mirror of
https://github.com/langgenius/dify.git
synced 2024-11-16 19:59:50 +08:00
583 lines
24 KiB
Python
583 lines
24 KiB
Python
import enum
|
|
import json
|
|
import os
|
|
import re
|
|
from typing import List, Optional, Tuple, cast
|
|
|
|
from core.entities.application_entities import (AdvancedCompletionPromptTemplateEntity, ModelConfigEntity,
|
|
PromptTemplateEntity)
|
|
from core.file.file_obj import FileObj
|
|
from core.memory.token_buffer_memory import TokenBufferMemory
|
|
from core.model_runtime.entities.message_entities import (AssistantPromptMessage, PromptMessage, PromptMessageRole,
|
|
SystemPromptMessage, TextPromptMessageContent,
|
|
UserPromptMessage)
|
|
from core.model_runtime.entities.model_entities import ModelPropertyKey
|
|
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
|
|
from core.prompt.prompt_builder import PromptBuilder
|
|
from core.prompt.prompt_template import PromptTemplateParser
|
|
|
|
|
|
class AppMode(enum.Enum):
|
|
COMPLETION = 'completion'
|
|
CHAT = 'chat'
|
|
|
|
@classmethod
|
|
def value_of(cls, value: str) -> 'AppMode':
|
|
"""
|
|
Get value of given mode.
|
|
|
|
:param value: mode value
|
|
:return: mode
|
|
"""
|
|
for mode in cls:
|
|
if mode.value == value:
|
|
return mode
|
|
raise ValueError(f'invalid mode value {value}')
|
|
|
|
|
|
class ModelMode(enum.Enum):
|
|
COMPLETION = 'completion'
|
|
CHAT = 'chat'
|
|
|
|
@classmethod
|
|
def value_of(cls, value: str) -> 'ModelMode':
|
|
"""
|
|
Get value of given mode.
|
|
|
|
:param value: mode value
|
|
:return: mode
|
|
"""
|
|
for mode in cls:
|
|
if mode.value == value:
|
|
return mode
|
|
raise ValueError(f'invalid mode value {value}')
|
|
|
|
|
|
class PromptTransform:
|
|
def get_prompt(self,
|
|
app_mode: str,
|
|
prompt_template_entity: PromptTemplateEntity,
|
|
inputs: dict,
|
|
query: str,
|
|
files: List[FileObj],
|
|
context: Optional[str],
|
|
memory: Optional[TokenBufferMemory],
|
|
model_config: ModelConfigEntity) -> \
|
|
Tuple[List[PromptMessage], Optional[List[str]]]:
|
|
app_mode = AppMode.value_of(app_mode)
|
|
model_mode = ModelMode.value_of(model_config.mode)
|
|
|
|
prompt_rules = self._read_prompt_rules_from_file(self._prompt_file_name(
|
|
app_mode=app_mode,
|
|
provider=model_config.provider,
|
|
model=model_config.model
|
|
))
|
|
|
|
if app_mode == AppMode.CHAT and model_mode == ModelMode.CHAT:
|
|
stops = None
|
|
|
|
prompt_messages = self._get_simple_chat_app_chat_model_prompt_messages(
|
|
prompt_rules=prompt_rules,
|
|
pre_prompt=prompt_template_entity.simple_prompt_template,
|
|
inputs=inputs,
|
|
query=query,
|
|
files=files,
|
|
context=context,
|
|
memory=memory,
|
|
