mirror of
https://github.com/langgenius/dify.git
synced 2024-11-16 19:59:50 +08:00
625 lines
27 KiB
Python
625 lines
27 KiB
Python
import math
|
|
import threading
|
|
from collections import Counter
|
|
from typing import Optional, cast
|
|
|
|
from flask import Flask, current_app
|
|
|
|
from core.app.app_config.entities import DatasetEntity, DatasetRetrieveConfigEntity
|
|
from core.app.entities.app_invoke_entities import InvokeFrom, ModelConfigWithCredentialsEntity
|
|
from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
|
|
from core.entities.agent_entities import PlanningStrategy
|
|
from core.memory.token_buffer_memory import TokenBufferMemory
|
|
from core.model_manager import ModelInstance, ModelManager
|
|
from core.model_runtime.entities.message_entities import PromptMessageTool
|
|
from core.model_runtime.entities.model_entities import ModelFeature, ModelType
|
|
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
|
|
from core.ops.ops_trace_manager import TraceQueueManager, TraceTask, TraceTaskName
|
|
from core.ops.utils import measure_time
|
|
from core.rag.data_post_processor.data_post_processor import DataPostProcessor
|
|
from core.rag.datasource.keyword.jieba.jieba_keyword_table_handler import JiebaKeywordTableHandler
|
|
from core.rag.datasource.retrieval_service import RetrievalService
|
|
from core.rag.models.document import Document
|
|
from core.rag.retrieval.retrival_methods import RetrievalMethod
|
|
from core.rag.retrieval.router.multi_dataset_function_call_router import FunctionCallMultiDatasetRouter
|
|
from core.rag.retrieval.router.multi_dataset_react_route import ReactMultiDatasetRouter
|
|
from core.tools.tool.dataset_retriever.dataset_multi_retriever_tool import DatasetMultiRetrieverTool
|
|
from core.tools.tool.dataset_retriever.dataset_retriever_base_tool import DatasetRetrieverBaseTool
|
|
from core.tools.tool.dataset_retriever.dataset_retriever_tool import DatasetRetrieverTool
|
|
from extensions.ext_database import db
|
|
from models.dataset import Dataset, DatasetQuery, DocumentSegment
|
|
from models.dataset import Document as DatasetDocument
|
|
|
|
default_retrieval_model = {
|
|
'search_method': RetrievalMethod.SEMANTIC_SEARCH.value,
|
|
'reranking_enable': False,
|
|
'reranking_model': {
|
|
'reranking_provider_name': '',
|
|
'reranking_model_name': ''
|
|
},
|
|
'top_k': 2,
|
|
'score_threshold_enabled': False
|
|
}
|
|
|
|
|
|
class DatasetRetrieval:
|
|
def __init__(self, application_generate_entity=None):
|
|
self.application_generate_entity = application_generate_entity
|
|
|
|
def retrieve(
|
|
self, app_id: str, user_id: str, tenant_id: str,
|
|
model_config: ModelConfigWithCredentialsEntity,
|
|
config: DatasetEntity,
|
|
query: str,
|
|
invoke_from: InvokeFrom,
|
|
show_retrieve_source: bool,
|
|
hit_callback: DatasetIndexToolCallbackHandler,
|
|
message_id: str,
|
|
memory: Optional[TokenBufferMemory] = None,
|
|
) -> Optional[str]:
|
|
"""
|
|
Retrieve dataset.
