mirror of
https://github.com/langgenius/dify.git
synced 2024-11-16 11:42:29 +08:00
92 lines
3.4 KiB
Python
92 lines
3.4 KiB
Python
from flask import request
|
|
from flask_restful import marshal, reqparse
|
|
|
|
import services.dataset_service
|
|
from controllers.service_api import api
|
|
from controllers.service_api.dataset.error import DatasetNameDuplicateError
|
|
from controllers.service_api.wraps import DatasetApiResource
|
|
from core.model_runtime.entities.model_entities import ModelType
|
|
from core.provider_manager import ProviderManager
|
|
from fields.dataset_fields import dataset_detail_fields
|
|
from libs.login import current_user
|
|
from models.dataset import Dataset
|
|
from services.dataset_service import DatasetService
|
|
|
|
|
|
def _validate_name(name):
|
|
if not name or len(name) < 1 or len(name) > 40:
|
|
raise ValueError('Name must be between 1 to 40 characters.')
|
|
return name
|
|
|
|
|
|
class DatasetApi(DatasetApiResource):
|
|
"""Resource for get datasets."""
|
|
|
|
def get(self, tenant_id):
|
|
page = request.args.get('page', default=1, type=int)
|
|
limit = request.args.get('limit', default=20, type=int)
|
|
provider = request.args.get('provider', default="vendor")
|
|
datasets, total = DatasetService.get_datasets(page, limit, provider,
|
|
tenant_id, current_user)
|
|
# check embedding setting
|
|
provider_manager = ProviderManager()
|
|
configurations = provider_manager.get_configurations(
|
|
tenant_id=current_user.current_tenant_id
|
|
)
|
|
|
|
embedding_models = configurations.get_models(
|
|
model_type=ModelType.TEXT_EMBEDDING,
|
|
only_active=True
|
|
)
|
|
|
|
model_names = []
|
|
for embedding_model in embedding_models:
|
|
model_names.append(f"{embedding_model.model}:{embedding_model.provider.provider}")
|
|
|
|
data = marshal(datasets, dataset_detail_fields)
|
|
for item in data:
|
|
if item['indexing_technique'] == 'high_quality':
|
|
item_model = f"{item['embedding_model']}:{item['embedding_model_provider']}"
|
|
if item_model in model_names:
|
|
item['embedding_available'] = True
|
|
else:
|
|
item['embedding_available'] = False
|
|
else:
|
|
item['embedding_available'] = True
|
|
response = {
|
|
'data': data,
|
|
'has_more': len(datasets) == limit,
|
|
'limit': limit,
|
|
'total': total,
|
|
'page': page
|
|
}
|
|
return response, 200
|
|
|
|
"""Resource for datasets."""
|
|
|
|
def post(self, tenant_id):
|
|
parser = reqparse.RequestParser()
|
|
parser.add_argument('name', nullable=False, required=True,
|
|
help='type is required. Name must be between 1 to 40 characters.',
|
|
type=_validate_name)
|
|
parser.add_argument('indexing_technique', type=str, location='json',
|
|
choices=Dataset.INDEXING_TECHNIQUE_LIST,
|
|
help='Invalid indexing technique.')
|
|
args = parser.parse_args()
|
|
|
|
try:
|
|
dataset = DatasetService.create_empty_dataset(
|
|
tenant_id=tenant_id,
|
|
name=args['name'],
|
|
indexing_technique=args['indexing_technique'],
|
|
account=current_user
|
|
)
|
|
except services.errors.dataset.DatasetNameDuplicateError:
|
|
raise DatasetNameDuplicateError()
|
|
|
|
return marshal(dataset, dataset_detail_fields), 200
|
|
|
|
|
|
api.add_resource(DatasetApi, '/datasets')
|
|
|