dify/api/controllers/console/datasets/datasets_document.py
Joe ce930f19b9
fix dataset operator (#6064)
Co-authored-by: JzoNg <jzongcode@gmail.com>
2024-07-09 17:47:54 +08:00

1041 lines
42 KiB
Python

import logging
from argparse import ArgumentTypeError
from datetime import datetime, timezone
from flask import request
from flask_login import current_user
from flask_restful import Resource, fields, marshal, marshal_with, reqparse
from sqlalchemy import asc, desc
from transformers.hf_argparser import string_to_bool
from werkzeug.exceptions import Forbidden, NotFound
import services
from controllers.console import api
from controllers.console.app.error import (
ProviderModelCurrentlyNotSupportError,
ProviderNotInitializeError,
ProviderQuotaExceededError,
)
from controllers.console.datasets.error import (
ArchivedDocumentImmutableError,
DocumentAlreadyFinishedError,
DocumentIndexingError,
IndexingEstimateError,
InvalidActionError,
InvalidMetadataError,
)
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required, cloud_edition_billing_resource_check
from core.errors.error import (
LLMBadRequestError,
ModelCurrentlyNotSupportError,
ProviderTokenNotInitError,
QuotaExceededError,
)
from core.indexing_runner import IndexingRunner
from core.model_manager import ModelManager
from core.model_runtime.entities.model_entities import ModelType
from core.model_runtime.errors.invoke import InvokeAuthorizationError
from core.rag.extractor.entity.extract_setting import ExtractSetting
from extensions.ext_database import db
from extensions.ext_redis import redis_client
from fields.document_fields import (
dataset_and_document_fields,
document_fields,
document_status_fields,
document_with_segments_fields,
)
from libs.login import login_required
from models.dataset import Dataset, DatasetProcessRule, Document, DocumentSegment
from models.model import UploadFile
from services.dataset_service import DatasetService, DocumentService
from tasks.add_document_to_index_task import add_document_to_index_task
from tasks.remove_document_from_index_task import remove_document_from_index_task
class DocumentResource(Resource):
def get_document(self, dataset_id: str, document_id: str) -> Document:
dataset = DatasetService.get_dataset(dataset_id)
if not dataset:
raise NotFound('Dataset not found.')
try:
DatasetService.check_dataset_permission(dataset, current_user)
except services.errors.account.NoPermissionError as e:
raise Forbidden(str(e))
document = DocumentService.get_document(dataset_id, document_id)
if not document:
raise NotFound('Document not found.')
if document.tenant_id != current_user.current_tenant_id:
raise Forbidden('No permission.')
return document
def get_batch_documents(self, dataset_id: str, batch: str) -> list[Document]:
dataset = DatasetService.get_dataset(dataset_id)
if not dataset:
raise NotFound('Dataset not found.')
try:
DatasetService.check_dataset_permission(dataset, current_user)
except services.errors.account.NoPermissionError as e:
raise Forbidden(str(e))
documents = DocumentService.get_batch_documents(dataset_id, batch)
if not documents:
raise NotFound('Documents not found.')
return documents
class GetProcessRuleApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self):
req_data = request.args
document_id = req_data.get('document_id')
# get default rules
mode = DocumentService.DEFAULT_RULES['mode']
rules = DocumentService.DEFAULT_RULES['rules']
if document_id:
# get the latest process rule
document = Document.query.get_or_404(document_id)
dataset = DatasetService.get_dataset(document.dataset_id)
if not dataset:
raise NotFound('Dataset not found.')