|
|
:param app_id: app_id
|
|
:param user_id: user_id
|
|
:param tenant_id: tenant id
|
|
:param model_config: model config
|
|
:param config: dataset config
|
|
:param query: query
|
|
:param invoke_from: invoke from
|
|
:param show_retrieve_source: show retrieve source
|
|
:param hit_callback: hit callback
|
|
:param message_id: message id
|
|
:param memory: memory
|
|
:return:
|
|
"""
|
|
dataset_ids = config.dataset_ids
|
|
if len(dataset_ids) == 0:
|
|
return None
|
|
retrieve_config = config.retrieve_config
|
|
|
|
# check model is support tool calling
|
|
model_type_instance = model_config.provider_model_bundle.model_type_instance
|
|
model_type_instance = cast(LargeLanguageModel, model_type_instance)
|
|
|
|
model_manager = ModelManager()
|
|
model_instance = model_manager.get_model_instance(
|
|
tenant_id=tenant_id,
|
|
model_type=ModelType.LLM,
|
|
provider=model_config.provider,
|
|
model=model_config.model
|
|
)
|
|
|
|
# get model schema
|
|
model_schema = model_type_instance.get_model_schema(
|
|
model=model_config.model,
|
|
credentials=model_config.credentials
|
|
)
|
|
|
|
if not model_schema:
|
|
return None
|
|
|
|
planning_strategy = PlanningStrategy.REACT_ROUTER
|
|
features = model_schema.features
|
|
if features:
|
|
if ModelFeature.TOOL_CALL in features \
|
|
or ModelFeature.MULTI_TOOL_CALL in features:
|
|
planning_strategy = PlanningStrategy.ROUTER
|
|
available_datasets = []
|
|
for dataset_id in dataset_ids:
|
|
# get dataset from dataset id
|
|
dataset = db.session.query(Dataset).filter(
|
|
Dataset.tenant_id == tenant_id,
|
|
Dataset.id == dataset_id
|
|
).first()
|
|
|
|
# pass if dataset is not available
|
|
if not dataset:
|
|
continue
|
|
|
|
# pass if dataset is not available
|
|
if (dataset and dataset.available_document_count == 0
|
|
and dataset.available_document_count == 0):
|
|
continue
|
|
|
|
available_datasets.append(dataset)
|
|
all_documents = []
|
|
user_from = 'account' if invoke_from in [InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER] else 'end_user'
|
|
if retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.SINGLE:
|
|
all_documents = self.single_retrieve(
|
|
app_id, tenant_id, user_id, user_from, available_datasets, query,
|
|
model_instance,
|
|
model_config, planning_strategy, message_id
|
|
)
|
|
elif retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.MULTIPLE:
|
|
all_documents = self.multiple_retrieve(
|
|
app_id, tenant_id, user_id, user_from,
|
|
available_datasets, query, retrieve_config.top_k,
|
|
retrieve_config.score_threshold,
|
|
retrieve_config.rerank_mode,
|
|
retrieve_config.reranking_model,
|
|
retrieve_config.weights,
|
|
retrieve_config.reranking_enabled,
|
|
message_id,
|
|
)
|
|
|
|
document_score_list = {}
|
|
for item in all_documents:
|
|
if item.metadata.get('score'):
|
|
document_score_list[item.metadata['doc_id']] = item.metadata['score']
|
|
|
|
document_context_list = []
|
|
index_node_ids = [document.metadata['doc_id'] for document in all_documents]
|
|
segments = DocumentSegment.query.filter(
|
|
DocumentSegment.dataset_id.in_(dataset_ids),
|
|
DocumentSegment.completed_at.isnot(None),
|
|
DocumentSegment.status == 'completed',
|
|
DocumentSegment.enabled == True,
|
|
DocumentSegment.index_node_id.in_(index_node_ids)
|
|
).all()
|
|
|
|
if segments:
|
|
index_node_id_to_position = {id: position for position, id in enumerate(index_node_ids)}
|
|
sorted_segments = sorted(segments,
|
|
key=lambda segment: index_node_id_to_position.get(segment.index_node_id,
|
|
float('inf')))
|
|
for segment in sorted_segments:
|
|
if segment.answer:
|
|
