dify/api
2024-06-14 18:26:14 +08:00
..
.vscode build: initial support for poetry build tool (#4513) 2024-06-11 13:11:28 +08:00
constants fixed a typo and grammar error in sampled app (#5061) 2024-06-12 18:02:22 +08:00
controllers refactor: Delete the dataset to verify whether it is in use (#5112) 2024-06-14 03:25:38 +08:00
core fix(model_providers/ollama): Fix OllamaLargeLanguageModel to correctly set the stop option (#5217) 2024-06-14 18:26:14 +08:00
docker
events improve: mordernizing validation by migrating pydantic from 1.x to 2.x (#4592) 2024-06-14 01:05:37 +08:00
extensions add aws s3 iam check (#5174) 2024-06-14 15:19:59 +08:00
fields
libs
migrations build: use Poetry as default build system for dependency installation in CI jobs (#5088) 2024-06-12 14:43:03 +08:00
models feat: backend model load balancing support (#4927) 2024-06-05 00:13:04 +08:00
schedule
services refactor: Delete the dataset to verify whether it is in use (#5112) 2024-06-14 03:25:38 +08:00
tasks feat: backend model load balancing support (#4927) 2024-06-05 00:13:04 +08:00
templates
tests Add novita.ai as model provider (#4961) 2024-06-14 18:23:06 +08:00
.dockerignore
.env.example add aws s3 iam check (#5174) 2024-06-14 15:19:59 +08:00
app.py
commands.py improve: generalize vector factory classes and vector type (#5033) 2024-06-08 22:29:24 +08:00
config.py add aws s3 iam check (#5174) 2024-06-14 15:19:59 +08:00
Dockerfile
poetry.lock chore: remove bump-pydantic dependency (#5177) 2024-06-14 15:05:17 +08:00
poetry.toml build: initial support for poetry build tool (#4513) 2024-06-11 13:11:28 +08:00
pyproject.toml chore: remove bump-pydantic dependency (#5177) 2024-06-14 15:05:17 +08:00
README.md chore: make the Celery command more noticeable (#5203) 2024-06-14 15:06:07 +08:00
requirements-dev.txt
requirements.txt chore: remove bump-pydantic dependency (#5177) 2024-06-14 15:05:17 +08:00

Dify Backend API

Usage

  1. Start the docker-compose stack

    The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

    cd ../docker
    docker-compose -f docker-compose.middleware.yaml -p dify up -d
    cd ../api
    
  2. Copy .env.example to .env

  3. Generate a SECRET_KEY in the .env file.

    sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
    
  4. Create environment.

    • Anaconda
      If you use Anaconda, create a new environment and activate it
    conda create --name dify python=3.10
    conda activate dify
    
    • Poetry
      If you use Poetry, you don't need to manually create the environment. You can execute poetry shell to activate the environment.
  5. Install dependencies

    • Anaconda
    pip install -r requirements.txt
    
    • Poetry
    poetry install
    

    In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

    poetry shell                                               # activate current environment
    poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
    poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
    
  6. Run migrate

    Before the first launch, migrate the database to the latest version.

    flask db upgrade
    

    ⚠️ If you encounter problems with jieba, for example

    > flask db upgrade
    Error: While importing 'app', an ImportError was raised:
    

    Please run the following command instead.

    pip install -r requirements.txt --upgrade --force-reinstall
    
  7. Start backend:

    flask run --host 0.0.0.0 --port=5001 --debug
    
  8. Setup your application by visiting http://localhost:5001/console/api/setup or other apis...

  9. If you need to debug local async processing, please start the worker service.

    celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail
    

    The started celery app handles the async tasks, e.g. dataset importing and documents indexing.

Testing

  1. Install dependencies for both the backend and the test environment

    pip install -r requirements.txt -r requirements-dev.txt
    
  2. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml

    dev/pytest/pytest_all_tests.sh