dify/api/controllers/console/datasets/datasets.py
-LAN- 13be84e4d4
Some checks are pending
Build and Push API & Web / build (api, DIFY_API_IMAGE_NAME, linux/amd64, build-api-amd64) (push) Waiting to run
Build and Push API & Web / build (api, DIFY_API_IMAGE_NAME, linux/arm64, build-api-arm64) (push) Waiting to run
Build and Push API & Web / build (web, DIFY_WEB_IMAGE_NAME, linux/amd64, build-web-amd64) (push) Waiting to run
Build and Push API & Web / build (web, DIFY_WEB_IMAGE_NAME, linux/arm64, build-web-arm64) (push) Waiting to run
Build and Push API & Web / create-manifest (api, DIFY_API_IMAGE_NAME, merge-api-images) (push) Blocked by required conditions
Build and Push API & Web / create-manifest (web, DIFY_WEB_IMAGE_NAME, merge-web-images) (push) Blocked by required conditions
chore(api/controllers): Apply Ruff Formatter. (#7645)
2024-08-26 15:29:10 +08:00

681 lines
26 KiB
Python

import flask_restful
from flask import request
from flask_login import current_user
from flask_restful import Resource, marshal, marshal_with, reqparse
from werkzeug.exceptions import Forbidden, NotFound
import services
from configs import dify_config
from controllers.console import api
from controllers.console.apikey import api_key_fields, api_key_list
from controllers.console.app.error import ProviderNotInitializeError
from controllers.console.datasets.error import DatasetInUseError, DatasetNameDuplicateError, IndexingEstimateError
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from core.errors.error import LLMBadRequestError, ProviderTokenNotInitError
from core.indexing_runner import IndexingRunner
from core.model_runtime.entities.model_entities import ModelType
from core.provider_manager import ProviderManager
from core.rag.datasource.vdb.vector_type import VectorType
from core.rag.extractor.entity.extract_setting import ExtractSetting
from core.rag.retrieval.retrival_methods import RetrievalMethod
from extensions.ext_database import db
from fields.app_fields import related_app_list
from fields.dataset_fields import dataset_detail_fields, dataset_query_detail_fields
from fields.document_fields import document_status_fields
from libs.login import login_required
from models.dataset import Dataset, DatasetPermissionEnum, Document, DocumentSegment
from models.model import ApiToken, UploadFile
from services.dataset_service import DatasetPermissionService, DatasetService, DocumentService
def _validate_name(name):
if not name or len(name) < 1 or len(name) > 40:
raise ValueError("Name must be between 1 to 40 characters.")
return name
def _validate_description_length(description):
if len(description) > 400:
raise ValueError("Description cannot exceed 400 characters.")
return description
class DatasetListApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self):
page = request.args.get("page", default=1, type=int)
limit = request.args.get("limit", default=20, type=int)
ids = request.args.getlist("ids")
provider = request.args.get("provider", default="vendor")
search = request.args.get("keyword", default=None, type=str)
tag_ids = request.args.getlist("tag_ids")
if ids:
datasets, total = DatasetService.get_datasets_by_ids(ids, current_user.current_tenant_id)
else:
datasets, total = DatasetService.get_datasets(
page, limit, provider, current_user.current_tenant_id, current_user, search, tag_ids
)
# check embedding setting
provider_manager = ProviderManager()
configurations = provider_manager.get_configurations(tenant_id=current_user.current_tenant_id)
embedding_models = configurations.get_models(model_type=ModelType.TEXT_EMBEDDING, only_active=True)
model_names = []
for embedding_model in embedding_models:
model_names.append(f"{embedding_model.model}:{embedding_model.provider.provider}")
data = marshal(datasets, dataset_detail_fields)
for item in data:
if item["indexing_technique"] == "high_quality":
item_model = f"{item['embedding_model']}:{item['embedding_model_provider']}"
if item_model in model_names:
item["embedding_available"] = True
else:
item["embedding_available"] = False
else:
item["embedding_available"] = True
if item.get("permission") == "partial_members":
part_users_list = DatasetPermissionService.get_dataset_partial_member_list(item["id"])
item.update({"partial_member_list": part_users_list})
else:
item.update({"partial_member_list": []})
response = {"data": data, "has_more": len(datasets) == limit, "limit": limit, "total": total, "page": page}
return response, 200
@setup_required
@login_required
@account_initialization_required
def post(self):
parser = reqparse.RequestParser()
parser.add_argument(
"name",
nullable=False,
required=True,
help="type is required. Name must be between 1 to 40 characters.",
type=_validate_name,
)
parser.add_argument(
"indexing_technique",
type=str,
location="json",
choices=Dataset.INDEXING_TECHNIQUE_LIST,
nullable=True,
help="Invalid indexing technique.",
)
args = parser.parse_args()
# The role of the current user in the ta table must be admin, owner, or editor, or dataset_operator
if not current_user.is_dataset_editor:
raise Forbidden()
try:
dataset = DatasetService.create_empty_dataset(
tenant_id=current_user.current_tenant_id,
name=args["name"],
indexing_technique=args["indexing_technique"],
account=current_user,
)
except services.errors.dataset.DatasetNameDuplicateError:
raise DatasetNameDuplicateError()
return marshal(dataset, dataset_detail_fields), 201
class DatasetApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self, dataset_id):
dataset_id_str = str(dataset_id)
dataset = DatasetService.get_dataset(dataset_id_str)
if dataset is None:
raise NotFound("Dataset not found.")
