mirror of
https://github.com/langgenius/dify.git
synced 2024-11-16 11:42:29 +08:00
511 lines
21 KiB
Python
511 lines
21 KiB
Python
import json
|
|
import logging
|
|
import threading
|
|
import time
|
|
import uuid
|
|
from typing import Generator, Union, Any
|
|
|
|
from flask import current_app, Flask
|
|
from redis.client import PubSub
|
|
from sqlalchemy import and_
|
|
|
|
from core.completion import Completion
|
|
from core.conversation_message_task import PubHandler, ConversationTaskStoppedException
|
|
from core.llm.error import LLMBadRequestError, LLMAPIConnectionError, LLMAPIUnavailableError, LLMRateLimitError, \
|
|
LLMAuthorizationError, ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError
|
|
from extensions.ext_database import db
|
|
from extensions.ext_redis import redis_client
|
|
from models.model import Conversation, AppModelConfig, App, Account, EndUser, Message
|
|
from services.app_model_config_service import AppModelConfigService
|
|
from services.errors.app import MoreLikeThisDisabledError
|
|
from services.errors.app_model_config import AppModelConfigBrokenError
|
|
from services.errors.completion import CompletionStoppedError
|
|
from services.errors.conversation import ConversationNotExistsError, ConversationCompletedError
|
|
from services.errors.message import MessageNotExistsError
|
|
|
|
|
|
class CompletionService:
|
|
|
|
@classmethod
|
|
def completion(cls, app_model: App, user: Union[Account | EndUser], args: Any,
|
|
from_source: str, streaming: bool = True,
|
|
is_model_config_override: bool = False) -> Union[dict | Generator]:
|
|
# is streaming mode
|
|
inputs = args['inputs']
|
|
query = args['query']
|
|
|
|
if not query:
|
|
raise ValueError('query is required')
|
|
|
|
conversation_id = args['conversation_id'] if 'conversation_id' in args else None
|
|
|
|
conversation = None
|
|
if conversation_id:
|
|
conversation_filter = [
|
|
Conversation.id == args['conversation_id'],
|
|
Conversation.app_id == app_model.id,
|
|
Conversation.status == 'normal'
|
|
]
|
|
|
|
if from_source == 'console':
|
|
conversation_filter.append(Conversation.from_account_id == user.id)
|
|
else:
|
|
conversation_filter.append(Conversation.from_end_user_id == user.id if user else None)
|
|
|
|
conversation = db.session.query(Conversation).filter(and_(*conversation_filter)).first()
|
|
|
|
if not conversation:
|
|
raise ConversationNotExistsError()
|
|
|
|
if conversation.status != 'normal':
|
|
raise ConversationCompletedError()
|
|
|
|
if not conversation.override_model_configs:
|
|
app_model_config = db.session.query(AppModelConfig).get(conversation.app_model_config_id)
|
|
|
|
if not app_model_config:
|
|
raise AppModelConfigBrokenError()
|
|
else:
|
|
conversation_override_model_configs = json.loads(conversation.override_model_configs)
|
|
app_model_config = AppModelConfig(
|
|
id=conversation.app_model_config_id,
|
|
app_id=app_model.id,
|
|
provider="",
|
|
model_id="",
|
|
configs="",
|
|
opening_statement=conversation_override_model_configs['opening_statement'],
|
|
suggested_questions=json.dumps(conversation_override_model_configs['suggested_questions']),
|
|
model=json.dumps(conversation_override_model_configs['model']),
|
|
user_input_form=json.dumps(conversation_override_model_configs['user_input_form']),
|
|
pre_prompt=conversation_override_model_configs['pre_prompt'],
|
|
agent_mode=json.dumps(conversation_override_model_configs['agent_mode']),
|
|
)
|
|
|
|
if is_model_config_override:
|
|
# build new app model config
|
|
if 'model' not in args['model_config']:
|
|
raise ValueError('model_config.model is required')
