dify/api/services/hit_testing_service.py
takatost d069c668f8
Model Runtime (#1858)
Co-authored-by: StyleZhang <jasonapring2015@outlook.com>
Co-authored-by: Garfield Dai <dai.hai@foxmail.com>
Co-authored-by: chenhe <guchenhe@gmail.com>
Co-authored-by: jyong <jyong@dify.ai>
Co-authored-by: Joel <iamjoel007@gmail.com>
Co-authored-by: Yeuoly <admin@srmxy.cn>
2024-01-02 23:42:00 +08:00

208 lines
7.7 KiB
Python

import logging
import threading
import time
from typing import List
import numpy as np
from flask import current_app
from langchain.embeddings.base import Embeddings
from langchain.schema import Document
from sklearn.manifold import TSNE
from core.embedding.cached_embedding import CacheEmbedding
from core.model_manager import ModelManager
from core.model_runtime.entities.model_entities import ModelType
from core.rerank.rerank import RerankRunner
from extensions.ext_database import db
from models.account import Account
from models.dataset import Dataset, DocumentSegment, DatasetQuery
from services.retrieval_service import RetrievalService
default_retrieval_model = {
'search_method': 'semantic_search',
'reranking_enable': False,
'reranking_model': {
'reranking_provider_name': '',
'reranking_model_name': ''
},
'top_k': 2,
'score_threshold_enabled': False
}
class HitTestingService:
@classmethod
def retrieve(cls, dataset: Dataset, query: str, account: Account, retrieval_model: dict, limit: int = 10) -> dict:
if dataset.available_document_count == 0 or dataset.available_segment_count == 0:
return {
"query": {
"content": query,
"tsne_position": {'x': 0, 'y': 0},
},
"records": []
}
start = time.perf_counter()
# get retrieval model , if the model is not setting , using default
if not retrieval_model:
retrieval_model = dataset.retrieval_model if dataset.retrieval_model else default_retrieval_model
# get embedding model
model_manager = ModelManager()
embedding_model = model_manager.get_model_instance(
tenant_id=dataset.tenant_id,
model_type=ModelType.TEXT_EMBEDDING,
provider=dataset.embedding_model_provider,
model=dataset.embedding_model
)
embeddings = CacheEmbedding(embedding_model)
all_documents = []
threads = []
# retrieval_model source with semantic
if retrieval_model['search_method'] == 'semantic_search' or retrieval_model['search_method'] == 'hybrid_search':
embedding_thread = threading.Thread(target=RetrievalService.embedding_search, kwargs={
'flask_app': current_app._get_current_object(),
'dataset_id': str(dataset.id),
'query': query,
'top_k': retrieval_model['top_k'],
'score_threshold': retrieval_model['score_threshold'] if retrieval_model['score_threshold_enabled'] else None,
'reranking_model': retrieval_model['reranking_model'] if retrieval_model['reranking_enable'] else None,
'all_documents': all_documents,
'search_method': retrieval_model['search_method'],
'embeddings': embeddings
})
threads.append(embedding_thread)
embedding_thread.start()
# retrieval source with full text
if retrieval_model['search_method'] == 'full_text_search' or retrieval_model['search_method'] == 'hybrid_search':
full_text_index_thread = threading.Thread(target=RetrievalService.full_text_index_search, kwargs={
'flask_app': current_app._get_current_object(),
'dataset_id': str(dataset.id),
'query': query,
'search_method': retrieval_model['search_method'],
'embeddings': embeddings,
'score_threshold': retrieval_model['score_threshold'] if retrieval_model['score_threshold_enabled'] else None,
'top_k': retrieval_model['top_k'],
'reranking_model': retrieval_model['reranking_model'] if retrieval_model['reranking_enable'] else None,
'all_documents': all_documents
})
threads.append(full_text_index_thread)
full_text_index_thread.start()
for thread in threads:
thread.join()
if retrieval_model['search_method'] == 'hybrid_search':
model_manager = ModelManager()
rerank_model_instance = model_manager.get_model_instance(
tenant_id=dataset.tenant_id,
provider=retrieval_model['reranking_model']['reranking_provider_name'],
model_type=ModelType.RERANK,
model=retrieval_model['reranking_model']['reranking_model_name']
)
rerank_runner = RerankRunner(rerank_model_instance)
all_documents = rerank_runner.run(
query=query,
documents=all_documents,
score_threshold=retrieval_model['score_threshold'] if retrieval_model['score_threshold_enabled'] else None,
top_n=retrieval_model['top_k'],
user=f"account-{account.id}"
)
end = time.perf_counter()
logging.debug(f"Hit testing retrieve in {end - start:0.4f} seconds")
dataset_query = DatasetQuery(
dataset_id=dataset.id,
content=query,
source='hit_testing',
created_by_role='account',
created_by=account.id
)
db.session.add(dataset_query)
db.session.commit()
return cls.compact_retrieve_response(dataset, embeddings, query, all_documents)
@classmethod
def compact_retrieve_response(cls, dataset: Dataset, embeddings: Embeddings, query: str, documents: List[Document]):
text_embeddings = [
embeddings.embed_query(query)
]
text_embeddings.extend(embeddings.embed_documents([document.page_content for document in documents]))
tsne_position_data = cls.get_tsne_positions_from_embeddings(text_embeddings)
query_position = tsne_position_data.pop(0)
i = 0
records = []
for document in documents:
index_node_id = document.metadata['doc_id']
segment = db.session.query(DocumentSegment).filter(
DocumentSegment.dataset_id == dataset.id,
DocumentSegment.enabled == True,
DocumentSegment.status == 'completed',
DocumentSegment.index_node_id == index_node_id
).first()
if not segment:
i += 1
continue
record = {
"segment": segment,
"score": document.metadata.get('score', None),
"tsne_position": tsne_position_data[i]
}
records.append(record)
i += 1
return {
"query": {
"content": query,
"tsne_position": query_position,
},
"records": records
}
@classmethod
def get_tsne_positions_from_embeddings(cls, embeddings: list):
embedding_length = len(embeddings)
if embedding_length <= 1:
return [{'x': 0, 'y': 0}]
concatenate_data = np.array(embeddings).reshape(embedding_length, -1)
# concatenate_data = np.concatenate(embeddings)
perplexity = embedding_length / 2 + 1
if perplexity >= embedding_length:
perplexity = max(embedding_length - 1, 1)
tsne = TSNE(n_components=2, perplexity=perplexity, early_exaggeration=12.0)
data_tsne = tsne.fit_transform(concatenate_data)
tsne_position_data = []
for i in range(len(data_tsne)):
tsne_position_data.append({'x': float(data_tsne[i][0]), 'y': float(data_tsne[i][1])})
return tsne_position_data
@classmethod
def hit_testing_args_check(cls, args):
query = args['query']
if not query or len(query) > 250:
raise ValueError('Query is required and cannot exceed 250 characters')