mirror of
https://github.com/langgenius/dify.git
synced 2024-11-16 19:59:50 +08:00
4669eb24be
Some checks failed
Build and Push API & Web / build (api, DIFY_API_IMAGE_NAME, linux/amd64, build-api-amd64) (push) Waiting to run
Build and Push API & Web / build (api, DIFY_API_IMAGE_NAME, linux/arm64, build-api-arm64) (push) Waiting to run
Build and Push API & Web / build (web, DIFY_WEB_IMAGE_NAME, linux/amd64, build-web-amd64) (push) Waiting to run
Build and Push API & Web / build (web, DIFY_WEB_IMAGE_NAME, linux/arm64, build-web-arm64) (push) Waiting to run
Build and Push API & Web / create-manifest (api, DIFY_API_IMAGE_NAME, merge-api-images) (push) Blocked by required conditions
Build and Push API & Web / create-manifest (web, DIFY_WEB_IMAGE_NAME, merge-web-images) (push) Blocked by required conditions
Mark stale issues and pull requests / stale (push) Has been cancelled
128 lines
5.7 KiB
Python
128 lines
5.7 KiB
Python
import base64
|
|
import logging
|
|
from typing import Optional, cast
|
|
|
|
import numpy as np
|
|
from sqlalchemy.exc import IntegrityError
|
|
|
|
from core.embedding.embedding_constant import EmbeddingInputType
|
|
from core.model_manager import ModelInstance
|
|
from core.model_runtime.entities.model_entities import ModelPropertyKey
|
|
from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
|
|
from core.rag.datasource.entity.embedding import Embeddings
|
|
from extensions.ext_database import db
|
|
from extensions.ext_redis import redis_client
|
|
from libs import helper
|
|
from models.dataset import Embedding
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class CacheEmbedding(Embeddings):
|
|
def __init__(self, model_instance: ModelInstance, user: Optional[str] = None) -> None:
|
|
self._model_instance = model_instance
|
|
self._user = user
|
|
|
|
def embed_documents(self, texts: list[str]) -> list[list[float]]:
|
|
"""Embed search docs in batches of 10."""
|
|
# use doc embedding cache or store if not exists
|
|
text_embeddings = [None for _ in range(len(texts))]
|
|
embedding_queue_indices = []
|
|
for i, text in enumerate(texts):
|
|
hash = helper.generate_text_hash(text)
|
|
embedding = (
|
|
db.session.query(Embedding)
|
|
.filter_by(
|
|
model_name=self._model_instance.model, hash=hash, provider_name=self._model_instance.provider
|
|
)
|
|
.first()
|
|
)
|
|
if embedding:
|
|
text_embeddings[i] = embedding.get_embedding()
|
|
else:
|
|
embedding_queue_indices.append(i)
|
|
if embedding_queue_indices:
|
|
embedding_queue_texts = [texts[i] for i in embedding_queue_indices]
|
|
embedding_queue_embeddings = []
|
|
try:
|
|
model_type_instance = cast(TextEmbeddingModel, self._model_instance.model_type_instance)
|
|
model_schema = model_type_instance.get_model_schema(
|
|
self._model_instance.model, self._model_instance.credentials
|
|
)
|
|
max_chunks = (
|
|
model_schema.model_properties[ModelPropertyKey.MAX_CHUNKS]
|
|
if model_schema and ModelPropertyKey.MAX_CHUNKS in model_schema.model_properties
|
|
else 1
|
|
)
|
|
for i in range(0, len(embedding_queue_texts), max_chunks):
|
|
batch_texts = embedding_queue_texts[i : i + max_chunks]
|
|
|
|
embedding_result = self._model_instance.invoke_text_embedding(
|
|
texts=batch_texts, user=self._user, input_type=EmbeddingInputType.DOCUMENT
|
|
)
|
|
|
|
for vector in embedding_result.embeddings:
|
|
try:
|
|
normalized_embedding = (vector / np.linalg.norm(vector)).tolist()
|
|
embedding_queue_embeddings.append(normalized_embedding)
|
|
except IntegrityError:
|
|
db.session.rollback()
|
|
except Exception as e:
|
|
logging.exception("Failed transform embedding: %s", e)
|
|
cache_embeddings = []
|
|
try:
|
|
for i, embedding in zip(embedding_queue_indices, embedding_queue_embeddings):
|
|
text_embeddings[i] = embedding
|
|
hash = helper.generate_text_hash(texts[i])
|
|
if hash not in cache_embeddings:
|
|
embedding_cache = Embedding(
|
|
model_name=self._model_instance.model,
|
|
hash=hash,
|
|
provider_name=self._model_instance.provider,
|
|
)
|
|
embedding_cache.set_embedding(embedding)
|
|
db.session.add(embedding_cache)
|
|
cache_embeddings.append(hash)
|
|
db.session.commit()
|
|
except IntegrityError:
|
|
db.session.rollback()
|
|
except Exception as ex:
|
|
db.session.rollback()
|
|
logger.error("Failed to embed documents: %s", ex)
|
|
raise ex
|
|
|
|
return text_embeddings
|
|
|
|
def embed_query(self, text: str) -> list[float]:
|
|
"""Embed query text."""
|
|
# use doc embedding cache or store if not exists
|
|
hash = helper.generate_text_hash(text)
|
|
embedding_cache_key = f"{self._model_instance.provider}_{self._model_instance.model}_{hash}"
|
|
embedding = redis_client.get(embedding_cache_key)
|
|
if embedding:
|
|
redis_client.expire(embedding_cache_key, 600)
|
|
return list(np.frombuffer(base64.b64decode(embedding), dtype="float"))
|
|
try:
|
|
embedding_result = self._model_instance.invoke_text_embedding(
|
|
texts=[text], user=self._user, input_type=EmbeddingInputType.QUERY
|
|
)
|
|
|
|
embedding_results = embedding_result.embeddings[0]
|
|
embedding_results = (embedding_results / np.linalg.norm(embedding_results)).tolist()
|
|
except Exception as ex:
|
|
raise ex
|
|
|
|
try:
|
|
# encode embedding to base64
|
|
embedding_vector = np.array(embedding_results)
|
|
vector_bytes = embedding_vector.tobytes()
|
|
# Transform to Base64
|
|
encoded_vector = base64.b64encode(vector_bytes)
|
|
# Transform to string
|
|
encoded_str = encoded_vector.decode("utf-8")
|
|
redis_client.setex(embedding_cache_key, 600, encoded_str)
|
|
except Exception as ex:
|
|
logging.exception("Failed to add embedding to redis %s", ex)
|
|
|
|
return embedding_results
|