try:
DatasetService.check_dataset_permission(dataset, current_user)
except services.errors.account.NoPermissionError as e:
raise Forbidden(str(e))
# get the latest process rule
dataset_process_rule = db.session.query(DatasetProcessRule). \
filter(DatasetProcessRule.dataset_id == document.dataset_id). \
order_by(DatasetProcessRule.created_at.desc()). \
limit(1). \
one_or_none()
if dataset_process_rule:
mode = dataset_process_rule.mode
rules = dataset_process_rule.rules_dict
return {
'mode': mode,
'rules': rules
}
class DatasetDocumentListApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self, dataset_id):
dataset_id = str(dataset_id)
page = request.args.get('page', default=1, type=int)
limit = request.args.get('limit', default=20, type=int)
search = request.args.get('keyword', default=None, type=str)
sort = request.args.get('sort', default='-created_at', type=str)
# "yes", "true", "t", "y", "1" convert to True, while others convert to False.
try:
fetch = string_to_bool(request.args.get('fetch', default='false'))
except (ArgumentTypeError, ValueError, Exception) as e:
fetch = False
dataset = DatasetService.get_dataset(dataset_id)
if not dataset:
raise NotFound('Dataset not found.')
try:
DatasetService.check_dataset_permission(dataset, current_user)
except services.errors.account.NoPermissionError as e:
raise Forbidden(str(e))
query = Document.query.filter_by(
dataset_id=str(dataset_id), tenant_id=current_user.current_tenant_id)
if search:
search = f'%{search}%'
query = query.filter(Document.name.like(search))
if sort.startswith('-'):
sort_logic = desc
sort = sort[1:]
else:
sort_logic = asc
if sort == 'hit_count':
sub_query = db.select(DocumentSegment.document_id,
db.func.sum(DocumentSegment.hit_count).label("total_hit_count")) \
.group_by(DocumentSegment.document_id) \
.subquery()
query = query.outerjoin(sub_query, sub_query.c.document_id == Document.id) \
.order_by(sort_logic(db.func.coalesce(sub_query.c.total_hit_count, 0)))
elif sort == 'created_at':
query = query.order_by(sort_logic(Document.created_at))
else:
query = query.order_by(desc(Document.created_at))
paginated_documents = query.paginate(
page=page, per_page=limit, max_per_page=100, error_out=False)
documents = paginated_documents.items
if fetch:
for document in documents:
completed_segments = DocumentSegment.query.filter(DocumentSegment.completed_at.isnot(None),
DocumentSegment.document_id == str(document.id),
DocumentSegment.status != 're_segment').count()
total_segments = DocumentSegment.query.filter(DocumentSegment.document_id == str(document.id),
DocumentSegment.status != 're_segment').count()
document.completed_segments = completed_segments
document.total_segments = total_segments
data = marshal(documents, document_with_segments_fields)
else:
data = marshal(documents, document_fields)
response = {
'data': data,
'has_more': len(documents) == limit,
'limit': limit,
'total': paginated_documents.total,
'page': page
}
return response
documents_and_batch_fields = {
'documents': fields.List(fields.Nested(document_fields)),
'batch': fields.String
}
@setup_required
@login_required
@account_initialization_required
@marshal_with(documents_and_batch_fields)
@cloud_edition_billing_resource_check('vector_space')
def post(self, dataset_id):
dataset_id = str(dataset_id)
dataset = DatasetService.get_dataset(dataset_id)
if not dataset:
raise NotFound('Dataset not found.')
# The role of the current user in the ta table must be admin, owner, or editor
if not current_user.is_dataset_editor:
raise Forbidden()
try:
DatasetService.check_dataset_permission(dataset, current_user)
except services.errors.account.NoPermissionError as e:
raise Forbidden(str(e))
parser = reqparse.RequestParser()
parser.add_argument('indexing_technique', type=str, choices=Dataset.INDEXING_TECHNIQUE_LIST, nullable=False,
location='json')
parser.add_argument('data_source', type=dict, required=False, location='json')
parser.add_argument('process_rule', type=dict, required=False, location='json')
parser.add_argument('duplicate', type=bool, default=True, nullable=False, location='json')
parser.add_argument('original_document_id', type=str, required=False, location='json')
parser.add_argument('doc_form', type=str, default='text_model', required=False, nullable=False, location='json')
parser.add_argument('doc_language', type=str, default='English', required=False, nullable=False,
location='json')
parser.add_argument('retrieval_model', type=dict, required=False, nullable=False,
location='json')
args = parser.parse_args()
if not dataset.indexing_technique and not args['indexing_technique']:
raise ValueError('indexing_technique is required.')
