUMBER:
parameter_type = 'number'
elif parameter.type == ToolParameter.ToolParameterType.SELECT:
for option in parameter.options:
enum.append(option.value)
parameter_type = 'string'
else:
raise ValueError(f"parameter type {parameter.type} is not supported")
if parameter.form == ToolParameter.ToolParameterForm.LLM:
prompt_tool.parameters['properties'][parameter.name] = {
"type": parameter_type,
"description": parameter.llm_description or '',
}
if len(enum) > 0:
prompt_tool.parameters['properties'][parameter.name]['enum'] = enum
if parameter.required:
if parameter.name not in prompt_tool.parameters['required']:
prompt_tool.parameters['required'].append(parameter.name)
return prompt_tool
def extract_tool_response_binary(self, tool_response: List[ToolInvokeMessage]) -> List[ToolInvokeMessageBinary]:
"""
Extract tool response binary
"""
result = []
for response in tool_response:
if response.type == ToolInvokeMessage.MessageType.IMAGE_LINK or \
response.type == ToolInvokeMessage.MessageType.IMAGE:
result.append(ToolInvokeMessageBinary(
mimetype=response.meta.get('mime_type', 'octet/stream'),
url=response.message,
save_as=response.save_as,
))
elif response.type == ToolInvokeMessage.MessageType.BLOB:
result.append(ToolInvokeMessageBinary(
mimetype=response.meta.get('mime_type', 'octet/stream'),
url=response.message,
save_as=response.save_as,
))
elif response.type == ToolInvokeMessage.MessageType.LINK:
# check if there is a mime type in meta
if response.meta and 'mime_type' in response.meta:
result.append(ToolInvokeMessageBinary(
mimetype=response.meta.get('mime_type', 'octet/stream') if response.meta else 'octet/stream',
url=response.message,
save_as=response.save_as,
))
return result
def create_message_files(self, messages: List[ToolInvokeMessageBinary]) -> List[Tuple[MessageFile, bool]]:
"""
Create message file
:param messages: messages
:return: message files, should save as variable
"""
result = []
for message in messages:
file_type = 'bin'
if 'image' in message.mimetype:
file_type = 'image'
elif 'video' in message.mimetype:
file_type = 'video'
elif 'audio' in message.mimetype:
file_type = 'audio'
elif 'text' in message.mimetype:
file_type = 'text'
elif 'pdf' in message.mimetype:
file_type = 'pdf'
elif 'zip' in message.mimetype:
file_type = 'archive'
# ...
invoke_from = self.application_generate_entity.invoke_from
message_file = MessageFile(
message_id=self.message.id,
type=file_type,
transfer_method=FileTransferMethod.TOOL_FILE.value,
belongs_to='assistant',
url=message.url,
upload_file_id=None,
created_by_role=('account'if invoke_from in [InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER] else 'end_user'),
created_by=self.user_id,
)
db.session.add(message_file)
result.append((
message_file,
message.save_as
))
db.session.commit()
return result
def create_agent_thought(self, message_id: str, message: str,
tool_name: str, tool_input: str, messages_ids: List[str]
) -> MessageAgentThought:
"""
Create agent thought
"""
thought = MessageAgentThought(
message_id=message_id,
message_chain_id=None,
thought='',
tool=tool_name,
tool_labels_str='{}',
tool_input=tool_input,
message=message,
message_token=0,
message_unit_price=0,
message_price_unit=0,
message_files=json.dumps(messages_ids) if messages_ids else '',
answer='',
observation='',
answer_token=0,
answer_unit_price=0,
answer_price_unit=0,
tokens=0,
total_price=0,
position=self.agent_thought_count + 1,
currency='USD',
latency=0,
created_by_role='account',
created_by=self.user_id,
)
db.session.add(thought)
db.session.commit()
self.agent_thought_count += 1
return thought
def save_agent_thought(self,
agent_thought: MessageAgentThought,
tool_name: str,
tool_input: Union[str, dict],
thought: str,
observation: str,
answer: str,
messages_ids: List[str],
llm_usage: LLMUsage = None) -> MessageAgentThought:
"""
Save agent thought
"""
if thought is not None:
agent_thought.thought = thought
if tool_name is not None:
agent_thought.tool = tool_name
if tool_input is not None:
if isinstance(tool_input, dict):
try:
tool_input = json.dumps(tool_input, ensure_ascii=False)