document_context_list.append(f'question:{segment.get_sign_content()} answer:{segment.answer}')
|
|
else:
|
|
document_context_list.append(segment.get_sign_content())
|
|
if show_retrieve_source:
|
|
context_list = []
|
|
resource_number = 1
|
|
for segment in sorted_segments:
|
|
dataset = Dataset.query.filter_by(
|
|
id=segment.dataset_id
|
|
).first()
|
|
document = DatasetDocument.query.filter(DatasetDocument.id == segment.document_id,
|
|
DatasetDocument.enabled == True,
|
|
DatasetDocument.archived == False,
|
|
).first()
|
|
if dataset and document:
|
|
source = {
|
|
'position': resource_number,
|
|
'dataset_id': dataset.id,
|
|
'dataset_name': dataset.name,
|
|
'document_id': document.id,
|
|
'document_name': document.name,
|
|
'data_source_type': document.data_source_type,
|
|
'segment_id': segment.id,
|
|
'retriever_from': invoke_from.to_source(),
|
|
'score': document_score_list.get(segment.index_node_id, None)
|
|
}
|
|
|
|
if invoke_from.to_source() == 'dev':
|
|
source['hit_count'] = segment.hit_count
|
|
source['word_count'] = segment.word_count
|
|
source['segment_position'] = segment.position
|
|
source['index_node_hash'] = segment.index_node_hash
|
|
if segment.answer:
|
|
source['content'] = f'question:{segment.content} \nanswer:{segment.answer}'
|
|
else:
|
|
source['content'] = segment.content
|
|
context_list.append(source)
|
|
resource_number += 1
|
|
if hit_callback:
|
|
hit_callback.return_retriever_resource_info(context_list)
|
|
|
|
return str("\n".join(document_context_list))
|
|
return ''
|
|
|
|
def single_retrieve(
|
|
self, app_id: str,
|
|
tenant_id: str,
|
|
user_id: str,
|
|
user_from: str,
|
|
available_datasets: list,
|
|
query: str,
|
|
model_instance: ModelInstance,
|
|
model_config: ModelConfigWithCredentialsEntity,
|
|
planning_strategy: PlanningStrategy,
|
|
message_id: Optional[str] = None,
|
|
):
|
|
tools = []
|
|
for dataset in available_datasets:
|
|
description = dataset.description
|
|
if not description:
|
|
description = 'useful for when you want to answer queries about the ' + dataset.name
|
|
|
|
description = description.replace('\n', '').replace('\r', '')
|
|
message_tool = PromptMessageTool(
|
|
name=dataset.id,
|
|
description=description,
|
|
parameters={
|
|
"type": "object",
|
|
"properties": {},
|
|
"required": [],
|
|
}
|
|
)
|
|
tools.append(message_tool)
|
|
dataset_id = None
|
|
if planning_strategy == PlanningStrategy.REACT_ROUTER:
|
|
react_multi_dataset_router = ReactMultiDatasetRouter()
|
|
dataset_id = react_multi_dataset_router.invoke(query, tools, model_config, model_instance,
|
|
user_id, tenant_id)
|
|
|
|
elif planning_strategy == PlanningStrategy.ROUTER:
|
|
function_call_router = FunctionCallMultiDatasetRouter()
|
|
dataset_id = function_call_router.invoke(query, tools, model_config, model_instance)
|
|
|
|
if dataset_id:
|
|
# get retrieval model config
|
|
dataset = db.session.query(Dataset).filter(
|
|
Dataset.id == dataset_id
|
|
).first()
|
|
if dataset:
|
|
retrieval_model_config = dataset.retrieval_model \
|
|
if dataset.retrieval_model else default_retrieval_model
|
|
|
|
# get top k
|
|
top_k = retrieval_model_config['top_k']
|
|
# get retrieval method
|
|
if dataset.indexing_technique == "economy":
|
|
retrival_method = 'keyword_search'
|
|
else:
|
|
retrival_method = retrieval_model_config['search_method']
|
|
# get reranking model
|
|
reranking_model = retrieval_model_config['reranking_model'] \
|
|
if retrieval_model_config['reranking_enable'] else None
|
|
# get score threshold
|
|
score_threshold = .0
|
|
score_threshold_enabled = retrieval_model_config.get("score_threshold_enabled")
|
