mirror of
https://github.com/langgenius/dify.git
synced 2024-11-16 11:42:29 +08:00
a55ba6e614
Co-authored-by: jyong <jyong@dify.ai>
783 lines
32 KiB
Python
783 lines
32 KiB
Python
import datetime
|
||
import json
|
||
import logging
|
||
import re
|
||
import threading
|
||
import time
|
||
import uuid
|
||
from typing import Optional, List, cast
|
||
|
||
from flask import current_app, Flask
|
||
from flask_login import current_user
|
||
from langchain.schema import Document
|
||
from langchain.text_splitter import RecursiveCharacterTextSplitter, TextSplitter
|
||
|
||
from core.data_loader.file_extractor import FileExtractor
|
||
from core.data_loader.loader.notion import NotionLoader
|
||
from core.docstore.dataset_docstore import DatesetDocumentStore
|
||
from core.generator.llm_generator import LLMGenerator
|
||
from core.index.index import IndexBuilder
|
||
from core.model_providers.error import ProviderTokenNotInitError
|
||
from core.model_providers.model_factory import ModelFactory
|
||
from core.model_providers.models.entity.message import MessageType
|
||
from core.spiltter.fixed_text_splitter import FixedRecursiveCharacterTextSplitter
|
||
from extensions.ext_database import db
|
||
from extensions.ext_redis import redis_client
|
||
from extensions.ext_storage import storage
|
||
from libs import helper
|
||
from models.dataset import Document as DatasetDocument
|
||
from models.dataset import Dataset, DocumentSegment, DatasetProcessRule
|
||
from models.model import UploadFile
|
||
from models.source import DataSourceBinding
|
||
|
||
|
||
class IndexingRunner:
|
||
|
||
def __init__(self):
|
||
self.storage = storage
|
||
|
||
def run(self, dataset_documents: List[DatasetDocument]):
|
||
"""Run the indexing process."""
|
||
for dataset_document in dataset_documents:
|
||
try:
|
||
# get dataset
|
||
dataset = Dataset.query.filter_by(
|
||
id=dataset_document.dataset_id
|
||
).first()
|
||
|
||
if not dataset:
|
||
raise ValueError("no dataset found")
|
||
|
||
# load file
|
||
text_docs = self._load_data(dataset_document)
|
||
|
||
# get the process rule
|
||
processing_rule = db.session.query(DatasetProcessRule). \
|
||
filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id). \
|
||
first()
|
||
|
||
# get splitter
|
||
splitter = self._get_splitter(processing_rule)
|
||
|
||
# split to documents
|
||
documents = self._step_split(
|
||
text_docs=text_docs,
|
||
splitter=splitter,
|
||
dataset=dataset,
|
||
dataset_document=dataset_document,
|
||
processing_rule=processing_rule
|
||
)
|
||
self._build_index(
|
||
dataset=dataset,
|
||
dataset_document=dataset_document,
|
||
documents=documents
|
||
)
|
||
except DocumentIsPausedException:
|
||
raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id))
|
||
except ProviderTokenNotInitError as e:
|
||
dataset_document.indexing_status = 'error'
|
||
dataset_document.error = str(e.description)
|
||
dataset_document.stopped_at = datetime.datetime.utcnow()
|
||
db.session.commit()
|
||
except Exception as e:
|
||
logging.exception("consume document failed")
|
||
dataset_document.indexing_status = 'error'
|
||
dataset_document.error = str(e)
|
||
dataset_document.stopped_at = datetime.datetime.utcnow()
|
||
db.session.commit()
|
||
|
||
def format_split_text(self, text):
|
||
regex = r"Q\d+:\s*(.*?)\s*A\d+:\s*([\s\S]*?)(?=Q|$)"
|
||
matches = re.findall(regex, text, re.MULTILINE)
|
||
|
||
result = []
|
||
for match in matches:
|
||
q = match[0]
|
||
a = match[1]
|
||
if q and a:
|
||
result.append({
|
||
"question": q,
|
||
"answer": re.sub(r"\n\s*", "\n", a.strip())
|
||
})
|
||
|
||
return result
|
||
|
||
def run_in_splitting_status(self, dataset_document: DatasetDocument):
|
||
"""Run the indexing process when the index_status is splitting."""
