mirror of
https://github.com/langgenius/dify.git
synced 2024-11-16 19:59:50 +08:00
137 lines
4.6 KiB
Python
137 lines
4.6 KiB
Python
|
|
from core.model_runtime.entities.llm_entities import LLMResult
|
|
from core.model_runtime.entities.message_entities import PromptMessage, SystemPromptMessage, UserPromptMessage
|
|
from core.tools.model.tool_model_manager import ToolModelManager
|
|
from core.tools.tool.tool import Tool
|
|
from core.tools.utils.web_reader_tool import get_url
|
|
|
|
_SUMMARY_PROMPT = """You are a professional language researcher, you are interested in the language
|
|
and you can quickly aimed at the main point of an webpage and reproduce it in your own words but
|
|
retain the original meaning and keep the key points.
|
|
however, the text you got is too long, what you got is possible a part of the text.
|
|
Please summarize the text you got.
|
|
"""
|
|
|
|
|
|
class BuiltinTool(Tool):
|
|
"""
|
|
Builtin tool
|
|
|
|
:param meta: the meta data of a tool call processing
|
|
"""
|
|
|
|
def invoke_model(
|
|
self, user_id: str, prompt_messages: list[PromptMessage], stop: list[str]
|
|
) -> LLMResult:
|
|
"""
|
|
invoke model
|
|
|
|
:param model_config: the model config
|
|
:param prompt_messages: the prompt messages
|
|
:param stop: the stop words
|
|
:return: the model result
|
|
"""
|
|
# invoke model
|
|
return ToolModelManager.invoke(
|
|
user_id=user_id,
|
|
tenant_id=self.runtime.tenant_id,
|
|
tool_type='builtin',
|
|
tool_name=self.identity.name,
|
|
prompt_messages=prompt_messages,
|
|
)
|
|
|
|
def get_max_tokens(self) -> int:
|
|
"""
|
|
get max tokens
|
|
|
|
:param model_config: the model config
|
|
:return: the max tokens
|
|
"""
|
|
return ToolModelManager.get_max_llm_context_tokens(
|
|
tenant_id=self.runtime.tenant_id,
|
|
)
|
|
|
|
def get_prompt_tokens(self, prompt_messages: list[PromptMessage]) -> int:
|
|
"""
|
|
get prompt tokens
|
|
|
|
:param prompt_messages: the prompt messages
|
|
:return: the tokens
|
|
"""
|
|
return ToolModelManager.calculate_tokens(
|
|
tenant_id=self.runtime.tenant_id,
|
|
prompt_messages=prompt_messages
|
|
)
|
|
|
|
def summary(self, user_id: str, content: str) -> str:
|
|
max_tokens = self.get_max_tokens()
|
|
|
|
if self.get_prompt_tokens(prompt_messages=[
|
|
UserPromptMessage(content=content)
|
|
]) < max_tokens * 0.6:
|
|
return content
|
|
|
|
def get_prompt_tokens(content: str) -> int:
|
|
return self.get_prompt_tokens(prompt_messages=[
|
|
SystemPromptMessage(content=_SUMMARY_PROMPT),
|
|
UserPromptMessage(content=content)
|
|
])
|
|
|
|
def summarize(content: str) -> str:
|
|
summary = self.invoke_model(user_id=user_id, prompt_messages=[
|
|
SystemPromptMessage(content=_SUMMARY_PROMPT),
|
|
UserPromptMessage(content=content)
|
|
], stop=[])
|
|
|
|
return summary.message.content
|
|
|
|
lines = content.split('\n')
|
|
new_lines = []
|
|
# split long line into multiple lines
|
|
for i in range(len(lines)):
|
|
line = lines[i]
|
|
if not line.strip():
|
|
continue
|
|
if len(line) < max_tokens * 0.5:
|
|
new_lines.append(line)
|
|
elif get_prompt_tokens(line) > max_tokens * 0.7:
|
|
while get_prompt_tokens(line) > max_tokens * 0.7:
|
|
new_lines.append(line[:int(max_tokens * 0.5)])
|
|
line = line[int(max_tokens * 0.5):]
|
|
new_lines.append(line)
|
|
else:
|
|
new_lines.append(line)
|
|
|
|
# merge lines into messages with max tokens
|
|
messages: list[str] = []
|
|
for i in new_lines:
|
|
if len(messages) == 0:
|
|
messages.append(i)
|
|
else:
|
|
if len(messages[-1]) + len(i) < max_tokens * 0.5:
|
|
messages[-1] += i
|
|
if get_prompt_tokens(messages[-1] + i) > max_tokens * 0.7:
|
|
messages.append(i)
|
|
else:
|
|
messages[-1] += i
|
|
|
|
summaries = []
|
|
for i in range(len(messages)):
|
|
message = messages[i]
|
|
summary = summarize(message)
|
|
summaries.append(summary)
|
|
|
|
result = '\n'.join(summaries)
|
|
|
|
if self.get_prompt_tokens(prompt_messages=[
|
|
UserPromptMessage(content=result)
|
|
]) > max_tokens * 0.7:
|
|
return self.summary(user_id=user_id, content=result)
|
|
|
|
return result
|
|
|
|
def get_url(self, url: str, user_agent: str = None) -> str:
|
|
"""
|
|
get url
|
|
"""
|
|
return get_url(url, user_agent=user_agent) |