dify/api/services/hit_testing_service.py

114 lines
4.2 KiB
Python

import logging
import time
from core.rag.datasource.retrieval_service import RetrievalService
from core.rag.models.document import Document
from core.rag.retrieval.retrival_methods import RetrievalMethod
from extensions.ext_database import db
from models.account import Account
from models.dataset import Dataset, DatasetQuery, DocumentSegment
default_retrieval_model = {
'search_method': RetrievalMethod.SEMANTIC_SEARCH.value,
'reranking_enable': False,
'reranking_model': {
'reranking_provider_name': '',
'reranking_model_name': ''
},
'top_k': 2,
'score_threshold_enabled': False
}
class HitTestingService:
@classmethod
def retrieve(cls, dataset: Dataset, query: str, account: Account, retrieval_model: dict, limit: int = 10) -> dict:
if dataset.available_document_count == 0 or dataset.available_segment_count == 0:
return {
"query": {
"content": query,
"tsne_position": {'x': 0, 'y': 0},
},
"records": []
}
start = time.perf_counter()
# get retrieval model , if the model is not setting , using default
if not retrieval_model:
retrieval_model = dataset.retrieval_model if dataset.retrieval_model else default_retrieval_model
all_documents = RetrievalService.retrieve(retrival_method=retrieval_model.get('search_method', 'semantic_search'),
dataset_id=dataset.id,
query=cls.escape_query_for_search(query),
top_k=retrieval_model.get('top_k', 2),
score_threshold=retrieval_model.get('score_threshold', .0)
if retrieval_model['score_threshold_enabled'] else None,
reranking_model=retrieval_model.get('reranking_model', None)
if retrieval_model['reranking_enable'] else None,
reranking_mode=retrieval_model.get('reranking_mode')
if retrieval_model.get('reranking_mode') else 'reranking_model',
weights=retrieval_model.get('weights', None),
)
end = time.perf_counter()
logging.debug(f"Hit testing retrieve in {end - start:0.4f} seconds")
dataset_query = DatasetQuery(
dataset_id=dataset.id,
content=query,
source='hit_testing',
created_by_role='account',
created_by=account.id
)
db.session.add(dataset_query)
db.session.commit()
return cls.compact_retrieve_response(dataset, query, all_documents)
@classmethod
def compact_retrieve_response(cls, dataset: Dataset, query: str, documents: list[Document]):
i = 0
records = []
for document in documents:
index_node_id = document.metadata['doc_id']
segment = db.session.query(DocumentSegment).filter(
DocumentSegment.dataset_id == dataset.id,
DocumentSegment.enabled == True,
DocumentSegment.status == 'completed',
DocumentSegment.index_node_id == index_node_id
).first()
if not segment:
i += 1
continue
record = {
"segment": segment,
"score": document.metadata.get('score', None),
}
records.append(record)
i += 1
return {
"query": {
"content": query,
},
"records": records
}
@classmethod
def hit_testing_args_check(cls, args):
query = args['query']
if not query or len(query) > 250:
raise ValueError('Query is required and cannot exceed 250 characters')
@staticmethod
def escape_query_for_search(query: str) -> str:
return query.replace('"', '\\"')