|
||
try:
|
||
# get dataset
|
||
dataset = Dataset.query.filter_by(
|
||
id=dataset_document.dataset_id
|
||
).first()
|
||
|
||
if not dataset:
|
||
raise ValueError("no dataset found")
|
||
|
||
# get exist document_segment list and delete
|
||
document_segments = DocumentSegment.query.filter_by(
|
||
dataset_id=dataset.id,
|
||
document_id=dataset_document.id
|
||
).all()
|
||
|
||
db.session.delete(document_segments)
|
||
db.session.commit()
|
||
|
||
# load file
|
||
text_docs = self._load_data(dataset_document)
|
||
|
||
# get the process rule
|
||
processing_rule = db.session.query(DatasetProcessRule). \
|
||
filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id). \
|
||
first()
|
||
|
||
# get splitter
|
||
splitter = self._get_splitter(processing_rule)
|
||
|
||
# split to documents
|
||
documents = self._step_split(
|
||
text_docs=text_docs,
|
||
splitter=splitter,
|
||
dataset=dataset,
|
||
dataset_document=dataset_document,
|
||
processing_rule=processing_rule
|
||
)
|
||
|
||
# build index
|
||
self._build_index(
|
||
dataset=dataset,
|
||
dataset_document=dataset_document,
|
||
documents=documents
|
||
)
|
||
except DocumentIsPausedException:
|
||
raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id))
|
||
except ProviderTokenNotInitError as e:
|
||
dataset_document.indexing_status = 'error'
|
||
dataset_document.error = str(e.description)
|
||
dataset_document.stopped_at = datetime.datetime.utcnow()
|
||
db.session.commit()
|
||
except Exception as e:
|
||
logging.exception("consume document failed")
|
||
dataset_document.indexing_status = 'error'
|
||
dataset_document.error = str(e)
|
||
dataset_document.stopped_at = datetime.datetime.utcnow()
|
||
db.session.commit()
|
||
|
||
def run_in_indexing_status(self, dataset_document: DatasetDocument):
|
||
"""Run the indexing process when the index_status is indexing."""
|
||
try:
|
||
# get dataset
|
||
dataset = Dataset.query.filter_by(
|
||
id=dataset_document.dataset_id
|
||
).first()
|
||
|
||
if not dataset:
|
||
raise ValueError("no dataset found")
|
||
|
||
# get exist document_segment list and delete
|
||
document_segments = DocumentSegment.query.filter_by(
|
||
dataset_id=dataset.id,
|
||
document_id=dataset_document.id
|
||
).all()
|
||
|
||
documents = []
|
||
if document_segments:
|
||
for document_segment in document_segments:
|
||
# transform segment to node
|
||
if document_segment.status != "completed":
|
||
document = Document(
|
||
page_content=document_segment.content,
|
||
metadata={
|
||
"doc_id": document_segment.index_node_id,
|
||
"doc_hash": document_segment.index_node_hash,
|
||
"document_id": document_segment.document_id,
|
||
"dataset_id": document_segment.dataset_id,
|
||
}
|
||
)
|
||
|
||
documents.append(document)
|
||
|
||
# build index
|
||
self._build_index(
|
||
dataset=dataset,
|
||
dataset_document=dataset_document,
|
||
documents=documents
|
||
)
|
||
except DocumentIsPausedException:
|
||
raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id))
|
||
except ProviderTokenNotInitError as e:
|
||
dataset_document.indexing_status = 'error'
|
||
dataset_document.error = str(e.description)
|
||
dataset_document.stopped_at = datetime.datetime.utcnow()
|
||
db.session.commit()
|
||
except Exception as e:
|
||
logging.exception("consume document failed")
|
||
dataset_document.indexing_status = 'error'
|
||
dataset_document.error = str(e)
|
||
dataset_document.stopped_at = datetime.datetime.utcnow()
|
||
db.session.commit()
|
||
|
||
def file_indexing_estimate(self, tenant_id: str, file_details: List[UploadFile], tmp_processing_rule: dict,
|
||
doc_form: str = None, doc_language: str = 'English', dataset_id: str = None,
|
||
indexing_technique: str = 'economy') -> dict:
|
||
"""
|
||
Estimate the indexing for the document.