except Exception as e:
tool_input = json.dumps(tool_input)
agent_thought.tool_input = tool_input
if observation is not None:
agent_thought.observation = observation
if answer is not None:
agent_thought.answer = answer
if messages_ids is not None and len(messages_ids) > 0:
agent_thought.message_files = json.dumps(messages_ids)
if llm_usage:
agent_thought.message_token = llm_usage.prompt_tokens
agent_thought.message_price_unit = llm_usage.prompt_price_unit
agent_thought.message_unit_price = llm_usage.prompt_unit_price
agent_thought.answer_token = llm_usage.completion_tokens
agent_thought.answer_price_unit = llm_usage.completion_price_unit
agent_thought.answer_unit_price = llm_usage.completion_unit_price
agent_thought.tokens = llm_usage.total_tokens
agent_thought.total_price = llm_usage.total_price
# check if tool labels is not empty
labels = agent_thought.tool_labels or {}
tools = agent_thought.tool.split(';') if agent_thought.tool else []
for tool in tools:
if not tool:
continue
if tool not in labels:
tool_label = ToolManager.get_tool_label(tool)
if tool_label:
labels[tool] = tool_label.to_dict()
else:
labels[tool] = {'en_US': tool, 'zh_Hans': tool}
agent_thought.tool_labels_str = json.dumps(labels)
db.session.commit()
def get_history_prompt_messages(self) -> List[PromptMessage]:
"""
Get history prompt messages
"""
if self.history_prompt_messages is None:
self.history_prompt_messages = db.session.query(PromptMessage).filter(
PromptMessage.message_id == self.message.id,
).order_by(PromptMessage.position.asc()).all()
return self.history_prompt_messages
def transform_tool_invoke_messages(self, messages: List[ToolInvokeMessage]) -> List[ToolInvokeMessage]:
"""
Transform tool message into agent thought
"""
result = []
for message in messages:
if message.type == ToolInvokeMessage.MessageType.TEXT:
result.append(message)
elif message.type == ToolInvokeMessage.MessageType.LINK:
result.append(message)
elif message.type == ToolInvokeMessage.MessageType.IMAGE:
# try to download image
try:
file = ToolFileManager.create_file_by_url(user_id=self.user_id, tenant_id=self.tenant_id,
conversation_id=self.message.conversation_id,
file_url=message.message)
url = f'/files/tools/{file.id}{guess_extension(file.mimetype) or ".png"}'
result.append(ToolInvokeMessage(
type=ToolInvokeMessage.MessageType.IMAGE_LINK,
message=url,
save_as=message.save_as,
meta=message.meta.copy() if message.meta is not None else {},
))
except Exception as e:
logger.exception(e)
result.append(ToolInvokeMessage(
type=ToolInvokeMessage.MessageType.TEXT,
message=f"Failed to download image: {message.message}, you can try to download it yourself.",
meta=message.meta.copy() if message.meta is not None else {},
save_as=message.save_as,
))
elif message.type == ToolInvokeMessage.MessageType.BLOB:
# get mime type and save blob to storage
mimetype = message.meta.get('mime_type', 'octet/stream')
# if message is str, encode it to bytes
if isinstance(message.message, str):
message.message = message.message.encode('utf-8')
file = ToolFileManager.create_file_by_raw(user_id=self.user_id, tenant_id=self.tenant_id,
conversation_id=self.message.conversation_id,
file_binary=message.message,
mimetype=mimetype)
url = f'/files/tools/{file.id}{guess_extension(file.mimetype) or ".bin"}'
# check if file is image
if 'image' in mimetype:
result.append(ToolInvokeMessage(
type=ToolInvokeMessage.MessageType.IMAGE_LINK,
message=url,
save_as=message.save_as,
meta=message.meta.copy() if message.meta is not None else {},
))
else:
result.append(ToolInvokeMessage(
type=ToolInvokeMessage.MessageType.LINK,
message=url,
save_as=message.save_as,
meta=message.meta.copy() if message.meta is not None else {},
))
else:
result.append(message)
return result
def update_db_variables(self, tool_variables: ToolRuntimeVariablePool, db_variables: ToolConversationVariables):
"""
convert tool variables to db variables
"""
db_variables.updated_at = datetime.utcnow()
db_variables.variables_str = json.dumps(jsonable_encoder(tool_variables.pool))
db.session.commit()