# validate args
DocumentService.document_create_args_validate(args)
try:
documents, batch = DocumentService.save_document_with_dataset_id(dataset, args, current_user)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
return {
'documents': documents,
'batch': batch
}
class DatasetInitApi(Resource):
@setup_required
@login_required
@account_initialization_required
@marshal_with(dataset_and_document_fields)
@cloud_edition_billing_resource_check('vector_space')
def post(self):
# The role of the current user in the ta table must be admin, owner, or editor
if not current_user.is_editor:
raise Forbidden()
parser = reqparse.RequestParser()
parser.add_argument('indexing_technique', type=str, choices=Dataset.INDEXING_TECHNIQUE_LIST, required=True,
nullable=False, location='json')
parser.add_argument('data_source', type=dict, required=True, nullable=True, location='json')
parser.add_argument('process_rule', type=dict, required=True, nullable=True, location='json')
parser.add_argument('doc_form', type=str, default='text_model', required=False, nullable=False, location='json')
parser.add_argument('doc_language', type=str, default='English', required=False, nullable=False,
location='json')
parser.add_argument('retrieval_model', type=dict, required=False, nullable=False,
location='json')
args = parser.parse_args()
# The role of the current user in the ta table must be admin, owner, or editor, or dataset_operator
if not current_user.is_dataset_editor:
raise Forbidden()
if args['indexing_technique'] == 'high_quality':
try:
model_manager = ModelManager()
model_manager.get_default_model_instance(
tenant_id=current_user.current_tenant_id,
model_type=ModelType.TEXT_EMBEDDING
)
except InvokeAuthorizationError:
raise ProviderNotInitializeError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider.")
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
# validate args
DocumentService.document_create_args_validate(args)
try:
dataset, documents, batch = DocumentService.save_document_without_dataset_id(
tenant_id=current_user.current_tenant_id,
document_data=args,
account=current_user
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
response = {
'dataset': dataset,
'documents': documents,
'batch': batch
}
return response
class DocumentIndexingEstimateApi(DocumentResource):
@setup_required
@login_required
@account_initialization_required
def get(self, dataset_id, document_id):
dataset_id = str(dataset_id)
document_id = str(document_id)
document = self.get_document(dataset_id, document_id)
if document.indexing_status in ['completed', 'error']:
raise DocumentAlreadyFinishedError()
data_process_rule = document.dataset_process_rule
data_process_rule_dict = data_process_rule.to_dict()
response = {
"tokens": 0,
"total_price": 0,
"currency": "USD",
"total_segments": 0,
"preview": []
}
if document.data_source_type == 'upload_file':
data_source_info = document.data_source_info_dict
if data_source_info and 'upload_file_id' in data_source_info:
file_id = data_source_info['upload_file_id']
file = db.session.query(UploadFile).filter(
UploadFile.tenant_id == document.tenant_id,
UploadFile.id == file_id
).first()
# raise error if file not found
if not file:
raise NotFound('File not found.')
extract_setting = ExtractSetting(
datasource_type="upload_file",
upload_file=file,
document_model=document.doc_form
)
indexing_runner = IndexingRunner()
try:
response = indexing_runner.indexing_estimate(current_user.current_tenant_id, [extract_setting],
data_process_rule_dict, document.doc_form,
'English', dataset_id)
except LLMBadRequestError:
raise ProviderNotInitializeError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider.")