|
||
"""
|
||
embedding_model = None
|
||
if dataset_id:
|
||
dataset = Dataset.query.filter_by(
|
||
id=dataset_id
|
||
).first()
|
||
if not dataset:
|
||
raise ValueError('Dataset not found.')
|
||
if dataset.indexing_technique == 'high_quality' or indexing_technique == 'high_quality':
|
||
embedding_model = ModelFactory.get_embedding_model(
|
||
tenant_id=dataset.tenant_id,
|
||
model_provider_name=dataset.embedding_model_provider,
|
||
model_name=dataset.embedding_model
|
||
)
|
||
else:
|
||
if indexing_technique == 'high_quality':
|
||
embedding_model = ModelFactory.get_embedding_model(
|
||
tenant_id=tenant_id
|
||
)
|
||
tokens = 0
|
||
preview_texts = []
|
||
total_segments = 0
|
||
for file_detail in file_details:
|
||
# load data from file
|
||
text_docs = FileExtractor.load(file_detail)
|
||
|
||
processing_rule = DatasetProcessRule(
|
||
mode=tmp_processing_rule["mode"],
|
||
rules=json.dumps(tmp_processing_rule["rules"])
|
||
)
|
||
|
||
# get splitter
|
||
splitter = self._get_splitter(processing_rule)
|
||
|
||
# split to documents
|
||
documents = self._split_to_documents_for_estimate(
|
||
text_docs=text_docs,
|
||
splitter=splitter,
|
||
processing_rule=processing_rule
|
||
)
|
||
|
||
total_segments += len(documents)
|
||
|
||
for document in documents:
|
||
if len(preview_texts) < 5:
|
||
preview_texts.append(document.page_content)
|
||
if indexing_technique == 'high_quality' or embedding_model:
|
||
tokens += embedding_model.get_num_tokens(self.filter_string(document.page_content))
|
||
|
||
if doc_form and doc_form == 'qa_model':
|
||
text_generation_model = ModelFactory.get_text_generation_model(
|
||
tenant_id=tenant_id
|
||
)
|
||
if len(preview_texts) > 0:
|
||
# qa model document
|
||
response = LLMGenerator.generate_qa_document(current_user.current_tenant_id, preview_texts[0], doc_language)
|
||
document_qa_list = self.format_split_text(response)
|
||
return {
|
||
"total_segments": total_segments * 20,
|
||
"tokens": total_segments * 2000,
|
||
"total_price": '{:f}'.format(
|
||
text_generation_model.calc_tokens_price(total_segments * 2000, MessageType.HUMAN)),
|
||
"currency": embedding_model.get_currency(),
|
||
"qa_preview": document_qa_list,
|
||
"preview": preview_texts
|
||
}
|
||
return {
|
||
"total_segments": total_segments,
|
||
"tokens": tokens,
|
||
"total_price": '{:f}'.format(embedding_model.calc_tokens_price(tokens)) if embedding_model else 0,
|
||
"currency": embedding_model.get_currency() if embedding_model else 'USD',
|
||
"preview": preview_texts
|
||
}
|
||
|
||
def notion_indexing_estimate(self, tenant_id: str, notion_info_list: list, tmp_processing_rule: dict,
|
||
doc_form: str = None, doc_language: str = 'English', dataset_id: str = None,
|
||
indexing_technique: str = 'economy') -> dict:
|
||
"""
|
||
Estimate the indexing for the document.
|
||
"""
|
||
embedding_model = None
|
||
if dataset_id:
|
||
dataset = Dataset.query.filter_by(
|
||
id=dataset_id
|
||
).first()
|
||
if not dataset:
|
||
raise ValueError('Dataset not found.')