|
|
|
|
if 'completion_params' not in args['model_config']['model']:
|
|
raise ValueError('model_config.model.completion_params is required')
|
|
|
|
completion_params = AppModelConfigService.validate_model_completion_params(
|
|
cp=args['model_config']['model']['completion_params'],
|
|
model_name=app_model_config.model_dict["name"]
|
|
)
|
|
|
|
app_model_config_model = app_model_config.model_dict
|
|
app_model_config_model['completion_params'] = completion_params
|
|
|
|
app_model_config = AppModelConfig(
|
|
id=app_model_config.id,
|
|
app_id=app_model.id,
|
|
provider="",
|
|
model_id="",
|
|
configs="",
|
|
opening_statement=app_model_config.opening_statement,
|
|
suggested_questions=app_model_config.suggested_questions,
|
|
model=json.dumps(app_model_config_model),
|
|
user_input_form=app_model_config.user_input_form,
|
|
pre_prompt=app_model_config.pre_prompt,
|
|
agent_mode=app_model_config.agent_mode,
|
|
)
|
|
else:
|
|
if app_model.app_model_config_id is None:
|
|
raise AppModelConfigBrokenError()
|
|
|
|
app_model_config = app_model.app_model_config
|
|
|
|
if not app_model_config:
|
|
raise AppModelConfigBrokenError()
|
|
|
|
if is_model_config_override:
|
|
if not isinstance(user, Account):
|
|
raise Exception("Only account can override model config")
|
|
|
|
# validate config
|
|
model_config = AppModelConfigService.validate_configuration(
|
|
account=user,
|
|
config=args['model_config'],
|
|
mode=app_model.mode
|
|
)
|
|
|
|
app_model_config = AppModelConfig(
|
|
id=app_model_config.id,
|
|
app_id=app_model.id,
|
|
provider="",
|
|
model_id="",
|
|
configs="",
|
|
opening_statement=model_config['opening_statement'],
|
|
suggested_questions=json.dumps(model_config['suggested_questions']),
|
|
suggested_questions_after_answer=json.dumps(model_config['suggested_questions_after_answer']),
|
|
more_like_this=json.dumps(model_config['more_like_this']),
|
|
model=json.dumps(model_config['model']),
|
|
user_input_form=json.dumps(model_config['user_input_form']),
|
|
pre_prompt=model_config['pre_prompt'],
|
|
agent_mode=json.dumps(model_config['agent_mode']),
|
|
)
|
|
|
|
# clean input by app_model_config form rules
|
|
inputs = cls.get_cleaned_inputs(inputs, app_model_config)
|
|
|
|
generate_task_id = str(uuid.uuid4())
|
|
|
|
pubsub = redis_client.pubsub()
|
|
pubsub.subscribe(PubHandler.generate_channel_name(user, generate_task_id))
|
|
|
|
user = cls.get_real_user_instead_of_proxy_obj(user)
|
|
|
|
generate_worker_thread = threading.Thread(target=cls.generate_worker, kwargs={
|
|
'flask_app': current_app._get_current_object(),
|
|
'generate_task_id': generate_task_id,
|
|
'app_model': app_model,
|
|
'app_model_config': app_model_config,
|
|
'query': query,
|
|
'inputs': inputs,
|
|
'user': user,
|
|
'conversation': conversation,
|
|
'streaming': streaming,
|
|
'is_model_config_override': is_model_config_override
|
|
})
|
|
|
|
generate_worker_thread.start()
|
|
|
|
# wait for 5 minutes to close the thread
|
|
cls.countdown_and_close(generate_worker_thread, pubsub, user, generate_task_id)
|
|
|
|
return cls.compact_response(pubsub, streaming)
|
|
|
|
@classmethod
|
|
def get_real_user_instead_of_proxy_obj(cls, user: Union[Account, EndUser]):
|
|
if isinstance(user, Account):
|
|
user = db.session.query(Account).get(user.id)
|
|
elif isinstance(user, EndUser):
|
|
user = db.session.query(EndUser).get(user.id)
|
|
else:
|
|
raise Exception("Unknown user type")
|
|
|
|
return user
|
|
|
|
@classmethod
|
|
def generate_worker(cls, flask_app: Flask, generate_task_id: str, app_model: App, app_model_config: AppModelConfig,