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except Exception as e:
raise IndexingEstimateError(str(e))
return response
class DocumentBatchIndexingEstimateApi(DocumentResource):
@setup_required
@login_required
@account_initialization_required
def get(self, dataset_id, batch):
dataset_id = str(dataset_id)
batch = str(batch)
documents = self.get_batch_documents(dataset_id, batch)
response = {
"tokens": 0,
"total_price": 0,
"currency": "USD",
"total_segments": 0,
"preview": []
}
if not documents:
return response
data_process_rule = documents[0].dataset_process_rule
data_process_rule_dict = data_process_rule.to_dict()
info_list = []
extract_settings = []
for document in documents:
if document.indexing_status in ['completed', 'error']:
raise DocumentAlreadyFinishedError()
data_source_info = document.data_source_info_dict
# format document files info
if data_source_info and 'upload_file_id' in data_source_info:
file_id = data_source_info['upload_file_id']
info_list.append(file_id)
# format document notion info
elif data_source_info and 'notion_workspace_id' in data_source_info and 'notion_page_id' in data_source_info:
pages = []
page = {
'page_id': data_source_info['notion_page_id'],
'type': data_source_info['type']
}
pages.append(page)
notion_info = {
'workspace_id': data_source_info['notion_workspace_id'],
'pages': pages
}
info_list.append(notion_info)
if document.data_source_type == 'upload_file':
file_id = data_source_info['upload_file_id']
file_detail = db.session.query(UploadFile).filter(
UploadFile.tenant_id == current_user.current_tenant_id,
UploadFile.id == file_id
).first()
if file_detail is None:
raise NotFound("File not found.")
extract_setting = ExtractSetting(
datasource_type="upload_file",
upload_file=file_detail,
document_model=document.doc_form
)
extract_settings.append(extract_setting)
elif document.data_source_type == 'notion_import':
extract_setting = ExtractSetting(
datasource_type="notion_import",
notion_info={
"notion_workspace_id": data_source_info['notion_workspace_id'],
"notion_obj_id": data_source_info['notion_page_id'],
"notion_page_type": data_source_info['type'],
"tenant_id": current_user.current_tenant_id
},
document_model=document.doc_form
)
extract_settings.append(extract_setting)
elif document.data_source_type == 'website_crawl':
extract_setting = ExtractSetting(
datasource_type="website_crawl",
website_info={
"provider": data_source_info['provider'],
"job_id": data_source_info['job_id'],
"url": data_source_info['url'],
"tenant_id": current_user.current_tenant_id,
"mode": data_source_info['mode'],
"only_main_content": data_source_info['only_main_content']
},
document_model=document.doc_form
)
extract_settings.append(extract_setting)
else:
raise ValueError('Data source type not support')
indexing_runner = IndexingRunner()
try:
response = indexing_runner.indexing_estimate(current_user.current_tenant_id, extract_settings,
data_process_rule_dict, document.doc_form,
'English', dataset_id)
except LLMBadRequestError:
raise ProviderNotInitializeError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider.")