|
||
if dataset.indexing_technique == 'high_quality' or indexing_technique == 'high_quality':
|
||
embedding_model = ModelFactory.get_embedding_model(
|
||
tenant_id=dataset.tenant_id,
|
||
model_provider_name=dataset.embedding_model_provider,
|
||
model_name=dataset.embedding_model
|
||
)
|
||
else:
|
||
if indexing_technique == 'high_quality':
|
||
embedding_model = ModelFactory.get_embedding_model(
|
||
tenant_id=tenant_id
|
||
)
|
||
# load data from notion
|
||
tokens = 0
|
||
preview_texts = []
|
||
total_segments = 0
|
||
for notion_info in notion_info_list:
|
||
workspace_id = notion_info['workspace_id']
|
||
data_source_binding = DataSourceBinding.query.filter(
|
||
db.and_(
|
||
DataSourceBinding.tenant_id == current_user.current_tenant_id,
|
||
DataSourceBinding.provider == 'notion',
|
||
DataSourceBinding.disabled == False,
|
||
DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"'
|
||
)
|
||
).first()
|
||
if not data_source_binding:
|
||
raise ValueError('Data source binding not found.')
|
||
|
||
for page in notion_info['pages']:
|
||
loader = NotionLoader(
|
||
notion_access_token=data_source_binding.access_token,
|
||
notion_workspace_id=workspace_id,
|
||
notion_obj_id=page['page_id'],
|
||
notion_page_type=page['type']
|
||
)
|
||
documents = loader.load()
|
||
|
||
processing_rule = DatasetProcessRule(
|
||
mode=tmp_processing_rule["mode"],
|
||
rules=json.dumps(tmp_processing_rule["rules"])
|
||
)
|
||
|
||
# get splitter
|
||
splitter = self._get_splitter(processing_rule)
|
||
|
||
# split to documents
|
||
documents = self._split_to_documents_for_estimate(
|
||
text_docs=documents,
|
||
splitter=splitter,
|
||
processing_rule=processing_rule
|
||
)
|
||
total_segments += len(documents)
|
||
for document in documents:
|
||
if len(preview_texts) < 5:
|
||
preview_texts.append(document.page_content)
|
||
if indexing_technique == 'high_quality' or embedding_model:
|
||
tokens += embedding_model.get_num_tokens(document.page_content)
|
||
|
||
if doc_form and doc_form == 'qa_model':
|
||
text_generation_model = ModelFactory.get_text_generation_model(
|
||
tenant_id=tenant_id
|
||
)
|
||
if len(preview_texts) > 0:
|
||
# qa model document
|
||
response = LLMGenerator.generate_qa_document(current_user.current_tenant_id, preview_texts[0], doc_language)
|
||
document_qa_list = self.format_split_text(response)
|
||
return {
|
||
"total_segments": total_segments * 20,
|
||
"tokens": total_segments * 2000,
|
||
"total_price": '{:f}'.format(
|
||
text_generation_model.calc_tokens_price(total_segments * 2000, MessageType.HUMAN)),
|
||
"currency": embedding_model.get_currency(),
|
||
"qa_preview": document_qa_list,
|
||
"preview": preview_texts
|
||
}
|
||
return {
|
||
"total_segments": total_segments,
|
||
"tokens": tokens,
|
||
"total_price": '{:f}'.format(embedding_model.calc_tokens_price(tokens)) if embedding_model else 0,
|
||
"currency": embedding_model.get_currency() if embedding_model else 'USD',
|
||
"preview": preview_texts
|
||
}
|
||
|
||
def _load_data(self, dataset_document: DatasetDocument) -> List[Document]:
|
||
# load file
|
||
