mirror of
https://github.com/langgenius/dify.git
synced 2024-11-16 11:42:29 +08:00
142 lines
5.4 KiB
Python
142 lines
5.4 KiB
Python
import pytz
|
|
from flask_login import current_user
|
|
|
|
from core.app.app_config.easy_ui_based_app.agent.manager import AgentConfigManager
|
|
from core.tools.tool_manager import ToolManager
|
|
from extensions.ext_database import db
|
|
from models.account import Account
|
|
from models.model import App, Conversation, EndUser, Message, MessageAgentThought
|
|
|
|
|
|
class AgentService:
|
|
@classmethod
|
|
def get_agent_logs(cls, app_model: App, conversation_id: str, message_id: str) -> dict:
|
|
"""
|
|
Service to get agent logs
|
|
"""
|
|
conversation: Conversation = (
|
|
db.session.query(Conversation)
|
|
.filter(
|
|
Conversation.id == conversation_id,
|
|
Conversation.app_id == app_model.id,
|
|
)
|
|
.first()
|
|
)
|
|
|
|
if not conversation:
|
|
raise ValueError(f"Conversation not found: {conversation_id}")
|
|
|
|
message: Message = (
|
|
db.session.query(Message)
|
|
.filter(
|
|
Message.id == message_id,
|
|
Message.conversation_id == conversation_id,
|
|
)
|
|
.first()
|
|
)
|
|
|
|
if not message:
|
|
raise ValueError(f"Message not found: {message_id}")
|
|
|
|
agent_thoughts: list[MessageAgentThought] = message.agent_thoughts
|
|
|
|
if conversation.from_end_user_id:
|
|
# only select name field
|
|
executor = (
|
|
db.session.query(EndUser, EndUser.name).filter(EndUser.id == conversation.from_end_user_id).first()
|
|
)
|
|
else:
|
|
executor = (
|
|
db.session.query(Account, Account.name).filter(Account.id == conversation.from_account_id).first()
|
|
)
|
|
|
|
if executor:
|
|
executor = executor.name
|
|
else:
|
|
executor = "Unknown"
|
|
|
|
timezone = pytz.timezone(current_user.timezone)
|
|
|
|
result = {
|
|
"meta": {
|
|
"status": "success",
|
|
"executor": executor,
|
|
"start_time": message.created_at.astimezone(timezone).isoformat(),
|
|
"elapsed_time": message.provider_response_latency,
|
|
"total_tokens": message.answer_tokens + message.message_tokens,
|
|
"agent_mode": app_model.app_model_config.agent_mode_dict.get("strategy", "react"),
|
|
"iterations": len(agent_thoughts),
|
|
},
|
|
"iterations": [],
|
|
"files": message.message_files,
|
|
}
|
|
|
|
agent_config = AgentConfigManager.convert(app_model.app_model_config.to_dict())
|
|
agent_tools = agent_config.tools
|
|
|
|
def find_agent_tool(tool_name: str):
|
|
for agent_tool in agent_tools:
|
|
if agent_tool.tool_name == tool_name:
|
|
return agent_tool
|
|
|
|
for agent_thought in agent_thoughts:
|
|
tools = agent_thought.tools
|
|
tool_labels = agent_thought.tool_labels
|
|
tool_meta = agent_thought.tool_meta
|
|
tool_inputs = agent_thought.tool_inputs_dict
|
|
tool_outputs = agent_thought.tool_outputs_dict
|
|
tool_calls = []
|
|
for tool in tools:
|
|
tool_name = tool
|
|
tool_label = tool_labels.get(tool_name, tool_name)
|
|
tool_input = tool_inputs.get(tool_name, {})
|
|
tool_output = tool_outputs.get(tool_name, {})
|
|
tool_meta_data = tool_meta.get(tool_name, {})
|
|
tool_config = tool_meta_data.get("tool_config", {})
|
|
if tool_config.get("tool_provider_type", "") != "dataset-retrieval":
|
|
tool_icon = ToolManager.get_tool_icon(
|
|
tenant_id=app_model.tenant_id,
|
|
provider_type=tool_config.get("tool_provider_type", ""),
|
|
provider_id=tool_config.get("tool_provider", ""),
|
|
)
|
|
if not tool_icon:
|
|
tool_entity = find_agent_tool(tool_name)
|
|
if tool_entity:
|
|
tool_icon = ToolManager.get_tool_icon(
|
|
tenant_id=app_model.tenant_id,
|
|
provider_type=tool_entity.provider_type,
|
|
provider_id=tool_entity.provider_id,
|
|
)
|
|
else:
|
|
tool_icon = ""
|
|
|
|
tool_calls.append(
|
|
{
|
|
"status": "success" if not tool_meta_data.get("error") else "error",
|
|
"error": tool_meta_data.get("error"),
|
|
"time_cost": tool_meta_data.get("time_cost", 0),
|
|
"tool_name": tool_name,
|
|
"tool_label": tool_label,
|
|
"tool_input": tool_input,
|
|
"tool_output": tool_output,
|
|
"tool_parameters": tool_meta_data.get("tool_parameters", {}),
|
|
"tool_icon": tool_icon,
|
|
}
|
|
)
|
|
|
|
result["iterations"].append(
|
|
{
|
|
"tokens": agent_thought.tokens,
|
|
"tool_calls": tool_calls,
|
|
"tool_raw": {
|
|
"inputs": agent_thought.tool_input,
|
|
"outputs": agent_thought.observation,
|
|
},
|
|
"thought": agent_thought.thought,
|
|
"created_at": agent_thought.created_at.isoformat(),
|
|
"files": agent_thought.files,
|
|
}
|
|
)
|
|
|
|
return result
|