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except Exception as e:
raise IndexingEstimateError(str(e))
return response
class DocumentBatchIndexingStatusApi(DocumentResource):
@setup_required
@login_required
@account_initialization_required
def get(self, dataset_id, batch):
dataset_id = str(dataset_id)
batch = str(batch)
documents = self.get_batch_documents(dataset_id, batch)
documents_status = []
for document in documents:
completed_segments = DocumentSegment.query.filter(DocumentSegment.completed_at.isnot(None),
DocumentSegment.document_id == str(document.id),
DocumentSegment.status != 're_segment').count()
total_segments = DocumentSegment.query.filter(DocumentSegment.document_id == str(document.id),
DocumentSegment.status != 're_segment').count()
document.completed_segments = completed_segments
document.total_segments = total_segments
if document.is_paused:
document.indexing_status = 'paused'
documents_status.append(marshal(document, document_status_fields))
data = {
'data': documents_status
}
return data
class DocumentIndexingStatusApi(DocumentResource):
@setup_required
@login_required
@account_initialization_required
def get(self, dataset_id, document_id):
dataset_id = str(dataset_id)
document_id = str(document_id)
document = self.get_document(dataset_id, document_id)
completed_segments = DocumentSegment.query \
.filter(DocumentSegment.completed_at.isnot(None),
DocumentSegment.document_id == str(document_id),
DocumentSegment.status != 're_segment') \
.count()
total_segments = DocumentSegment.query \
.filter(DocumentSegment.document_id == str(document_id),
DocumentSegment.status != 're_segment') \
.count()
document.completed_segments = completed_segments
document.total_segments = total_segments
if document.is_paused:
document.indexing_status = 'paused'
return marshal(document, document_status_fields)
class DocumentDetailApi(DocumentResource):
METADATA_CHOICES = {'all', 'only', 'without'}
@setup_required
@login_required
@account_initialization_required
def get(self, dataset_id, document_id):
dataset_id = str(dataset_id)
document_id = str(document_id)
document = self.get_document(dataset_id, document_id)
metadata = request.args.get('metadata', 'all')
if metadata not in self.METADATA_CHOICES:
raise InvalidMetadataError(f'Invalid metadata value: {metadata}')
if metadata == 'only':
response = {
'id': document.id,
'doc_type': document.doc_type,
'doc_metadata': document.doc_metadata
}
elif metadata == 'without':
process_rules = DatasetService.get_process_rules(dataset_id)
data_source_info = document.data_source_detail_dict
response = {
'id': document.id,
'position': document.position,
'data_source_type': document.data_source_type,
'data_source_info': data_source_info,
'dataset_process_rule_id': document.dataset_process_rule_id,
'dataset_process_rule': process_rules,
'name': document.name,
'created_from': document.created_from,
'created_by': document.created_by,
'created_at': document.created_at.timestamp(),
'tokens': document.tokens,
'indexing_status': document.indexing_status,
'completed_at': int(document.completed_at.timestamp()) if document.completed_at else None,
'updated_at': int(document.updated_at.timestamp()) if document.updated_at else None,
'indexing_latency': document.indexing_latency,
'error': document.error,
'enabled': document.enabled,
'disabled_at': int(document.disabled_at.timestamp()) if document.disabled_at else None,
'disabled_by': document.disabled_by,
'archived': document.archived,
'segment_count': document.segment_count,
'average_segment_length': document.average_segment_length,
'hit_count': document.hit_count,
'display_status': document.display_status,
'doc_form': document.doc_form
}
else:
process_rules = DatasetService.get_process_rules(dataset_id)
data_source_info = document.data_source_detail_dict
response = {
'id': document.id,
'position': document.position,
'data_source_type': document.data_source_type,
'data_source_info': data_source_info,
'dataset_process_rule_id': document.dataset_process_rule_id,
'dataset_process_rule': process_rules,
'name': document.name,
'created_from': document.created_from,
'created_by': document.created_by,
'created_at': document.created_at.timestamp(),
'tokens': document.tokens,
'indexing_status': document.indexing_status,
'completed_at': int(document.completed_at.timestamp()) if document.completed_at else None,
'updated_at': int(document.updated_at.timestamp()) if document.updated_at else None,
'indexing_latency': document.indexing_latency,
'error': document.error,
'enabled': document.enabled,
'disabled_at': int(document.disabled_at.timestamp()) if document.disabled_at else None,
'disabled_by': document.disabled_by,
'archived': document.archived,
'doc_type': document.doc_type,
'doc_metadata': document.doc_metadata,
'segment_count': document.segment_count,
'average_segment_length': document.average_segment_length,
'hit_count': document.hit_count,
'display_status': document.display_status,
'doc_form': document.doc_form
}
return response, 200
class DocumentProcessingApi(DocumentResource):
@setup_required
@login_required
@account_initialization_required
def patch(self, dataset_id, document_id, action):
dataset_id = str(dataset_id)
document_id = str(document_id)
document = self.get_document(dataset_id, document_id)
# The role of the current user in the ta table must be admin, owner, or editor
if not current_user.is_editor:
raise Forbidden()
if action == "pause":
if document.indexing_status != "indexing":
raise InvalidActionError('Document not in indexing state.')