if dataset_document.data_source_type not in ["upload_file", "notion_import"]:
|
||
return []
|
||
|
||
data_source_info = dataset_document.data_source_info_dict
|
||
text_docs = []
|
||
if dataset_document.data_source_type == 'upload_file':
|
||
if not data_source_info or 'upload_file_id' not in data_source_info:
|
||
raise ValueError("no upload file found")
|
||
|
||
file_detail = db.session.query(UploadFile). \
|
||
filter(UploadFile.id == data_source_info['upload_file_id']). \
|
||
one_or_none()
|
||
|
||
text_docs = FileExtractor.load(file_detail)
|
||
elif dataset_document.data_source_type == 'notion_import':
|
||
loader = NotionLoader.from_document(dataset_document)
|
||
text_docs = loader.load()
|
||
|
||
# update document status to splitting
|
||
self._update_document_index_status(
|
||
document_id=dataset_document.id,
|
||
after_indexing_status="splitting",
|
||
extra_update_params={
|
||
DatasetDocument.word_count: sum([len(text_doc.page_content) for text_doc in text_docs]),
|
||
DatasetDocument.parsing_completed_at: datetime.datetime.utcnow()
|
||
}
|
||
)
|
||
|
||
# replace doc id to document model id
|
||
text_docs = cast(List[Document], text_docs)
|
||
for text_doc in text_docs:
|
||
# remove invalid symbol
|
||
text_doc.page_content = self.filter_string(text_doc.page_content)
|
||
text_doc.metadata['document_id'] = dataset_document.id
|
||
text_doc.metadata['dataset_id'] = dataset_document.dataset_id
|
||
|
||
return text_docs
|
||
|
||
def filter_string(self, text):
|
||
text = re.sub(r'<\|', '<', text)
|
||
text = re.sub(r'\|>', '>', text)
|
||
text = re.sub(r'[\x00-\x08\x0B\x0C\x0E-\x1F\x7F\x80-\xFF]', '', text)
|
||
return text
|
||
|
||
def _get_splitter(self, processing_rule: DatasetProcessRule) -> TextSplitter:
|
||
"""
|
||
Get the NodeParser object according to the processing rule.
|
||
"""
|
||
if processing_rule.mode == "custom":
|
||
# The user-defined segmentation rule
|
||
rules = json.loads(processing_rule.rules)
|
||
segmentation = rules["segmentation"]
|
||
if segmentation["max_tokens"] < 50 or segmentation["max_tokens"] > 1000:
|
||
raise ValueError("Custom segment length should be between 50 and 1000.")
|
||
|
||
separator = segmentation["separator"]
|
||
if separator:
|
||
separator = separator.replace('\\n', '\n')
|
||
|
||
character_splitter = FixedRecursiveCharacterTextSplitter.from_tiktoken_encoder(
|
||
chunk_size=segmentation["max_tokens"],
|
||
chunk_overlap=0,
|
||
fixed_separator=separator,
|
||
separators=["\n\n", "。", ".", " ", ""]
|
||
)
|
||
else:
|
||
# Automatic segmentation
|
||
character_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
|
||
chunk_size=DatasetProcessRule.AUTOMATIC_RULES['segmentation']['max_tokens'],
|
||
chunk_overlap=0,
|
||
separators=["\n\n", "。", ".", " ", ""]
|
||
)
|
||
|
||
return character_splitter
|
||
|
||
def _step_split(self, text_docs: List[Document], splitter: TextSplitter,
|
||
dataset: Dataset, dataset_document: DatasetDocument, processing_rule: DatasetProcessRule) \
|
||
-> List[Document]:
|
||
"""
|
||
Split the text documents into documents and save them to the document segment.