|
if score_threshold_enabled:
|
|
score_threshold = retrieval_model_config.get("score_threshold")
|
|
|
|
with measure_time() as timer:
|
|
results = RetrievalService.retrieve(
|
|
retrival_method=retrival_method, dataset_id=dataset.id,
|
|
query=query,
|
|
top_k=top_k, score_threshold=score_threshold,
|
|
reranking_model=reranking_model,
|
|
reranking_mode=retrieval_model_config.get('reranking_mode', 'reranking_model'),
|
|
weights=retrieval_model_config.get('weights', None),
|
|
)
|
|
self._on_query(query, [dataset_id], app_id, user_from, user_id)
|
|
|
|
if results:
|
|
self._on_retrival_end(results, message_id, timer)
|
|
|
|
return results
|
|
return []
|
|
|
|
def multiple_retrieve(
|
|
self,
|
|
app_id: str,
|
|
tenant_id: str,
|
|
user_id: str,
|
|
user_from: str,
|
|
available_datasets: list,
|
|
query: str,
|
|
top_k: int,
|
|
score_threshold: float,
|
|
reranking_mode: str,
|
|
reranking_model: Optional[dict] = None,
|
|
weights: Optional[dict] = None,
|
|
reranking_enable: bool = True,
|
|
message_id: Optional[str] = None,
|
|
):
|
|
threads = []
|
|
all_documents = []
|
|
dataset_ids = [dataset.id for dataset in available_datasets]
|
|
index_type = None
|
|
for dataset in available_datasets:
|
|
index_type = dataset.indexing_technique
|
|
retrieval_thread = threading.Thread(target=self._retriever, kwargs={
|
|
'flask_app': current_app._get_current_object(),
|
|
'dataset_id': dataset.id,
|
|
'query': query,
|
|
'top_k': top_k,
|
|
'all_documents': all_documents,
|
|
})
|
|
threads.append(retrieval_thread)
|
|
retrieval_thread.start()
|
|
for thread in threads:
|
|
thread.join()
|
|
|
|
with measure_time() as timer:
|
|
if reranking_enable:
|
|
# do rerank for searched documents
|
|
data_post_processor = DataPostProcessor(
|
|
tenant_id, reranking_mode,
|
|
reranking_model, weights, False
|
|
)
|
|
|
|
all_documents = data_post_processor.invoke(
|
|
query=query,
|
|
documents=all_documents,
|
|
score_threshold=score_threshold,
|
|
top_n=top_k
|
|
)
|
|
else:
|
|
if index_type == "economy":
|
|
all_documents = self.calculate_keyword_score(query, all_documents, top_k)
|
|
elif index_type == "high_quality":
|
|
all_documents = self.calculate_vector_score(all_documents, top_k, score_threshold)
|
|
|
|
self._on_query(query, dataset_ids, app_id, user_from, user_id)
|
|
|
|
if all_documents:
|
|
self._on_retrival_end(all_documents, message_id, timer)
|
|
|
|
return all_documents
|
|
|
|
def _on_retrival_end(
|
|
self, documents: list[Document], message_id: Optional[str] = None, timer: Optional[dict] = None
|
|
) -> None:
|
|
"""Handle retrival end."""
|
|
for document in documents:
|
|
query = db.session.query(DocumentSegment).filter(
|
|
DocumentSegment.index_node_id == document.metadata['doc_id']
|
|
)
|
|
|
|
# if 'dataset_id' in document.metadata:
|
|
if 'dataset_id' in document.metadata:
|
|
query = query.filter(DocumentSegment.dataset_id == document.metadata['dataset_id'])
|
|
|
|
# add hit count to document segment
|
|
query.update(
|
|
{DocumentSegment.hit_count: DocumentSegment.hit_count + 1},
|
|
synchronize_session=False
|
|
)
|
|
|
|
db.session.commit()
|
|
|
|
# get tracing instance
|
|
trace_manager: TraceQueueManager = self.application_generate_entity.trace_manager if self.application_generate_entity else None
|
|
if trace_manager:
|
|
trace_manager.add_trace_task(
|
|
TraceTask(
|
|
TraceTaskName.DATASET_RETRIEVAL_TRACE,
|
|
message_id=message_id,
|
|
documents=documents,
|
|
timer=timer
|
|
)
|
|
)
|
|
|
|
def _on_query(self, query: str, dataset_ids: list[str], app_id: str, user_from: str, user_id: str) -> None:
|
|
"""
|
|
Handle query.
