dify/api/tests/integration_tests/model_runtime/cohere/test_llm.py
Bowen Liang b035c02f78
Some checks are pending
Build and Push API & Web / build (api, DIFY_API_IMAGE_NAME, linux/amd64, build-api-amd64) (push) Waiting to run
Build and Push API & Web / build (api, DIFY_API_IMAGE_NAME, linux/arm64, build-api-arm64) (push) Waiting to run
Build and Push API & Web / build (web, DIFY_WEB_IMAGE_NAME, linux/amd64, build-web-amd64) (push) Waiting to run
Build and Push API & Web / build (web, DIFY_WEB_IMAGE_NAME, linux/arm64, build-web-arm64) (push) Waiting to run
Build and Push API & Web / create-manifest (api, DIFY_API_IMAGE_NAME, merge-api-images) (push) Blocked by required conditions
Build and Push API & Web / create-manifest (web, DIFY_WEB_IMAGE_NAME, merge-web-images) (push) Blocked by required conditions
chore(api/tests): apply ruff reformat #7590 (#7591)
Co-authored-by: -LAN- <laipz8200@outlook.com>
2024-08-23 23:52:25 +08:00

192 lines
6.1 KiB
Python

import os
from collections.abc import Generator
import pytest
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta
from core.model_runtime.entities.message_entities import AssistantPromptMessage, SystemPromptMessage, UserPromptMessage
from core.model_runtime.errors.validate import CredentialsValidateFailedError
from core.model_runtime.model_providers.cohere.llm.llm import CohereLargeLanguageModel
def test_validate_credentials_for_chat_model():
model = CohereLargeLanguageModel()
with pytest.raises(CredentialsValidateFailedError):
model.validate_credentials(model="command-light-chat", credentials={"api_key": "invalid_key"})
model.validate_credentials(model="command-light-chat", credentials={"api_key": os.environ.get("COHERE_API_KEY")})
def test_validate_credentials_for_completion_model():
model = CohereLargeLanguageModel()
with pytest.raises(CredentialsValidateFailedError):
model.validate_credentials(model="command-light", credentials={"api_key": "invalid_key"})
model.validate_credentials(model="command-light", credentials={"api_key": os.environ.get("COHERE_API_KEY")})
def test_invoke_completion_model():
model = CohereLargeLanguageModel()
credentials = {"api_key": os.environ.get("COHERE_API_KEY")}
result = model.invoke(
model="command-light",
credentials=credentials,
prompt_messages=[UserPromptMessage(content="Hello World!")],
model_parameters={"temperature": 0.0, "max_tokens": 1},
stream=False,
user="abc-123",
)
assert isinstance(result, LLMResult)
assert len(result.message.content) > 0
assert model._num_tokens_from_string("command-light", credentials, result.message.content) == 1
def test_invoke_stream_completion_model():
model = CohereLargeLanguageModel()
result = model.invoke(
model="command-light",
credentials={"api_key": os.environ.get("COHERE_API_KEY")},
prompt_messages=[UserPromptMessage(content="Hello World!")],
model_parameters={"temperature": 0.0, "max_tokens": 100},
stream=True,
user="abc-123",
)
assert isinstance(result, Generator)
for chunk in result:
assert isinstance(chunk, LLMResultChunk)
assert isinstance(chunk.delta, LLMResultChunkDelta)
assert isinstance(chunk.delta.message, AssistantPromptMessage)
assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True
def test_invoke_chat_model():
model = CohereLargeLanguageModel()
result = model.invoke(
model="command-light-chat",
credentials={"api_key": os.environ.get("COHERE_API_KEY")},
prompt_messages=[
SystemPromptMessage(
content="You are a helpful AI assistant.",
),
UserPromptMessage(content="Hello World!"),
],
model_parameters={
"temperature": 0.0,
"p": 0.99,
"presence_penalty": 0.0,
"frequency_penalty": 0.0,
"max_tokens": 10,
},
stop=["How"],
stream=False,
user="abc-123",
)
assert isinstance(result, LLMResult)
assert len(result.message.content) > 0
def test_invoke_stream_chat_model():
model = CohereLargeLanguageModel()
result = model.invoke(
model="command-light-chat",
credentials={"api_key": os.environ.get("COHERE_API_KEY")},
prompt_messages=[
SystemPromptMessage(
content="You are a helpful AI assistant.",
),
UserPromptMessage(content="Hello World!"),
],
model_parameters={"temperature": 0.0, "max_tokens": 100},
stream=True,
user="abc-123",
)
assert isinstance(result, Generator)
for chunk in result:
assert isinstance(chunk, LLMResultChunk)
assert isinstance(chunk.delta, LLMResultChunkDelta)
assert isinstance(chunk.delta.message, AssistantPromptMessage)
assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True
if chunk.delta.finish_reason is not None:
assert chunk.delta.usage is not None
assert chunk.delta.usage.completion_tokens > 0
def test_get_num_tokens():
model = CohereLargeLanguageModel()
num_tokens = model.get_num_tokens(
model="command-light",
credentials={"api_key": os.environ.get("COHERE_API_KEY")},
prompt_messages=[UserPromptMessage(content="Hello World!")],
)
assert num_tokens == 3
num_tokens = model.get_num_tokens(
model="command-light-chat",
credentials={"api_key": os.environ.get("COHERE_API_KEY")},
prompt_messages=[
SystemPromptMessage(
content="You are a helpful AI assistant.",
),
UserPromptMessage(content="Hello World!"),
],
)
assert num_tokens == 15
def test_fine_tuned_model():
model = CohereLargeLanguageModel()
# test invoke
result = model.invoke(
model="85ec47be-6139-4f75-a4be-0f0ec1ef115c-ft",
credentials={"api_key": os.environ.get("COHERE_API_KEY"), "mode": "completion"},
prompt_messages=[
SystemPromptMessage(
content="You are a helpful AI assistant.",
),
UserPromptMessage(content="Hello World!"),
],
model_parameters={"temperature": 0.0, "max_tokens": 100},
stream=False,
user="abc-123",
)
assert isinstance(result, LLMResult)
def test_fine_tuned_chat_model():
model = CohereLargeLanguageModel()
# test invoke
result = model.invoke(
model="94f2d55a-4c79-4c00-bde4-23962e74b170-ft",
credentials={"api_key": os.environ.get("COHERE_API_KEY"), "mode": "chat"},
prompt_messages=[
SystemPromptMessage(
content="You are a helpful AI assistant.",
),
UserPromptMessage(content="Hello World!"),
],
model_parameters={"temperature": 0.0, "max_tokens": 100},
stream=False,
user="abc-123",
)
assert isinstance(result, LLMResult)