|
||
"""
|
||
documents = self._split_to_documents(
|
||
text_docs=text_docs,
|
||
splitter=splitter,
|
||
processing_rule=processing_rule,
|
||
tenant_id=dataset.tenant_id,
|
||
document_form=dataset_document.doc_form,
|
||
document_language=dataset_document.doc_language
|
||
)
|
||
|
||
# save node to document segment
|
||
doc_store = DatesetDocumentStore(
|
||
dataset=dataset,
|
||
user_id=dataset_document.created_by,
|
||
document_id=dataset_document.id
|
||
)
|
||
|
||
# add document segments
|
||
doc_store.add_documents(documents)
|
||
|
||
# update document status to indexing
|
||
cur_time = datetime.datetime.utcnow()
|
||
self._update_document_index_status(
|
||
document_id=dataset_document.id,
|
||
after_indexing_status="indexing",
|
||
extra_update_params={
|
||
DatasetDocument.cleaning_completed_at: cur_time,
|
||
DatasetDocument.splitting_completed_at: cur_time,
|
||
}
|
||
)
|
||
|
||
# update segment status to indexing
|
||
self._update_segments_by_document(
|
||
dataset_document_id=dataset_document.id,
|
||
update_params={
|
||
DocumentSegment.status: "indexing",
|
||
DocumentSegment.indexing_at: datetime.datetime.utcnow()
|
||
}
|
||
)
|
||
|
||
return documents
|
||
|
||
def _split_to_documents(self, text_docs: List[Document], splitter: TextSplitter,
|
||
processing_rule: DatasetProcessRule, tenant_id: str,
|
||
document_form: str, document_language: str) -> List[Document]:
|
||
"""
|
||
Split the text documents into nodes.
|
||
"""
|
||
all_documents = []
|
||
all_qa_documents = []
|
||
for text_doc in text_docs:
|
||
# document clean
|
||
document_text = self._document_clean(text_doc.page_content, processing_rule)
|
||
text_doc.page_content = document_text
|
||
|
||
# parse document to nodes
|
||
documents = splitter.split_documents([text_doc])
|
||
split_documents = []
|
||
for document_node in documents:
|
||
|
||
if document_node.page_content.strip():
|
||
doc_id = str(uuid.uuid4())
|
||
hash = helper.generate_text_hash(document_node.page_content)
|
||
document_node.metadata['doc_id'] = doc_id
|
||
document_node.metadata['doc_hash'] = hash
|
||
split_documents.append(document_node)
|
||
all_documents.extend(split_documents)
|
||
# processing qa document
|
||
if document_form == 'qa_model':
|
||
for i in range(0, len(all_documents), 10):
|
||
threads = []
|
||
sub_documents = all_documents[i:i + 10]
|
||
for doc in sub_documents:
|
||
document_format_thread = threading.Thread(target=self.format_qa_document, kwargs={
|
||
'flask_app': current_app._get_current_object(),
|
||
'tenant_id': tenant_id, 'document_node': doc, 'all_qa_documents': all_qa_documents,
|
||
'document_language': document_language})
|
||
threads.append(document_format_thread)
|
||
document_format_thread.start()
|
||
for thread in threads:
|
||
thread.join()
|
||
return all_qa_documents
|
||
return all_documents
|
||
|
||
def format_qa_document(self, flask_app: Flask, tenant_id: str, document_node, all_qa_documents, document_language):
|
||
format_documents = []
|
||
if document_node.page_content is None or not document_node.page_content.strip():
|
||
return
|
||
with flask_app.app_context():
|
||
try:
|
||
# qa model document
|
||
response = LLMGenerator.generate_qa_document(tenant_id, document_node.page_content, document_language)
|
||
document_qa_list = self.format_split_text(response)
|
||
qa_documents = []
|
||
for result in document_qa_list:
|
||
qa_document = Document(page_content=result['question'], metadata=document_node.metadata.copy())
|
||
doc_id = str(uuid.uuid4())
|
||
hash = helper.generate_text_hash(result['question'])
|
||
qa_document.metadata['answer'] = result['answer']
|
||
qa_document.metadata['doc_id'] = doc_id
|
||
qa_document.metadata['doc_hash'] = hash
|
||
qa_documents.append(qa_document)
|
||
format_documents.extend(qa_documents)
|
||
except Exception as e:
|
||
logging.exception(e)
|
||
|
||
all_qa_documents.extend(format_documents)
|
||
|
||
|
||
def _split_to_documents_for_estimate(self, text_docs: List[Document], splitter: TextSplitter,
|
||
processing_rule: DatasetProcessRule) -> List[Document]:
|
||
"""
|
||
Split the text documents into nodes.
