mirror of
https://github.com/langgenius/dify.git
synced 2024-11-16 11:42:29 +08:00
60 lines
2.0 KiB
Python
60 lines
2.0 KiB
Python
from typing import Optional
|
|
|
|
from core.model_manager import ModelInstance
|
|
from core.rag.models.document import Document
|
|
|
|
|
|
class RerankModelRunner:
|
|
def __init__(self, rerank_model_instance: ModelInstance) -> None:
|
|
self.rerank_model_instance = rerank_model_instance
|
|
|
|
def run(
|
|
self,
|
|
query: str,
|
|
documents: list[Document],
|
|
score_threshold: Optional[float] = None,
|
|
top_n: Optional[int] = None,
|
|
user: Optional[str] = None,
|
|
) -> list[Document]:
|
|
"""
|
|
Run rerank model
|
|
:param query: search query
|
|
:param documents: documents for reranking
|
|
:param score_threshold: score threshold
|
|
:param top_n: top n
|
|
:param user: unique user id if needed
|
|
:return:
|
|
"""
|
|
docs = []
|
|
doc_id = []
|
|
unique_documents = []
|
|
for document in documents:
|
|
if document.metadata["doc_id"] not in doc_id:
|
|
doc_id.append(document.metadata["doc_id"])
|
|
docs.append(document.page_content)
|
|
unique_documents.append(document)
|
|
|
|
documents = unique_documents
|
|
|
|
rerank_result = self.rerank_model_instance.invoke_rerank(
|
|
query=query, docs=docs, score_threshold=score_threshold, top_n=top_n, user=user
|
|
)
|
|
|
|
rerank_documents = []
|
|
|
|
for result in rerank_result.docs:
|
|
# format document
|
|
rerank_document = Document(
|
|
page_content=result.text,
|
|
metadata={
|
|
"doc_id": documents[result.index].metadata["doc_id"],
|
|
"doc_hash": documents[result.index].metadata["doc_hash"],
|
|
"document_id": documents[result.index].metadata["document_id"],
|
|
"dataset_id": documents[result.index].metadata["dataset_id"],
|
|
"score": result.score,
|
|
},
|
|
)
|
|
rerank_documents.append(rerank_document)
|
|
|
|
return rerank_documents
|