|
|
query: str, inputs: dict, user: Union[Account, EndUser],
|
|
conversation: Conversation, streaming: bool, is_model_config_override: bool):
|
|
with flask_app.app_context():
|
|
try:
|
|
if conversation:
|
|
# fixed the state of the conversation object when it detached from the original session
|
|
conversation = db.session.query(Conversation).filter_by(id=conversation.id).first()
|
|
|
|
# run
|
|
Completion.generate(
|
|
task_id=generate_task_id,
|
|
app=app_model,
|
|
app_model_config=app_model_config,
|
|
query=query,
|
|
inputs=inputs,
|
|
user=user,
|
|
conversation=conversation,
|
|
streaming=streaming,
|
|
is_override=is_model_config_override,
|
|
)
|
|
except ConversationTaskStoppedException:
|
|
pass
|
|
except (LLMBadRequestError, LLMAPIConnectionError, LLMAPIUnavailableError,
|
|
LLMRateLimitError, ProviderTokenNotInitError, QuotaExceededError,
|
|
ModelCurrentlyNotSupportError) as e:
|
|
db.session.rollback()
|
|
PubHandler.pub_error(user, generate_task_id, e)
|
|
except LLMAuthorizationError:
|
|
db.session.rollback()
|
|
PubHandler.pub_error(user, generate_task_id, LLMAuthorizationError('Incorrect API key provided'))
|
|
except Exception as e:
|
|
db.session.rollback()
|
|
logging.exception("Unknown Error in completion")
|
|
PubHandler.pub_error(user, generate_task_id, e)
|
|
|
|
@classmethod
|
|
def countdown_and_close(cls, worker_thread, pubsub, user, generate_task_id) -> threading.Thread:
|
|
# wait for 5 minutes to close the thread
|
|
timeout = 300
|
|
|
|
def close_pubsub():
|
|
sleep_iterations = 0
|
|
while sleep_iterations < timeout and worker_thread.is_alive():
|
|
time.sleep(1)
|
|
sleep_iterations += 1
|
|
|
|
if worker_thread.is_alive():
|
|
PubHandler.stop(user, generate_task_id)
|
|
try:
|
|
pubsub.close()
|
|
except:
|
|
pass
|
|
|
|
countdown_thread = threading.Thread(target=close_pubsub)
|
|
countdown_thread.start()
|
|
|
|
return countdown_thread
|
|
|
|
@classmethod
|
|
def generate_more_like_this(cls, app_model: App, user: Union[Account | EndUser],
|
|
message_id: str, streaming: bool = True) -> Union[dict | Generator]:
|
|
if not user:
|
|
raise ValueError('user cannot be None')
|
|
|
|
message = db.session.query(Message).filter(
|
|
Message.id == message_id,
|
|
Message.app_id == app_model.id,
|
|
Message.from_source == ('api' if isinstance(user, EndUser) else 'console'),
|
|
Message.from_end_user_id == (user.id if isinstance(user, EndUser) else None),
|
|
Message.from_account_id == (user.id if isinstance(user, Account) else None),
|
|
).first()
|
|
|
|
if not message:
|
|
raise MessageNotExistsError()
|
|
|
|
current_app_model_config = app_model.app_model_config
|
|
more_like_this = current_app_model_config.more_like_this_dict
|
|
|
|
if not current_app_model_config.more_like_this or more_like_this.get("enabled", False) is False:
|
|
raise MoreLikeThisDisabledError()
|
|
|
|
app_model_config = message.app_model_config
|
|
|
|
if message.override_model_configs:
|
|
override_model_configs = json.loads(message.override_model_configs)
|
|
pre_prompt = override_model_configs.get("pre_prompt", '')
|
|
elif app_model_config:
|
|
pre_prompt = app_model_config.pre_prompt
|
|
else:
|
|
raise AppModelConfigBrokenError()
|
|
|
|
generate_task_id = str(uuid.uuid4())
|
|
|
|
pubsub = redis_client.pubsub()
|
|
pubsub.subscribe(PubHandler.generate_channel_name(user, generate_task_id))
|
|
|
|
user = cls.get_real_user_instead_of_proxy_obj(user)
|
|
|
|
generate_worker_thread = threading.Thread(target=cls.generate_more_like_this_worker, kwargs={
|
|
'flask_app': current_app._get_current_object(),
|
|
