dify/web/i18n/en-US/dataset.ts
2024-09-09 15:32:02 +08:00

78 lines
3.6 KiB
TypeScript

const translation = {
knowledge: 'Knowledge',
documentCount: ' docs',
wordCount: ' k words',
appCount: ' linked apps',
createDataset: 'Create Knowledge',
createDatasetIntro: 'Import your own text data or write data in real-time via Webhook for LLM context enhancement.',
deleteDatasetConfirmTitle: 'Delete this Knowledge?',
deleteDatasetConfirmContent:
'Deleting the Knowledge is irreversible. Users will no longer be able to access your Knowledge, and all prompt configurations and logs will be permanently deleted.',
datasetUsedByApp: 'The knowledge is being used by some apps. Apps will no longer be able to use this Knowledge, and all prompt configurations and logs will be permanently deleted.',
datasetDeleted: 'Knowledge deleted',
datasetDeleteFailed: 'Failed to delete Knowledge',
didYouKnow: 'Did you know?',
intro1: 'The Knowledge can be integrated into the Dify application ',
intro2: 'as a context',
intro3: ',',
intro4: 'or it ',
intro5: 'can be created',
intro6: ' as a standalone ChatGPT index plug-in to publish',
unavailable: 'Unavailable',
unavailableTip: 'Embedding model is not available, the default embedding model needs to be configured',
datasets: 'KNOWLEDGE',
datasetsApi: 'API ACCESS',
retrieval: {
semantic_search: {
title: 'Vector Search',
description: 'Generate query embeddings and search for the text chunk most similar to its vector representation.',
},
full_text_search: {
title: 'Full-Text Search',
description: 'Index all terms in the document, allowing users to search any term and retrieve relevant text chunk containing those terms.',
},
hybrid_search: {
title: 'Hybrid Search',
description: 'Execute full-text search and vector searches simultaneously, re-rank to select the best match for the user\'s query. Users can choose to set weights or configure to a Rerank model.',
recommend: 'Recommend',
},
invertedIndex: {
title: 'Inverted Index',
description: 'Inverted Index is a structure used for efficient retrieval. Organized by terms, each term points to documents or web pages containing it.',
},
change: 'Change',
changeRetrievalMethod: 'Change retrieval method',
},
docsFailedNotice: 'documents failed to be indexed',
retry: 'Retry',
indexingTechnique: {
high_quality: 'HQ',
economy: 'ECO',
},
indexingMethod: {
semantic_search: 'VECTOR',
full_text_search: 'FULL TEXT',
hybrid_search: 'HYBRID',
invertedIndex: 'INVERTED',
},
defaultRetrievalTip: 'Multi-path retrieval is used by default. Knowledge is retrieved from multiple knowledge bases and then re-ranked.',
mixtureHighQualityAndEconomicTip: 'The Rerank model is required for mixture of high quality and economical knowledge bases.',
inconsistentEmbeddingModelTip: 'The Rerank model is required if the Embedding models of the selected knowledge bases are inconsistent.',
retrievalSettings: 'Retrieval Setting',
rerankSettings: 'Rerank Setting',
weightedScore: {
title: 'Weighted Score',
description: 'By adjusting the weights assigned, this rerank strategy determines whether to prioritize semantic or keyword matching.',
semanticFirst: 'Semantic first',
keywordFirst: 'Keyword first',
customized: 'Customized',
semantic: 'Semantic',
keyword: 'Keyword',
},
nTo1RetrievalLegacy: 'N-to-1 retrieval will be officially deprecated from September. It is recommended to use the latest Multi-path retrieval to obtain better results. ',
nTo1RetrievalLegacyLink: 'Learn more',
nTo1RetrievalLegacyLinkText: ' N-to-1 retrieval will be officially deprecated in September.',
}
export default translation