|
|
"""
|
|
if not query:
|
|
return
|
|
dataset_queries = []
|
|
for dataset_id in dataset_ids:
|
|
dataset_query = DatasetQuery(
|
|
dataset_id=dataset_id,
|
|
content=query,
|
|
source='app',
|
|
source_app_id=app_id,
|
|
created_by_role=user_from,
|
|
created_by=user_id
|
|
)
|
|
dataset_queries.append(dataset_query)
|
|
if dataset_queries:
|
|
db.session.add_all(dataset_queries)
|
|
db.session.commit()
|
|
|
|
def _retriever(self, flask_app: Flask, dataset_id: str, query: str, top_k: int, all_documents: list):
|
|
with flask_app.app_context():
|
|
dataset = db.session.query(Dataset).filter(
|
|
Dataset.id == dataset_id
|
|
).first()
|
|
|
|
if not dataset:
|
|
return []
|
|
|
|
# get retrieval model , if the model is not setting , using default
|
|
retrieval_model = dataset.retrieval_model if dataset.retrieval_model else default_retrieval_model
|
|
|
|
if dataset.indexing_technique == "economy":
|
|
# use keyword table query
|
|
documents = RetrievalService.retrieve(retrival_method='keyword_search',
|
|
dataset_id=dataset.id,
|
|
query=query,
|
|
top_k=top_k
|
|
)
|
|
if documents:
|
|
all_documents.extend(documents)
|
|
else:
|
|
if top_k > 0:
|
|
# retrieval source
|
|
documents = RetrievalService.retrieve(retrival_method=retrieval_model['search_method'],
|
|
dataset_id=dataset.id,
|
|
query=query,
|
|
top_k=top_k,
|
|
score_threshold=retrieval_model.get('score_threshold', .0)
|
|
if retrieval_model['score_threshold_enabled'] else None,
|
|
reranking_model=retrieval_model.get('reranking_model', None)
|
|
if retrieval_model['reranking_enable'] else None,
|
|
reranking_mode=retrieval_model.get('reranking_mode')
|
|
if retrieval_model.get('reranking_mode') else 'reranking_model',
|
|
weights=retrieval_model.get('weights', None),
|
|
)
|
|
|
|
all_documents.extend(documents)
|
|
|
|
def to_dataset_retriever_tool(self, tenant_id: str,
|
|
dataset_ids: list[str],
|
|
retrieve_config: DatasetRetrieveConfigEntity,
|
|
return_resource: bool,
|
|
invoke_from: InvokeFrom,
|
|
hit_callback: DatasetIndexToolCallbackHandler) \
|
|
-> Optional[list[DatasetRetrieverBaseTool]]:
|
|
"""
|
|
A dataset tool is a tool that can be used to retrieve information from a dataset
|
|
:param tenant_id: tenant id
|
|
:param dataset_ids: dataset ids
|
|
:param retrieve_config: retrieve config
|
|
:param return_resource: return resource
|
|
:param invoke_from: invoke from
|
|
:param hit_callback: hit callback
|
|
"""
|
|
tools = []
|
|
available_datasets = []
|
|
for dataset_id in dataset_ids:
|
|
# get dataset from dataset id
|
|
dataset = db.session.query(Dataset).filter(
|
|
Dataset.tenant_id == tenant_id,
|
|
Dataset.id == dataset_id
|
|
).first()
|
|
|
|
# pass if dataset is not available
|
|
if not dataset:
|
|
continue
|
|
|
|
# pass if dataset is not available
|
|
if (dataset and dataset.available_document_count == 0
|
|
and dataset.available_document_count == 0):
|
|
continue
|
|
|
|
available_datasets.append(dataset)
|
|
|
|
if retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.SINGLE:
|
|
# get retrieval model config
|
|
default_retrieval_model = {
|
|
'search_method': RetrievalMethod.SEMANTIC_SEARCH.value,
|
|
'reranking_enable': False,
|
|
'reranking_model': {
|
|
'reranking_provider_name': '',
|
|
'reranking_model_name': ''
|
|
},
|
|
'top_k': 2,
|
|
'score_threshold_enabled': False
|
|
}
|
|
|
|
for dataset in available_datasets:
|
|
retrieval_model_config = dataset.retrieval_model \
|
|
if dataset.retrieval_model else default_retrieval_model
|
|
|
|
# get top k
|
|
top_k = retrieval_model_config['top_k']
|
|
|
|
# get score threshold
|
|
score_threshold = None
|
|
score_threshold_enabled = retrieval_model_config.get("score_threshold_enabled")
|
|
if score_threshold_enabled:
|
|
score_threshold = retrieval_model_config.get("score_threshold")
|
|
|
|
tool = DatasetRetrieverTool.from_dataset(
|
|
dataset=dataset,
|
|
top_k=top_k,
|
|
score_threshold=score_threshold,
|
|
hit_callbacks=[hit_callback],
|
|