model_config=model_config
|
|
)
|
|
else:
|
|
stops = prompt_rules.get('stops')
|
|
if stops is not None and len(stops) == 0:
|
|
stops = None
|
|
|
|
prompt_messages = self._get_simple_others_prompt_messages(
|
|
prompt_rules=prompt_rules,
|
|
pre_prompt=prompt_template_entity.simple_prompt_template,
|
|
inputs=inputs,
|
|
query=query,
|
|
files=files,
|
|
context=context,
|
|
memory=memory,
|
|
model_config=model_config
|
|
)
|
|
return prompt_messages, stops
|
|
|
|
def get_advanced_prompt(self, app_mode: str,
|
|
prompt_template_entity: PromptTemplateEntity,
|
|
inputs: dict,
|
|
query: str,
|
|
files: List[FileObj],
|
|
context: Optional[str],
|
|
memory: Optional[TokenBufferMemory],
|
|
model_config: ModelConfigEntity) -> List[PromptMessage]:
|
|
app_mode = AppMode.value_of(app_mode)
|
|
model_mode = ModelMode.value_of(model_config.mode)
|
|
|
|
prompt_messages = []
|
|
|
|
if app_mode == AppMode.CHAT:
|
|
if model_mode == ModelMode.COMPLETION:
|
|
prompt_messages = self._get_chat_app_completion_model_prompt_messages(
|
|
prompt_template_entity=prompt_template_entity,
|
|
inputs=inputs,
|
|
query=query,
|
|
files=files,
|
|
context=context,
|
|
memory=memory,
|
|
model_config=model_config
|
|
)
|
|
elif model_mode == ModelMode.CHAT:
|
|
prompt_messages = self._get_chat_app_chat_model_prompt_messages(
|
|
prompt_template_entity=prompt_template_entity,
|
|
inputs=inputs,
|
|
query=query,
|
|
files=files,
|
|
context=context,
|
|
memory=memory,
|
|
model_config=model_config
|
|
)
|
|
elif app_mode == AppMode.COMPLETION:
|
|
if model_mode == ModelMode.CHAT:
|
|
prompt_messages = self._get_completion_app_chat_model_prompt_messages(
|
|
prompt_template_entity=prompt_template_entity,
|
|
inputs=inputs,
|
|
files=files,
|
|
context=context,
|
|
)
|
|
elif model_mode == ModelMode.COMPLETION:
|
|
prompt_messages = self._get_completion_app_completion_model_prompt_messages(
|
|
prompt_template_entity=prompt_template_entity,
|
|
inputs=inputs,
|
|
context=context,
|
|
)
|
|
|
|
return prompt_messages
|
|
|
|
def _get_history_messages_from_memory(self, memory: TokenBufferMemory,
|
|
max_token_limit: int,
|
|
human_prefix: Optional[str] = None,
|
|
ai_prefix: Optional[str] = None) -> str:
|
|
"""Get memory messages."""
|
|
kwargs = {
|
|
"max_token_limit": max_token_limit
|
|
}
|
|
|
|
if human_prefix:
|
|
kwargs['human_prefix'] = human_prefix
|
|
|
|
if ai_prefix:
|
|
kwargs['ai_prefix'] = ai_prefix
|
|
|
|
return memory.get_history_prompt_text(
|
|
**kwargs
|
|
)
|
|
|
|
def _get_history_messages_list_from_memory(self, memory: TokenBufferMemory,
|
|
max_token_limit: int) -> List[PromptMessage]:
|
|
"""Get memory messages."""