|
||
"""
|
||
all_documents = []
|
||
for text_doc in text_docs:
|
||
# document clean
|
||
document_text = self._document_clean(text_doc.page_content, processing_rule)
|
||
text_doc.page_content = document_text
|
||
|
||
# parse document to nodes
|
||
documents = splitter.split_documents([text_doc])
|
||
|
||
split_documents = []
|
||
for document in documents:
|
||
if document.page_content is None or not document.page_content.strip():
|
||
continue
|
||
doc_id = str(uuid.uuid4())
|
||
hash = helper.generate_text_hash(document.page_content)
|
||
|
||
document.metadata['doc_id'] = doc_id
|
||
document.metadata['doc_hash'] = hash
|
||
|
||
split_documents.append(document)
|
||
|
||
all_documents.extend(split_documents)
|
||
|
||
return all_documents
|
||
|
||
def _document_clean(self, text: str, processing_rule: DatasetProcessRule) -> str:
|
||
"""
|
||
Clean the document text according to the processing rules.
|
||
"""
|
||
if processing_rule.mode == "automatic":
|
||
rules = DatasetProcessRule.AUTOMATIC_RULES
|
||
else:
|
||
rules = json.loads(processing_rule.rules) if processing_rule.rules else {}
|
||
|
||
if 'pre_processing_rules' in rules:
|
||
pre_processing_rules = rules["pre_processing_rules"]
|
||
for pre_processing_rule in pre_processing_rules:
|
||
if pre_processing_rule["id"] == "remove_extra_spaces" and pre_processing_rule["enabled"] is True:
|
||
# Remove extra spaces
|
||
pattern = r'\n{3,}'
|
||
text = re.sub(pattern, '\n\n', text)
|
||
pattern = r'[\t\f\r\x20\u00a0\u1680\u180e\u2000-\u200a\u202f\u205f\u3000]{2,}'
|
||
text = re.sub(pattern, ' ', text)
|
||
elif pre_processing_rule["id"] == "remove_urls_emails" and pre_processing_rule["enabled"] is True:
|
||
# Remove email
|
||
pattern = r'([a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+)'
|
||
text = re.sub(pattern, '', text)
|
||
|
||
# Remove URL
|
||
pattern = r'https?://[^\s]+'
|
||
text = re.sub(pattern, '', text)
|
||
|
||
return text
|
||
|
||
def format_split_text(self, text):
|
||
regex = r"Q\d+:\s*(.*?)\s*A\d+:\s*([\s\S]*?)(?=Q|$)" # 匹配Q和A的正则表达式
|
||
matches = re.findall(regex, text, re.MULTILINE) # 获取所有匹配到的结果
|
||
|
||
result = [] # 存储最终的结果
|
||
for match in matches:
|
||
q = match[0]
|
||
a = match[1]
|
||
if q and a:
|
||
# 如果Q和A都存在,就将其添加到结果中
|
||
result.append({
|
||
"question": q,
|
||
"answer": re.sub(r"\n\s*", "\n", a.strip())
|
||
})
|
||
|
||
return result
|
||
|
||
def _build_index(self, dataset: Dataset, dataset_document: DatasetDocument, documents: List[Document]) -> None:
|
||
"""
|
||
Build the index for the document.