try:
DatasetService.check_dataset_permission(dataset, current_user)
except services.errors.account.NoPermissionError as e:
raise Forbidden(str(e))
data = marshal(dataset, dataset_detail_fields)
if data.get("permission") == "partial_members":
part_users_list = DatasetPermissionService.get_dataset_partial_member_list(dataset_id_str)
data.update({"partial_member_list": part_users_list})
# check embedding setting
provider_manager = ProviderManager()
configurations = provider_manager.get_configurations(tenant_id=current_user.current_tenant_id)
embedding_models = configurations.get_models(model_type=ModelType.TEXT_EMBEDDING, only_active=True)
model_names = []
for embedding_model in embedding_models:
model_names.append(f"{embedding_model.model}:{embedding_model.provider.provider}")
if data["indexing_technique"] == "high_quality":
item_model = f"{data['embedding_model']}:{data['embedding_model_provider']}"
if item_model in model_names:
data["embedding_available"] = True
else:
data["embedding_available"] = False
else:
data["embedding_available"] = True
if data.get("permission") == "partial_members":
part_users_list = DatasetPermissionService.get_dataset_partial_member_list(dataset_id_str)
data.update({"partial_member_list": part_users_list})
return data, 200
@setup_required
@login_required
@account_initialization_required
def patch(self, dataset_id):
dataset_id_str = str(dataset_id)
dataset = DatasetService.get_dataset(dataset_id_str)
if dataset is None:
raise NotFound("Dataset not found.")
parser = reqparse.RequestParser()
parser.add_argument(
"name",
nullable=False,
help="type is required. Name must be between 1 to 40 characters.",
type=_validate_name,
)
parser.add_argument("description", location="json", store_missing=False, type=_validate_description_length)
parser.add_argument(
"indexing_technique",
type=str,
location="json",
choices=Dataset.INDEXING_TECHNIQUE_LIST,
nullable=True,
help="Invalid indexing technique.",
)
parser.add_argument(
"permission",
type=str,
location="json",
choices=(DatasetPermissionEnum.ONLY_ME, DatasetPermissionEnum.ALL_TEAM, DatasetPermissionEnum.PARTIAL_TEAM),
help="Invalid permission.",
)
parser.add_argument("embedding_model", type=str, location="json", help="Invalid embedding model.")
parser.add_argument(
"embedding_model_provider", type=str, location="json", help="Invalid embedding model provider."
)
parser.add_argument("retrieval_model", type=dict, location="json", help="Invalid retrieval model.")
parser.add_argument("partial_member_list", type=list, location="json", help="Invalid parent user list.")
args = parser.parse_args()
data = request.get_json()
# check embedding model setting
if data.get("indexing_technique") == "high_quality":
DatasetService.check_embedding_model_setting(
dataset.tenant_id, data.get("embedding_model_provider"), data.get("embedding_model")
)
# The role of the current user in the ta table must be admin, owner, editor, or dataset_operator
DatasetPermissionService.check_permission(
current_user, dataset, data.get("permission"), data.get("partial_member_list")
)
dataset = DatasetService.update_dataset(dataset_id_str, args, current_user)
if dataset is None:
raise NotFound("Dataset not found.")