document.paused_by = current_user.id
document.paused_at = datetime.now(timezone.utc).replace(tzinfo=None)
document.is_paused = True
db.session.commit()
elif action == "resume":
if document.indexing_status not in ["paused", "error"]:
raise InvalidActionError('Document not in paused or error state.')
document.paused_by = None
document.paused_at = None
document.is_paused = False
db.session.commit()
else:
raise InvalidActionError()
return {'result': 'success'}, 200
class DocumentDeleteApi(DocumentResource):
@setup_required
@login_required
@account_initialization_required
def delete(self, dataset_id, document_id):
dataset_id = str(dataset_id)
document_id = str(document_id)
dataset = DatasetService.get_dataset(dataset_id)
if dataset is None:
raise NotFound("Dataset not found.")
# check user's model setting
DatasetService.check_dataset_model_setting(dataset)
document = self.get_document(dataset_id, document_id)
try:
DocumentService.delete_document(document)
except services.errors.document.DocumentIndexingError:
raise DocumentIndexingError('Cannot delete document during indexing.')
return {'result': 'success'}, 204
class DocumentMetadataApi(DocumentResource):
@setup_required
@login_required
@account_initialization_required
def put(self, dataset_id, document_id):
dataset_id = str(dataset_id)
document_id = str(document_id)
document = self.get_document(dataset_id, document_id)
req_data = request.get_json()
doc_type = req_data.get('doc_type')
doc_metadata = req_data.get('doc_metadata')
# The role of the current user in the ta table must be admin, owner, or editor
if not current_user.is_editor:
raise Forbidden()
if doc_type is None or doc_metadata is None:
raise ValueError('Both doc_type and doc_metadata must be provided.')
if doc_type not in DocumentService.DOCUMENT_METADATA_SCHEMA:
raise ValueError('Invalid doc_type.')
if not isinstance(doc_metadata, dict):
raise ValueError('doc_metadata must be a dictionary.')
metadata_schema = DocumentService.DOCUMENT_METADATA_SCHEMA[doc_type]
document.doc_metadata = {}
if doc_type == 'others':
document.doc_metadata = doc_metadata
else:
for key, value_type in metadata_schema.items():
value = doc_metadata.get(key)
if value is not None and isinstance(value, value_type):
document.doc_metadata[key] = value
document.doc_type = doc_type
document.updated_at = datetime.now(timezone.utc).replace(tzinfo=None)
db.session.commit()
return {'result': 'success', 'message': 'Document metadata updated.'}, 200
class DocumentStatusApi(DocumentResource):
@setup_required
@login_required
@account_initialization_required
@cloud_edition_billing_resource_check('vector_space')
def patch(self, dataset_id, document_id, action):
dataset_id = str(dataset_id)
document_id = str(document_id)
dataset = DatasetService.get_dataset(dataset_id)
if dataset is None:
raise NotFound("Dataset not found.")
# The role of the current user in the ta table must be admin, owner, or editor
if not current_user.is_dataset_editor:
raise Forbidden()
# check user's model setting
DatasetService.check_dataset_model_setting(dataset)
# check user's permission
DatasetService.check_dataset_permission(dataset, current_user)
document = self.get_document(dataset_id, document_id)
indexing_cache_key = 'document_{}_indexing'.format(document.id)
cache_result = redis_client.get(indexing_cache_key)
if cache_result is not None:
raise InvalidActionError("Document is being indexed, please try again later")
if action == "enable":
if document.enabled:
raise InvalidActionError('Document already enabled.')
