mirror of
https://github.com/langgenius/dify.git
synced 2024-11-16 03:32:23 +08:00
151 lines
6.9 KiB
Python
151 lines
6.9 KiB
Python
import logging
|
|
import time
|
|
|
|
import click
|
|
from celery import shared_task
|
|
|
|
from core.rag.index_processor.index_processor_factory import IndexProcessorFactory
|
|
from core.rag.models.document import Document
|
|
from extensions.ext_database import db
|
|
from models.dataset import Dataset, DocumentSegment
|
|
from models.dataset import Document as DatasetDocument
|
|
|
|
|
|
@shared_task(queue="dataset")
|
|
def deal_dataset_vector_index_task(dataset_id: str, action: str):
|
|
"""
|
|
Async deal dataset from index
|
|
:param dataset_id: dataset_id
|
|
:param action: action
|
|
Usage: deal_dataset_vector_index_task.delay(dataset_id, action)
|
|
"""
|
|
logging.info(click.style("Start deal dataset vector index: {}".format(dataset_id), fg="green"))
|
|
start_at = time.perf_counter()
|
|
|
|
try:
|
|
dataset = Dataset.query.filter_by(id=dataset_id).first()
|
|
|
|
if not dataset:
|
|
raise Exception("Dataset not found")
|
|
index_type = dataset.doc_form
|
|
index_processor = IndexProcessorFactory(index_type).init_index_processor()
|
|
if action == "remove":
|
|
index_processor.clean(dataset, None, with_keywords=False)
|
|
elif action == "add":
|
|
dataset_documents = (
|
|
db.session.query(DatasetDocument)
|
|
.filter(
|
|
DatasetDocument.dataset_id == dataset_id,
|
|
DatasetDocument.indexing_status == "completed",
|
|
DatasetDocument.enabled == True,
|
|
DatasetDocument.archived == False,
|
|
)
|
|
.all()
|
|
)
|
|
|
|
if dataset_documents:
|
|
dataset_documents_ids = [doc.id for doc in dataset_documents]
|
|
db.session.query(DatasetDocument).filter(DatasetDocument.id.in_(dataset_documents_ids)).update(
|
|
{"indexing_status": "indexing"}, synchronize_session=False
|
|
)
|
|
db.session.commit()
|
|
|
|
for dataset_document in dataset_documents:
|
|
try:
|
|
# add from vector index
|
|
segments = (
|
|
db.session.query(DocumentSegment)
|
|
.filter(DocumentSegment.document_id == dataset_document.id, DocumentSegment.enabled == True)
|
|
.order_by(DocumentSegment.position.asc())
|
|
.all()
|
|
)
|
|
if segments:
|
|
documents = []
|
|
for segment in segments:
|
|
document = Document(
|
|
page_content=segment.content,
|
|
metadata={
|
|
"doc_id": segment.index_node_id,
|
|
"doc_hash": segment.index_node_hash,
|
|
"document_id": segment.document_id,
|
|
"dataset_id": segment.dataset_id,
|
|
},
|
|
)
|
|
|
|
documents.append(document)
|
|
# save vector index
|
|
index_processor.load(dataset, documents, with_keywords=False)
|
|
db.session.query(DatasetDocument).filter(DatasetDocument.id == dataset_document.id).update(
|
|
{"indexing_status": "completed"}, synchronize_session=False
|
|
)
|
|
db.session.commit()
|
|
except Exception as e:
|
|
db.session.query(DatasetDocument).filter(DatasetDocument.id == dataset_document.id).update(
|
|
{"indexing_status": "error", "error": str(e)}, synchronize_session=False
|
|
)
|
|
db.session.commit()
|
|
elif action == "update":
|
|
dataset_documents = (
|
|
db.session.query(DatasetDocument)
|
|
.filter(
|
|
DatasetDocument.dataset_id == dataset_id,
|
|
DatasetDocument.indexing_status == "completed",
|
|
DatasetDocument.enabled == True,
|
|
DatasetDocument.archived == False,
|
|
)
|
|
.all()
|
|
)
|
|
# add new index
|
|
if dataset_documents:
|
|
# update document status
|
|
dataset_documents_ids = [doc.id for doc in dataset_documents]
|
|
db.session.query(DatasetDocument).filter(DatasetDocument.id.in_(dataset_documents_ids)).update(
|
|
{"indexing_status": "indexing"}, synchronize_session=False
|
|
)
|
|
db.session.commit()
|
|
|
|
# clean index
|
|
index_processor.clean(dataset, None, with_keywords=False)
|
|
|
|
for dataset_document in dataset_documents:
|
|
# update from vector index
|
|
try:
|
|
segments = (
|
|
db.session.query(DocumentSegment)
|
|
.filter(DocumentSegment.document_id == dataset_document.id, DocumentSegment.enabled == True)
|
|
.order_by(DocumentSegment.position.asc())
|
|
.all()
|
|
)
|
|
if segments:
|
|
documents = []
|
|
for segment in segments:
|
|
document = Document(
|
|
page_content=segment.content,
|
|
metadata={
|
|
"doc_id": segment.index_node_id,
|
|
"doc_hash": segment.index_node_hash,
|
|
"document_id": segment.document_id,
|
|
"dataset_id": segment.dataset_id,
|
|
},
|
|
)
|
|
|
|
documents.append(document)
|
|
# save vector index
|
|
index_processor.load(dataset, documents, with_keywords=False)
|
|
db.session.query(DatasetDocument).filter(DatasetDocument.id == dataset_document.id).update(
|
|
{"indexing_status": "completed"}, synchronize_session=False
|
|
)
|
|
db.session.commit()
|
|
except Exception as e:
|
|
db.session.query(DatasetDocument).filter(DatasetDocument.id == dataset_document.id).update(
|
|
{"indexing_status": "error", "error": str(e)}, synchronize_session=False
|
|
)
|
|
db.session.commit()
|
|
|
|
end_at = time.perf_counter()
|
|
logging.info(
|
|
click.style("Deal dataset vector index: {} latency: {}".format(dataset_id, end_at - start_at), fg="green")
|
|
)
|
|
except Exception:
|
|
logging.exception("Deal dataset vector index failed")
|