|
||
"""
|
||
vector_index = IndexBuilder.get_index(dataset, 'high_quality')
|
||
keyword_table_index = IndexBuilder.get_index(dataset, 'economy')
|
||
embedding_model = None
|
||
if dataset.indexing_technique == 'high_quality':
|
||
embedding_model = ModelFactory.get_embedding_model(
|
||
tenant_id=dataset.tenant_id,
|
||
model_provider_name=dataset.embedding_model_provider,
|
||
model_name=dataset.embedding_model
|
||
)
|
||
|
||
# chunk nodes by chunk size
|
||
indexing_start_at = time.perf_counter()
|
||
tokens = 0
|
||
chunk_size = 100
|
||
for i in range(0, len(documents), chunk_size):
|
||
# check document is paused
|
||
self._check_document_paused_status(dataset_document.id)
|
||
chunk_documents = documents[i:i + chunk_size]
|
||
if dataset.indexing_technique == 'high_quality' or embedding_model:
|
||
tokens += sum(
|
||
embedding_model.get_num_tokens(document.page_content)
|
||
for document in chunk_documents
|
||
)
|
||
|
||
# save vector index
|
||
if vector_index:
|
||
vector_index.add_texts(chunk_documents)
|
||
|
||
# save keyword index
|
||
keyword_table_index.add_texts(chunk_documents)
|
||
|
||
document_ids = [document.metadata['doc_id'] for document in chunk_documents]
|
||
db.session.query(DocumentSegment).filter(
|
||
DocumentSegment.document_id == dataset_document.id,
|
||
DocumentSegment.index_node_id.in_(document_ids),
|
||
DocumentSegment.status == "indexing"
|
||
).update({
|
||
DocumentSegment.status: "completed",
|
||
DocumentSegment.enabled: True,
|
||
DocumentSegment.completed_at: datetime.datetime.utcnow()
|
||
})
|
||
|
||
db.session.commit()
|
||
|
||
indexing_end_at = time.perf_counter()
|
||
|
||
# update document status to completed
|
||
self._update_document_index_status(
|
||
document_id=dataset_document.id,
|
||
after_indexing_status="completed",
|
||
extra_update_params={
|
||
DatasetDocument.tokens: tokens,
|
||
DatasetDocument.completed_at: datetime.datetime.utcnow(),
|
||
DatasetDocument.indexing_latency: indexing_end_at - indexing_start_at,
|
||
}
|
||
)
|
||
|
||
def _check_document_paused_status(self, document_id: str):
|
||
indexing_cache_key = 'document_{}_is_paused'.format(document_id)
|
||
result = redis_client.get(indexing_cache_key)
|
||
if result:
|
||
raise DocumentIsPausedException()
|
||
|
||
def _update_document_index_status(self, document_id: str, after_indexing_status: str,
|
||
extra_update_params: Optional[dict] = None) -> None:
|
||
"""
|
||
Update the document indexing status.
|
||
"""
|
||
count = DatasetDocument.query.filter_by(id=document_id, is_paused=True).count()
|
||
if count > 0:
|
||
raise DocumentIsPausedException()
|
||
|
||
update_params = {
|
||
DatasetDocument.indexing_status: after_indexing_status
|
||
}
|
||
|
||
if extra_update_params:
|
||
update_params.update(extra_update_params)
|
||
|
||
DatasetDocument.query.filter_by(id=document_id).update(update_params)
|
||
db.session.commit()
|
||
|
||
def _update_segments_by_document(self, dataset_document_id: str, update_params: dict) -> None:
|
||
"""
|
||
Update the document segment by document id.
|
||
"""
|
||
DocumentSegment.query.filter_by(document_id=dataset_document_id).update(update_params)
|
||
db.session.commit()
|
||
|
||
def batch_add_segments(self, segments: List[DocumentSegment], dataset: Dataset):
|
||
"""
|
||
Batch add segments index processing
|
||
"""
|
||
documents = []
|
||
for segment in segments:
|
||
document = Document(
|
||
page_content=segment.content,
|
||
metadata={
|
||
"doc_id": segment.index_node_id,
|
||
"doc_hash": segment.index_node_hash,
|
||
"document_id": segment.document_id,
|
||
"dataset_id": segment.dataset_id,
|
||
}
|
||
)
|
||
documents.append(document)
|
||
# save vector index
|
||
index = IndexBuilder.get_index(dataset, 'high_quality')
|
||
if index:
|
||
index.add_texts(documents, duplicate_check=True)
|
||
|
||
# save keyword index
|
||
index = IndexBuilder.get_index(dataset, 'economy')
|
||
if index:
|
||
index.add_texts(documents)
|
||
|
||
|
||
class DocumentIsPausedException(Exception):
|
||
pass
|