dify/api/tests/integration_tests/model_runtime/minimax/test_embedding.py
Bowen Liang b035c02f78
Some checks are pending
Build and Push API & Web / build (api, DIFY_API_IMAGE_NAME, linux/amd64, build-api-amd64) (push) Waiting to run
Build and Push API & Web / build (api, DIFY_API_IMAGE_NAME, linux/arm64, build-api-arm64) (push) Waiting to run
Build and Push API & Web / build (web, DIFY_WEB_IMAGE_NAME, linux/amd64, build-web-amd64) (push) Waiting to run
Build and Push API & Web / build (web, DIFY_WEB_IMAGE_NAME, linux/arm64, build-web-arm64) (push) Waiting to run
Build and Push API & Web / create-manifest (api, DIFY_API_IMAGE_NAME, merge-api-images) (push) Blocked by required conditions
Build and Push API & Web / create-manifest (web, DIFY_WEB_IMAGE_NAME, merge-web-images) (push) Blocked by required conditions
chore(api/tests): apply ruff reformat #7590 (#7591)
Co-authored-by: -LAN- <laipz8200@outlook.com>
2024-08-23 23:52:25 +08:00

59 lines
1.7 KiB
Python

import os
import pytest
from core.model_runtime.entities.text_embedding_entities import TextEmbeddingResult
from core.model_runtime.errors.validate import CredentialsValidateFailedError
from core.model_runtime.model_providers.minimax.text_embedding.text_embedding import MinimaxTextEmbeddingModel
def test_validate_credentials():
model = MinimaxTextEmbeddingModel()
with pytest.raises(CredentialsValidateFailedError):
model.validate_credentials(
model="embo-01",
credentials={"minimax_api_key": "invalid_key", "minimax_group_id": os.environ.get("MINIMAX_GROUP_ID")},
)
model.validate_credentials(
model="embo-01",
credentials={
"minimax_api_key": os.environ.get("MINIMAX_API_KEY"),
"minimax_group_id": os.environ.get("MINIMAX_GROUP_ID"),
},
)
def test_invoke_model():
model = MinimaxTextEmbeddingModel()
result = model.invoke(
model="embo-01",
credentials={
"minimax_api_key": os.environ.get("MINIMAX_API_KEY"),
"minimax_group_id": os.environ.get("MINIMAX_GROUP_ID"),
},
texts=["hello", "world"],
user="abc-123",
)
assert isinstance(result, TextEmbeddingResult)
assert len(result.embeddings) == 2
assert result.usage.total_tokens == 16
def test_get_num_tokens():
model = MinimaxTextEmbeddingModel()
num_tokens = model.get_num_tokens(
model="embo-01",
credentials={
"minimax_api_key": os.environ.get("MINIMAX_API_KEY"),
"minimax_group_id": os.environ.get("MINIMAX_GROUP_ID"),
},
texts=["hello", "world"],
)
assert num_tokens == 2