document.enabled = True
document.disabled_at = None
document.disabled_by = None
document.updated_at = datetime.now(timezone.utc).replace(tzinfo=None)
db.session.commit()
# Set cache to prevent indexing the same document multiple times
redis_client.setex(indexing_cache_key, 600, 1)
add_document_to_index_task.delay(document_id)
return {'result': 'success'}, 200
elif action == "disable":
if not document.completed_at or document.indexing_status != 'completed':
raise InvalidActionError('Document is not completed.')
if not document.enabled:
raise InvalidActionError('Document already disabled.')
document.enabled = False
document.disabled_at = datetime.now(timezone.utc).replace(tzinfo=None)
document.disabled_by = current_user.id
document.updated_at = datetime.now(timezone.utc).replace(tzinfo=None)
db.session.commit()
# Set cache to prevent indexing the same document multiple times
redis_client.setex(indexing_cache_key, 600, 1)
remove_document_from_index_task.delay(document_id)
return {'result': 'success'}, 200
elif action == "archive":
if document.archived:
raise InvalidActionError('Document already archived.')
document.archived = True
document.archived_at = datetime.now(timezone.utc).replace(tzinfo=None)
document.archived_by = current_user.id
document.updated_at = datetime.now(timezone.utc).replace(tzinfo=None)
db.session.commit()
if document.enabled:
# Set cache to prevent indexing the same document multiple times
redis_client.setex(indexing_cache_key, 600, 1)
remove_document_from_index_task.delay(document_id)
return {'result': 'success'}, 200
elif action == "un_archive":
if not document.archived:
raise InvalidActionError('Document is not archived.')
document.archived = False
document.archived_at = None
document.archived_by = None
document.updated_at = datetime.now(timezone.utc).replace(tzinfo=None)
db.session.commit()
# Set cache to prevent indexing the same document multiple times
redis_client.setex(indexing_cache_key, 600, 1)
add_document_to_index_task.delay(document_id)
return {'result': 'success'}, 200
else:
raise InvalidActionError()
class DocumentPauseApi(DocumentResource):
@setup_required
@login_required
@account_initialization_required
def patch(self, dataset_id, document_id):
"""pause document."""
dataset_id = str(dataset_id)
document_id = str(document_id)
dataset = DatasetService.get_dataset(dataset_id)
if not dataset:
raise NotFound('Dataset not found.')
document = DocumentService.get_document(dataset.id, document_id)
# 404 if document not found
if document is None:
raise NotFound("Document Not Exists.")
# 403 if document is archived
if DocumentService.check_archived(document):
raise ArchivedDocumentImmutableError()
try:
# pause document
DocumentService.pause_document(document)
except services.errors.document.DocumentIndexingError:
raise DocumentIndexingError('Cannot pause completed document.')
return {'result': 'success'}, 204
class DocumentRecoverApi(DocumentResource):
@setup_required
@login_required
@account_initialization_required
def patch(self, dataset_id, document_id):
"""recover document."""
dataset_id = str(dataset_id)
document_id = str(document_id)
dataset = DatasetService.get_dataset(dataset_id)
if not dataset:
raise NotFound('Dataset not found.')
document = DocumentService.get_document(dataset.id, document_id)
# 404 if document not found
if document is None:
raise NotFound("Document Not Exists.")
# 403 if document is archived
if DocumentService.check_archived(document):
raise ArchivedDocumentImmutableError()
try:
# pause document
DocumentService.recover_document(document)
except services.errors.document.DocumentIndexingError:
raise DocumentIndexingError('Document is not in paused status.')
return {'result': 'success'}, 204
class DocumentRetryApi(DocumentResource):
@setup_required
@login_required
@account_initialization_required
def post(self, dataset_id):
"""retry document."""
parser = reqparse.RequestParser()
parser.add_argument('document_ids', type=list, required=True, nullable=False,
location='json')
args = parser.parse_args()
dataset_id = str(dataset_id)
dataset = DatasetService.get_dataset(dataset_id)
retry_documents = []
if not dataset:
raise NotFound('Dataset not found.')
for document_id in args['document_ids']:
try:
document_id = str(document_id)
document = DocumentService.get_document(dataset.id, document_id)
# 404 if document not found
if document is None:
raise NotFound("Document Not Exists.")