|
|
return memory.get_history_prompt_messages(
|
|
max_token_limit=max_token_limit
|
|
)
|
|
|
|
def _prompt_file_name(self, app_mode: AppMode, provider: str, model: str) -> str:
|
|
# baichuan
|
|
if provider == 'baichuan':
|
|
return self._prompt_file_name_for_baichuan(app_mode)
|
|
|
|
baichuan_supported_providers = ["huggingface_hub", "openllm", "xinference"]
|
|
if provider in baichuan_supported_providers and 'baichuan' in model.lower():
|
|
return self._prompt_file_name_for_baichuan(app_mode)
|
|
|
|
# common
|
|
if app_mode == AppMode.COMPLETION:
|
|
return 'common_completion'
|
|
else:
|
|
return 'common_chat'
|
|
|
|
def _prompt_file_name_for_baichuan(self, app_mode: AppMode) -> str:
|
|
if app_mode == AppMode.COMPLETION:
|
|
return 'baichuan_completion'
|
|
else:
|
|
return 'baichuan_chat'
|
|
|
|
def _read_prompt_rules_from_file(self, prompt_name: str) -> dict:
|
|
# Get the absolute path of the subdirectory
|
|
prompt_path = os.path.join(
|
|
os.path.dirname(os.path.realpath(__file__)),
|
|
'generate_prompts')
|
|
|
|
json_file_path = os.path.join(prompt_path, f'{prompt_name}.json')
|
|
# Open the JSON file and read its content
|
|
with open(json_file_path, 'r', encoding='utf-8') as json_file:
|
|
return json.load(json_file)
|
|
|
|
def _get_simple_chat_app_chat_model_prompt_messages(self, prompt_rules: dict,
|
|
pre_prompt: str,
|
|
inputs: dict,
|
|
query: str,
|
|
context: Optional[str],
|
|
files: List[FileObj],
|
|
memory: Optional[TokenBufferMemory],
|
|
model_config: ModelConfigEntity) -> List[PromptMessage]:
|
|
prompt_messages = []
|
|
|
|
context_prompt_content = ''
|
|
if context and 'context_prompt' in prompt_rules:
|
|
prompt_template = PromptTemplateParser(template=prompt_rules['context_prompt'])
|
|
context_prompt_content = prompt_template.format(
|
|
{'context': context}
|
|
)
|
|
|
|
pre_prompt_content = ''
|
|
if pre_prompt:
|
|
prompt_template = PromptTemplateParser(template=pre_prompt)
|
|
prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
|
|
pre_prompt_content = prompt_template.format(
|
|
prompt_inputs
|
|
)
|
|
|
|
prompt = ''
|
|
for order in prompt_rules['system_prompt_orders']:
|
|
if order == 'context_prompt':
|
|
prompt += context_prompt_content
|
|
elif order == 'pre_prompt':
|
|
prompt += pre_prompt_content
|
|
|
|
prompt = re.sub(r'<\|.*?\|>', '', prompt)
|
|
|
|
if prompt:
|
|
prompt_messages.append(SystemPromptMessage(content=prompt))
|
|
|
|
self._append_chat_histories(
|
|
memory=memory,
|
|
prompt_messages=prompt_messages,
|
|
model_config=model_config
|
|
)
|
|
|
|
if files:
|
|
prompt_message_contents = [TextPromptMessageContent(data=query)]
|
|
for file in files:
|
|
prompt_message_contents.append(file.prompt_message_content)
|
|
|
|
prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
|
|
else:
|
|
prompt_messages.append(UserPromptMessage(content=query))
|
|
|
|
return prompt_messages
|
|
|
|
def _get_simple_others_prompt_messages(self, prompt_rules: dict,
|
|
pre_prompt: str,
|
|
inputs: dict,
|
|
query: str,
|
|
context: Optional[str],
|
|
memory: Optional[TokenBufferMemory],
|
|
files: List[FileObj],
|
|
model_config: ModelConfigEntity) -> List[PromptMessage]:
|
|
context_prompt_content = ''
|
|
if context and 'context_prompt' in prompt_rules:
|
|
prompt_template = PromptTemplateParser(template=prompt_rules['context_prompt'])
|
|
context_prompt_content = prompt_template.format(
|
|
{'context': context}
|
|
)
|
|
|
|
pre_prompt_content = ''
|
|
if pre_prompt:
|
|
prompt_template = PromptTemplateParser(template=pre_prompt)