return_resource=return_resource,
|
|
retriever_from=invoke_from.to_source()
|
|
)
|
|
|
|
tools.append(tool)
|
|
elif retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.MULTIPLE:
|
|
tool = DatasetMultiRetrieverTool.from_dataset(
|
|
dataset_ids=[dataset.id for dataset in available_datasets],
|
|
tenant_id=tenant_id,
|
|
top_k=retrieve_config.top_k or 2,
|
|
score_threshold=retrieve_config.score_threshold,
|
|
hit_callbacks=[hit_callback],
|
|
return_resource=return_resource,
|
|
retriever_from=invoke_from.to_source(),
|
|
reranking_provider_name=retrieve_config.reranking_model.get('reranking_provider_name'),
|
|
reranking_model_name=retrieve_config.reranking_model.get('reranking_model_name')
|
|
)
|
|
|
|
tools.append(tool)
|
|
|
|
return tools
|
|
|
|
def calculate_keyword_score(self, query: str, documents: list[Document], top_k: int) -> list[Document]:
|
|
"""
|
|
Calculate keywords scores
|
|
:param query: search query
|
|
:param documents: documents for reranking
|
|
|
|
:return:
|
|
"""
|
|
keyword_table_handler = JiebaKeywordTableHandler()
|
|
query_keywords = keyword_table_handler.extract_keywords(query, None)
|
|
documents_keywords = []
|
|
for document in documents:
|
|
# get the document keywords
|
|
document_keywords = keyword_table_handler.extract_keywords(document.page_content, None)
|
|
document.metadata['keywords'] = document_keywords
|
|
documents_keywords.append(document_keywords)
|
|
|
|
# Counter query keywords(TF)
|
|
query_keyword_counts = Counter(query_keywords)
|
|
|
|
# total documents
|
|
total_documents = len(documents)
|
|
|
|
# calculate all documents' keywords IDF
|
|
all_keywords = set()
|
|
for document_keywords in documents_keywords:
|
|
all_keywords.update(document_keywords)
|
|
|
|
keyword_idf = {}
|
|
for keyword in all_keywords:
|
|
# calculate include query keywords' documents
|
|
doc_count_containing_keyword = sum(1 for doc_keywords in documents_keywords if keyword in doc_keywords)
|
|
# IDF
|
|
keyword_idf[keyword] = math.log((1 + total_documents) / (1 + doc_count_containing_keyword)) + 1
|
|
|
|
query_tfidf = {}
|
|
|
|
for keyword, count in query_keyword_counts.items():
|
|
tf = count
|
|
idf = keyword_idf.get(keyword, 0)
|
|
query_tfidf[keyword] = tf * idf
|
|
|
|
# calculate all documents' TF-IDF
|
|
documents_tfidf = []
|
|
for document_keywords in documents_keywords:
|
|
document_keyword_counts = Counter(document_keywords)
|
|
document_tfidf = {}
|
|
for keyword, count in document_keyword_counts.items():
|
|
tf = count
|
|
idf = keyword_idf.get(keyword, 0)
|
|
document_tfidf[keyword] = tf * idf
|
|
documents_tfidf.append(document_tfidf)
|
|
|
|
def cosine_similarity(vec1, vec2):
|
|
intersection = set(vec1.keys()) & set(vec2.keys())
|
|
numerator = sum(vec1[x] * vec2[x] for x in intersection)
|
|
|
|
sum1 = sum(vec1[x] ** 2 for x in vec1.keys())
|
|
sum2 = sum(vec2[x] ** 2 for x in vec2.keys())
|
|
denominator = math.sqrt(sum1) * math.sqrt(sum2)
|
|
|
|
if not denominator:
|
|
return 0.0
|
|
else:
|
|
return float(numerator) / denominator
|
|
|
|
similarities = []
|
|
for document_tfidf in documents_tfidf:
|
|
similarity = cosine_similarity(query_tfidf, document_tfidf)
|
|
similarities.append(similarity)
|
|
|
|
for document, score in zip(documents, similarities):
|
|
# format document
|
|
document.metadata['score'] = score
|
|
documents = sorted(documents, key=lambda x: x.metadata['score'], reverse=True)
|
|
return documents[:top_k] if top_k else documents
|
|
|
|
def calculate_vector_score(self, all_documents: list[Document],
|
|
top_k: int, score_threshold: float) -> list[Document]:
|
|
filter_documents = []
|
|
for document in all_documents:
|
|
if score_threshold and document.metadata['score'] >= score_threshold:
|
|
filter_documents.append(document)
|
|
if not filter_documents:
|
|
return []
|
|
filter_documents = sorted(filter_documents, key=lambda x: x.metadata['score'], reverse=True)
|
|
return filter_documents[:top_k] if top_k else filter_documents
|
|
|
|
|
|
|