result_data = marshal(dataset, dataset_detail_fields)
tenant_id = current_user.current_tenant_id
if data.get("partial_member_list") and data.get("permission") == "partial_members":
DatasetPermissionService.update_partial_member_list(
tenant_id, dataset_id_str, data.get("partial_member_list")
)
# clear partial member list when permission is only_me or all_team_members
elif (
data.get("permission") == DatasetPermissionEnum.ONLY_ME
or data.get("permission") == DatasetPermissionEnum.ALL_TEAM
):
DatasetPermissionService.clear_partial_member_list(dataset_id_str)
partial_member_list = DatasetPermissionService.get_dataset_partial_member_list(dataset_id_str)
result_data.update({"partial_member_list": partial_member_list})
return result_data, 200
@setup_required
@login_required
@account_initialization_required
def delete(self, dataset_id):
dataset_id_str = str(dataset_id)
# The role of the current user in the ta table must be admin, owner, or editor
if not current_user.is_editor or current_user.is_dataset_operator:
raise Forbidden()
try:
if DatasetService.delete_dataset(dataset_id_str, current_user):
DatasetPermissionService.clear_partial_member_list(dataset_id_str)
return {"result": "success"}, 204
else:
raise NotFound("Dataset not found.")
except services.errors.dataset.DatasetInUseError:
raise DatasetInUseError()
class DatasetUseCheckApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self, dataset_id):
dataset_id_str = str(dataset_id)
dataset_is_using = DatasetService.dataset_use_check(dataset_id_str)
return {"is_using": dataset_is_using}, 200
class DatasetQueryApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self, dataset_id):
dataset_id_str = str(dataset_id)
dataset = DatasetService.get_dataset(dataset_id_str)
if dataset is None:
raise NotFound("Dataset not found.")
try:
DatasetService.check_dataset_permission(dataset, current_user)
except services.errors.account.NoPermissionError as e:
raise Forbidden(str(e))
page = request.args.get("page", default=1, type=int)
limit = request.args.get("limit", default=20, type=int)
dataset_queries, total = DatasetService.get_dataset_queries(dataset_id=dataset.id, page=page, per_page=limit)
response = {
"data": marshal(dataset_queries, dataset_query_detail_fields),
"has_more": len(dataset_queries) == limit,
"limit": limit,
"total": total,
"page": page,
}
return response, 200
class DatasetIndexingEstimateApi(Resource):
@setup_required
@login_required
@account_initialization_required
def post(self):
parser = reqparse.RequestParser()
parser.add_argument("info_list", type=dict, required=True, nullable=True, location="json")
parser.add_argument("process_rule", type=dict, required=True, nullable=True, location="json")
parser.add_argument(
"indexing_technique",
type=str,
required=True,
choices=Dataset.INDEXING_TECHNIQUE_LIST,
nullable=True,
location="json",
)
parser.add_argument("doc_form", type=str, default="text_model", required=False, nullable=False, location="json")
parser.add_argument("dataset_id", type=str, required=False, nullable=False, location="json")
parser.add_argument(
"doc_language", type=str, default="English", required=False, nullable=False, location="json"
)
args = parser.parse_args()
# validate args
DocumentService.estimate_args_validate(args)
extract_settings = []
if args["info_list"]["data_source_type"] == "upload_file":
file_ids = args["info_list"]["file_info_list"]["file_ids"]
file_details = (
db.session.query(UploadFile)
.filter(UploadFile.tenant_id == current_user.current_tenant_id, UploadFile.id.in_(file_ids))
.all()
)
if file_details is None:
raise NotFound("File not found.")