'generate_task_id': generate_task_id,
|
|
'app_model': app_model,
|
|
'app_model_config': app_model_config,
|
|
'message': message,
|
|
'pre_prompt': pre_prompt,
|
|
'user': user,
|
|
'streaming': streaming
|
|
})
|
|
|
|
generate_worker_thread.start()
|
|
|
|
cls.countdown_and_close(generate_worker_thread, pubsub, user, generate_task_id)
|
|
|
|
return cls.compact_response(pubsub, streaming)
|
|
|
|
@classmethod
|
|
def generate_more_like_this_worker(cls, flask_app: Flask, generate_task_id: str, app_model: App,
|
|
app_model_config: AppModelConfig, message: Message, pre_prompt: str,
|
|
user: Union[Account, EndUser], streaming: bool):
|
|
with flask_app.app_context():
|
|
try:
|
|
# run
|
|
Completion.generate_more_like_this(
|
|
task_id=generate_task_id,
|
|
app=app_model,
|
|
user=user,
|
|
message=message,
|
|
pre_prompt=pre_prompt,
|
|
app_model_config=app_model_config,
|
|
streaming=streaming
|
|
)
|
|
except ConversationTaskStoppedException:
|
|
pass
|
|
except (LLMBadRequestError, LLMAPIConnectionError, LLMAPIUnavailableError,
|
|
LLMRateLimitError, ProviderTokenNotInitError, QuotaExceededError,
|
|
ModelCurrentlyNotSupportError) as e:
|
|
db.session.rollback()
|
|
PubHandler.pub_error(user, generate_task_id, e)
|
|
except LLMAuthorizationError:
|
|
db.session.rollback()
|
|
PubHandler.pub_error(user, generate_task_id, LLMAuthorizationError('Incorrect API key provided'))
|
|
except Exception as e:
|
|
db.session.rollback()
|
|
logging.exception("Unknown Error in completion")
|
|
PubHandler.pub_error(user, generate_task_id, e)
|
|
|
|
@classmethod
|
|
def get_cleaned_inputs(cls, user_inputs: dict, app_model_config: AppModelConfig):
|
|
if user_inputs is None:
|
|
user_inputs = {}
|
|
|
|
filtered_inputs = {}
|
|
|
|
# Filter input variables from form configuration, handle required fields, default values, and option values
|
|
input_form_config = app_model_config.user_input_form_list
|
|
for config in input_form_config:
|
|
input_config = list(config.values())[0]
|
|
variable = input_config["variable"]
|
|
|
|
input_type = list(config.keys())[0]
|
|
|
|
if variable not in user_inputs or not user_inputs[variable]:
|
|
if "required" in input_config and input_config["required"]:
|
|
raise ValueError(f"{variable} is required in input form")
|
|
else:
|
|
filtered_inputs[variable] = input_config["default"] if "default" in input_config else ""
|
|
continue
|
|
|
|
value = user_inputs[variable]
|
|
|
|
if input_type == "select":
|
|
options = input_config["options"] if "options" in input_config else []
|
|
if value not in options:
|
|
raise ValueError(f"{variable} in input form must be one of the following: {options}")
|
|
else:
|
|
if 'max_length' in variable:
|
|
max_length = variable['max_length']
|
|
if len(value) > max_length:
|
|
raise ValueError(f'{variable} in input form must be less than {max_length} characters')
|
|
|
|
filtered_inputs[variable] = value
|
|
|
|
return filtered_inputs
|
|
|
|
@classmethod
|
|
def compact_response(cls, pubsub: PubSub, streaming: bool = False) -> Union[dict | Generator]:
|
|
generate_channel = list(pubsub.channels.keys())[0].decode('utf-8')
|
|
if not streaming:
|
|
try:
|
|
for message in pubsub.listen():
|
|
if message["type"] == "message":
|
|
result = message["data"].decode('utf-8')
|
|
result = json.loads(result)
|
|
if result.get('error'):
|
|
cls.handle_error(result)
|
|
|
|
return cls.get_message_response_data(result.get('data'))
|
|
except ValueError as e:
|
|
if e.args[0] != "I/O operation on closed file.": # ignore this error
|
|
raise CompletionStoppedError()
|
|
else:
|
|
logging.exception(e)