# 403 if document is archived
if DocumentService.check_archived(document):
raise ArchivedDocumentImmutableError()
# 400 if document is completed
if document.indexing_status == 'completed':
raise DocumentAlreadyFinishedError()
retry_documents.append(document)
except Exception as e:
logging.error(f"Document {document_id} retry failed: {str(e)}")
continue
# retry document
DocumentService.retry_document(dataset_id, retry_documents)
return {'result': 'success'}, 204
class DocumentRenameApi(DocumentResource):
@setup_required
@login_required
@account_initialization_required
@marshal_with(document_fields)
def post(self, dataset_id, document_id):
# The role of the current user in the ta table must be admin, owner, editor, or dataset_operator
if not current_user.is_dataset_editor:
raise Forbidden()
dataset = DatasetService.get_dataset(dataset_id)
DatasetService.check_dataset_operator_permission(current_user, dataset)
parser = reqparse.RequestParser()
parser.add_argument('name', type=str, required=True, nullable=False, location='json')
args = parser.parse_args()
try:
document = DocumentService.rename_document(dataset_id, document_id, args['name'])
except services.errors.document.DocumentIndexingError:
raise DocumentIndexingError('Cannot delete document during indexing.')
return document
class WebsiteDocumentSyncApi(DocumentResource):
@setup_required
@login_required
@account_initialization_required
def get(self, dataset_id, document_id):
"""sync website document."""
dataset_id = str(dataset_id)
dataset = DatasetService.get_dataset(dataset_id)
if not dataset:
raise NotFound('Dataset not found.')
document_id = str(document_id)
document = DocumentService.get_document(dataset.id, document_id)
if not document:
raise NotFound('Document not found.')
if document.tenant_id != current_user.current_tenant_id:
raise Forbidden('No permission.')
if document.data_source_type != 'website_crawl':
raise ValueError('Document is not a website document.')
# 403 if document is archived
if DocumentService.check_archived(document):
raise ArchivedDocumentImmutableError()
# sync document
DocumentService.sync_website_document(dataset_id, document)
return {'result': 'success'}, 200
api.add_resource(GetProcessRuleApi, '/datasets/process-rule')
api.add_resource(DatasetDocumentListApi,
'/datasets/<uuid:dataset_id>/documents')
api.add_resource(DatasetInitApi,
'/datasets/init')
api.add_resource(DocumentIndexingEstimateApi,
'/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/indexing-estimate')
api.add_resource(DocumentBatchIndexingEstimateApi,
'/datasets/<uuid:dataset_id>/batch/<string:batch>/indexing-estimate')
api.add_resource(DocumentBatchIndexingStatusApi,
'/datasets/<uuid:dataset_id>/batch/<string:batch>/indexing-status')
api.add_resource(DocumentIndexingStatusApi,
'/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/indexing-status')
api.add_resource(DocumentDetailApi,
'/datasets/<uuid:dataset_id>/documents/<uuid:document_id>')
api.add_resource(DocumentProcessingApi,
'/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/processing/<string:action>')
api.add_resource(DocumentDeleteApi,
'/datasets/<uuid:dataset_id>/documents/<uuid:document_id>')
api.add_resource(DocumentMetadataApi,
'/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/metadata')
api.add_resource(DocumentStatusApi,
'/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/status/<string:action>')
api.add_resource(DocumentPauseApi, '/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/processing/pause')
api.add_resource(DocumentRecoverApi, '/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/processing/resume')
api.add_resource(DocumentRetryApi, '/datasets/<uuid:dataset_id>/retry')
api.add_resource(DocumentRenameApi,
'/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/rename')
api.add_resource(WebsiteDocumentSyncApi, '/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/website-sync')