if file_details:
for file_detail in file_details:
extract_setting = ExtractSetting(
datasource_type="upload_file", upload_file=file_detail, document_model=args["doc_form"]
)
extract_settings.append(extract_setting)
elif args["info_list"]["data_source_type"] == "notion_import":
notion_info_list = args["info_list"]["notion_info_list"]
for notion_info in notion_info_list:
workspace_id = notion_info["workspace_id"]
for page in notion_info["pages"]:
extract_setting = ExtractSetting(
datasource_type="notion_import",
notion_info={
"notion_workspace_id": workspace_id,
"notion_obj_id": page["page_id"],
"notion_page_type": page["type"],
"tenant_id": current_user.current_tenant_id,
},
document_model=args["doc_form"],
)
extract_settings.append(extract_setting)
elif args["info_list"]["data_source_type"] == "website_crawl":
website_info_list = args["info_list"]["website_info_list"]
for url in website_info_list["urls"]:
extract_setting = ExtractSetting(
datasource_type="website_crawl",
website_info={
"provider": website_info_list["provider"],
"job_id": website_info_list["job_id"],
"url": url,
"tenant_id": current_user.current_tenant_id,
"mode": "crawl",
"only_main_content": website_info_list["only_main_content"],
},
document_model=args["doc_form"],
)
extract_settings.append(extract_setting)
else:
raise ValueError("Data source type not support")
indexing_runner = IndexingRunner()
try:
response = indexing_runner.indexing_estimate(
current_user.current_tenant_id,
extract_settings,
args["process_rule"],
args["doc_form"],
args["doc_language"],
args["dataset_id"],
args["indexing_technique"],
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
"No Embedding Model available. Please configure a valid provider " "in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except Exception as e:
raise IndexingEstimateError(str(e))
return response, 200
class DatasetRelatedAppListApi(Resource):
@setup_required
@login_required
@account_initialization_required
@marshal_with(related_app_list)
def get(self, dataset_id):
dataset_id_str = str(dataset_id)
dataset = DatasetService.get_dataset(dataset_id_str)
if dataset is None:
raise NotFound("Dataset not found.")
try:
DatasetService.check_dataset_permission(dataset, current_user)
except services.errors.account.NoPermissionError as e:
raise Forbidden(str(e))
app_dataset_joins = DatasetService.get_related_apps(dataset.id)
related_apps = []
for app_dataset_join in app_dataset_joins:
app_model = app_dataset_join.app
if app_model:
related_apps.append(app_model)
return {"data": related_apps, "total": len(related_apps)}, 200
class DatasetIndexingStatusApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self, dataset_id):
dataset_id = str(dataset_id)
documents = (
db.session.query(Document)
.filter(Document.dataset_id == dataset_id, Document.tenant_id == current_user.current_tenant_id)
.all()
)
documents_status = []
for document in documents:
completed_segments = DocumentSegment.query.filter(
DocumentSegment.completed_at.isnot(None),
DocumentSegment.document_id == str(document.id),
DocumentSegment.status != "re_segment",
).count()
total_segments = DocumentSegment.query.filter(
DocumentSegment.document_id == str(document.id), DocumentSegment.status != "re_segment"
).count()
document.completed_segments = completed_segments
document.total_segments = total_segments
documents_status.append(marshal(document, document_status_fields))
data = {"data": documents_status}
return data
class DatasetApiKeyApi(Resource):
max_keys = 10
token_prefix = "dataset-"
resource_type = "dataset"
@setup_required
@login_required
@account_initialization_required
@marshal_with(api_key_list)
def get(self):
keys = (
db.session.query(ApiToken)
.filter(ApiToken.type == self.resource_type, ApiToken.tenant_id == current_user.current_tenant_id)
.all()
)
return {"items": keys}
@setup_required
@login_required
@account_initialization_required
@marshal_with(api_key_fields)
def post(self):
# The role of the current user in the ta table must be admin or owner
if not current_user.is_admin_or_owner:
raise Forbidden()
current_key_count = (
db.session.query(ApiToken)
.filter(ApiToken.type == self.resource_type, ApiToken.tenant_id == current_user.current_tenant_id)
.count()
)
if current_key_count >= self.max_keys:
flask_restful.abort(
400,
message=f"Cannot create more than {self.max_keys} API keys for this resource type.",
code="max_keys_exceeded",
)
key = ApiToken.generate_api_key(self.token_prefix, 24)
api_token = ApiToken()
api_token.tenant_id = current_user.current_tenant_id
api_token.token = key
api_token.type = self.resource_type
db.session.add(api_token)
db.session.commit()
return api_token, 200
class DatasetApiDeleteApi(Resource):
resource_type = "dataset"
@setup_required
@login_required
@account_initialization_required
def delete(self, api_key_id):
api_key_id = str(api_key_id)
# The role of the current user in the ta table must be admin or owner
if not current_user.is_admin_or_owner:
raise Forbidden()
key = (
db.session.query(ApiToken)
.filter(
ApiToken.tenant_id == current_user.current_tenant_id,
ApiToken.type == self.resource_type,
ApiToken.id == api_key_id,
)
.first()
)
if key is None:
flask_restful.abort(404, message="API key not found")
db.session.query(ApiToken).filter(ApiToken.id == api_key_id).delete()
db.session.commit()
return {"result": "success"}, 204
class DatasetApiBaseUrlApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self):
return {
"api_base_url": (
dify_config.SERVICE_API_URL if dify_config.SERVICE_API_URL else request.host_url.rstrip("/")
)
+ "/v1"
}
class DatasetRetrievalSettingApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self):
vector_type = dify_config.VECTOR_STORE
match vector_type:
case (
VectorType.MILVUS
| VectorType.RELYT
| VectorType.PGVECTOR
| VectorType.TIDB_VECTOR
| VectorType.CHROMA
| VectorType.TENCENT
):
return {"retrieval_method": [RetrievalMethod.SEMANTIC_SEARCH.value]}
case (
VectorType.QDRANT
| VectorType.WEAVIATE
| VectorType.OPENSEARCH
| VectorType.ANALYTICDB
| VectorType.MYSCALE
| VectorType.ORACLE
| VectorType.ELASTICSEARCH
):
return {
"retrieval_method": [
RetrievalMethod.SEMANTIC_SEARCH.value,
RetrievalMethod.FULL_TEXT_SEARCH.value,
RetrievalMethod.HYBRID_SEARCH.value,
]
}
case _:
raise ValueError(f"Unsupported vector db type {vector_type}.")
class DatasetRetrievalSettingMockApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self, vector_type):
match vector_type:
case (
VectorType.MILVUS
| VectorType.RELYT
| VectorType.TIDB_VECTOR
| VectorType.CHROMA
| VectorType.TENCENT
| VectorType.PGVECTO_RS
):
return {"retrieval_method": [RetrievalMethod.SEMANTIC_SEARCH.value]}
case (
VectorType.QDRANT
| VectorType.WEAVIATE
| VectorType.OPENSEARCH
| VectorType.ANALYTICDB
| VectorType.MYSCALE
| VectorType.ORACLE
| VectorType.ELASTICSEARCH
| VectorType.PGVECTOR
):
return {
"retrieval_method": [
RetrievalMethod.SEMANTIC_SEARCH.value,
RetrievalMethod.FULL_TEXT_SEARCH.value,
RetrievalMethod.HYBRID_SEARCH.value,
]
}
case _:
raise ValueError(f"Unsupported vector db type {vector_type}.")
class DatasetErrorDocs(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self, dataset_id):
dataset_id_str = str(dataset_id)
dataset = DatasetService.get_dataset(dataset_id_str)
if dataset is None:
raise NotFound("Dataset not found.")
results = DocumentService.get_error_documents_by_dataset_id(dataset_id_str)
return {"data": [marshal(item, document_status_fields) for item in results], "total": len(results)}, 200
class DatasetPermissionUserListApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self, dataset_id):
dataset_id_str = str(dataset_id)
dataset = DatasetService.get_dataset(dataset_id_str)
if dataset is None:
raise NotFound("Dataset not found.")
try:
DatasetService.check_dataset_permission(dataset, current_user)
except services.errors.account.NoPermissionError as e:
raise Forbidden(str(e))
partial_members_list = DatasetPermissionService.get_dataset_partial_member_list(dataset_id_str)
return {
"data": partial_members_list,
}, 200
api.add_resource(DatasetListApi, "/datasets")
api.add_resource(DatasetApi, "/datasets/<uuid:dataset_id>")
api.add_resource(DatasetUseCheckApi, "/datasets/<uuid:dataset_id>/use-check")
api.add_resource(DatasetQueryApi, "/datasets/<uuid:dataset_id>/queries")
api.add_resource(DatasetErrorDocs, "/datasets/<uuid:dataset_id>/error-docs")
api.add_resource(DatasetIndexingEstimateApi, "/datasets/indexing-estimate")
api.add_resource(DatasetRelatedAppListApi, "/datasets/<uuid:dataset_id>/related-apps")
api.add_resource(DatasetIndexingStatusApi, "/datasets/<uuid:dataset_id>/indexing-status")
api.add_resource(DatasetApiKeyApi, "/datasets/api-keys")
api.add_resource(DatasetApiDeleteApi, "/datasets/api-keys/<uuid:api_key_id>")
api.add_resource(DatasetApiBaseUrlApi, "/datasets/api-base-info")
api.add_resource(DatasetRetrievalSettingApi, "/datasets/retrieval-setting")
api.add_resource(DatasetRetrievalSettingMockApi, "/datasets/retrieval-setting/<string:vector_type>")
api.add_resource(DatasetPermissionUserListApi, "/datasets/<uuid:dataset_id>/permission-part-users")