dify/api/core/prompt/prompt_transform.py

84 lines
3.7 KiB
Python

from typing import Optional
from core.app.entities.app_invoke_entities import ModelConfigWithCredentialsEntity
from core.memory.token_buffer_memory import TokenBufferMemory
from core.model_manager import ModelInstance
from core.model_runtime.entities.message_entities import PromptMessage
from core.model_runtime.entities.model_entities import ModelPropertyKey
from core.prompt.entities.advanced_prompt_entities import MemoryConfig
class PromptTransform:
def _append_chat_histories(self, memory: TokenBufferMemory,
memory_config: MemoryConfig,
prompt_messages: list[PromptMessage],
model_config: ModelConfigWithCredentialsEntity) -> list[PromptMessage]:
rest_tokens = self._calculate_rest_token(prompt_messages, model_config)
histories = self._get_history_messages_list_from_memory(memory, memory_config, rest_tokens)
prompt_messages.extend(histories)
return prompt_messages
def _calculate_rest_token(self, prompt_messages: list[PromptMessage],
model_config: ModelConfigWithCredentialsEntity) -> int:
rest_tokens = 2000
model_context_tokens = model_config.model_schema.model_properties.get(ModelPropertyKey.CONTEXT_SIZE)
if model_context_tokens:
model_instance = ModelInstance(
provider_model_bundle=model_config.provider_model_bundle,
model=model_config.model
)
curr_message_tokens = model_instance.get_llm_num_tokens(
prompt_messages
)
max_tokens = 0
for parameter_rule in model_config.model_schema.parameter_rules:
if (parameter_rule.name == 'max_tokens'
or (parameter_rule.use_template and parameter_rule.use_template == 'max_tokens')):
max_tokens = (model_config.parameters.get(parameter_rule.name)
or model_config.parameters.get(parameter_rule.use_template)) or 0
rest_tokens = model_context_tokens - max_tokens - curr_message_tokens
rest_tokens = max(rest_tokens, 0)
return rest_tokens
def _get_history_messages_from_memory(self, memory: TokenBufferMemory,
memory_config: MemoryConfig,
max_token_limit: int,
human_prefix: Optional[str] = None,
ai_prefix: Optional[str] = None) -> str:
"""Get memory messages."""
kwargs = {
"max_token_limit": max_token_limit
}
if human_prefix:
kwargs['human_prefix'] = human_prefix
if ai_prefix:
kwargs['ai_prefix'] = ai_prefix
if memory_config.window.enabled and memory_config.window.size is not None and memory_config.window.size > 0:
kwargs['message_limit'] = memory_config.window.size
return memory.get_history_prompt_text(
**kwargs
)
def _get_history_messages_list_from_memory(self, memory: TokenBufferMemory,
memory_config: MemoryConfig,
max_token_limit: int) -> list[PromptMessage]:
"""Get memory messages."""
return memory.get_history_prompt_messages(
max_token_limit=max_token_limit,
message_limit=memory_config.window.size
if (memory_config.window.enabled
and memory_config.window.size is not None
and memory_config.window.size > 0)
else None
)