|
|
raise
|
|
finally:
|
|
try:
|
|
pubsub.unsubscribe(generate_channel)
|
|
except ConnectionError:
|
|
pass
|
|
else:
|
|
def generate() -> Generator:
|
|
try:
|
|
for message in pubsub.listen():
|
|
if message["type"] == "message":
|
|
result = message["data"].decode('utf-8')
|
|
result = json.loads(result)
|
|
if result.get('error'):
|
|
cls.handle_error(result)
|
|
|
|
event = result.get('event')
|
|
if event == "end":
|
|
logging.debug("{} finished".format(generate_channel))
|
|
break
|
|
|
|
if event == 'message':
|
|
yield "data: " + json.dumps(cls.get_message_response_data(result.get('data'))) + "\n\n"
|
|
elif event == 'chain':
|
|
yield "data: " + json.dumps(cls.get_chain_response_data(result.get('data'))) + "\n\n"
|
|
elif event == 'agent_thought':
|
|
yield "data: " + json.dumps(cls.get_agent_thought_response_data(result.get('data'))) + "\n\n"
|
|
except ValueError as e:
|
|
if e.args[0] != "I/O operation on closed file.": # ignore this error
|
|
logging.exception(e)
|
|
raise
|
|
finally:
|
|
try:
|
|
pubsub.unsubscribe(generate_channel)
|
|
except ConnectionError:
|
|
pass
|
|
|
|
return generate()
|
|
|
|
@classmethod
|
|
def get_message_response_data(cls, data: dict):
|
|
response_data = {
|
|
'event': 'message',
|
|
'task_id': data.get('task_id'),
|
|
'id': data.get('message_id'),
|
|
'answer': data.get('text'),
|
|
'created_at': int(time.time())
|
|
}
|
|
|
|
if data.get('mode') == 'chat':
|
|
response_data['conversation_id'] = data.get('conversation_id')
|
|
|
|
return response_data
|
|
|
|
@classmethod
|
|
def get_chain_response_data(cls, data: dict):
|
|
response_data = {
|
|
'event': 'chain',
|
|
'id': data.get('chain_id'),
|
|
'task_id': data.get('task_id'),
|
|
'message_id': data.get('message_id'),
|
|
'type': data.get('type'),
|
|
'input': data.get('input'),
|
|
'output': data.get('output'),
|
|
'created_at': int(time.time())
|
|
}
|
|
|
|
if data.get('mode') == 'chat':
|
|
response_data['conversation_id'] = data.get('conversation_id')
|
|
|
|
return response_data
|
|
|
|
@classmethod
|
|
def get_agent_thought_response_data(cls, data: dict):
|
|
response_data = {
|
|
'event': 'agent_thought',
|
|
'id': data.get('agent_thought_id'),
|
|
'chain_id': data.get('chain_id'),
|
|
'task_id': data.get('task_id'),
|
|
'message_id': data.get('message_id'),
|
|
'position': data.get('position'),
|
|
'thought': data.get('thought'),
|
|
'tool': data.get('tool'), # todo use real dataset obj replace it
|
|
'tool_input': data.get('tool_input'),
|
|
'observation': data.get('observation'),
|
|
'answer': data.get('answer') if not data.get('thought') else '',
|
|
'created_at': int(time.time())
|
|
}
|
|
|
|
if data.get('mode') == 'chat':
|
|
response_data['conversation_id'] = data.get('conversation_id')
|
|
|
|
return response_data
|
|
|
|
@classmethod
|
|
def handle_error(cls, result: dict):
|
|
logging.debug("error: %s", result)
|
|
error = result.get('error')
|
|
description = result.get('description')
|
|
|
|
# handle errors
|
|
llm_errors = {
|
|
'LLMBadRequestError': LLMBadRequestError,
|
|
'LLMAPIConnectionError': LLMAPIConnectionError,
|
|
'LLMAPIUnavailableError': LLMAPIUnavailableError,
|
|
'LLMRateLimitError': LLMRateLimitError,
|
|
'ProviderTokenNotInitError': ProviderTokenNotInitError,
|
|
'QuotaExceededError': QuotaExceededError,
|
|
'ModelCurrentlyNotSupportError': ModelCurrentlyNotSupportError
|
|
}
|
|
|
|
if error in llm_errors:
|
|
raise llm_errors[error](description)
|
|
elif error == 'LLMAuthorizationError':
|
|
raise LLMAuthorizationError('Incorrect API key provided')
|
|
else:
|
|
raise Exception(description)
|