|
|
prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
|
|
pre_prompt_content = prompt_template.format(
|
|
prompt_inputs
|
|
)
|
|
|
|
prompt = ''
|
|
for order in prompt_rules['system_prompt_orders']:
|
|
if order == 'context_prompt':
|
|
prompt += context_prompt_content
|
|
elif order == 'pre_prompt':
|
|
prompt += pre_prompt_content
|
|
|
|
query_prompt = prompt_rules['query_prompt'] if 'query_prompt' in prompt_rules else '{{query}}'
|
|
|
|
if memory and 'histories_prompt' in prompt_rules:
|
|
# append chat histories
|
|
tmp_human_message = UserPromptMessage(
|
|
content=PromptBuilder.parse_prompt(
|
|
prompt=prompt + query_prompt,
|
|
inputs={
|
|
'query': query
|
|
}
|
|
)
|
|
)
|
|
|
|
rest_tokens = self._calculate_rest_token([tmp_human_message], model_config)
|
|
|
|
histories = self._get_history_messages_from_memory(
|
|
memory=memory,
|
|
max_token_limit=rest_tokens,
|
|
ai_prefix=prompt_rules['human_prefix'] if 'human_prefix' in prompt_rules else 'Human',
|
|
human_prefix=prompt_rules['assistant_prefix'] if 'assistant_prefix' in prompt_rules else 'Assistant'
|
|
)
|
|
prompt_template = PromptTemplateParser(template=prompt_rules['histories_prompt'])
|
|
histories_prompt_content = prompt_template.format({'histories': histories})
|
|
|
|
prompt = ''
|
|
for order in prompt_rules['system_prompt_orders']:
|
|
if order == 'context_prompt':
|
|
prompt += context_prompt_content
|
|
elif order == 'pre_prompt':
|
|
prompt += (pre_prompt_content + '\n') if pre_prompt_content else ''
|
|
elif order == 'histories_prompt':
|
|
prompt += histories_prompt_content
|
|
|
|
prompt_template = PromptTemplateParser(template=query_prompt)
|
|
query_prompt_content = prompt_template.format({'query': query})
|
|
|
|
prompt += query_prompt_content
|
|
|
|
prompt = re.sub(r'<\|.*?\|>', '', prompt)
|
|
|
|
model_mode = ModelMode.value_of(model_config.mode)
|
|
|
|
if model_mode == ModelMode.CHAT and files:
|
|
prompt_message_contents = [TextPromptMessageContent(data=prompt)]
|
|
for file in files:
|
|
prompt_message_contents.append(file.prompt_message_content)
|
|
|
|
prompt_message = UserPromptMessage(content=prompt_message_contents)
|
|
else:
|
|
if files:
|
|
prompt_message_contents = [TextPromptMessageContent(data=prompt)]
|
|
for file in files:
|
|
prompt_message_contents.append(file.prompt_message_content)
|
|
|
|
prompt_message = UserPromptMessage(content=prompt_message_contents)
|
|
else:
|
|
prompt_message = UserPromptMessage(content=prompt)
|
|
|
|
return [prompt_message]
|
|
|
|
def _set_context_variable(self, context: str, prompt_template: PromptTemplateParser, prompt_inputs: dict) -> None:
|
|
if '#context#' in prompt_template.variable_keys:
|
|
if context:
|
|
prompt_inputs['#context#'] = context
|
|
else:
|
|
prompt_inputs['#context#'] = ''
|
|
|
|
def _set_query_variable(self, query: str, prompt_template: PromptTemplateParser, prompt_inputs: dict) -> None:
|
|
if '#query#' in prompt_template.variable_keys:
|
|
if query:
|
|
prompt_inputs['#query#'] = query
|
|
else:
|
|
prompt_inputs['#query#'] = ''
|
|
|
|
def _set_histories_variable(self, memory: TokenBufferMemory,
|
|
raw_prompt: str,
|
|
role_prefix: AdvancedCompletionPromptTemplateEntity.RolePrefixEntity,
|
|
prompt_template: PromptTemplateParser,
|
|
prompt_inputs: dict,
|
|
model_config: ModelConfigEntity) -> None:
|
|
if '#histories#' in prompt_template.variable_keys:
|
|
if memory:
|
|
tmp_human_message = UserPromptMessage(
|
|
content=PromptBuilder.parse_prompt(
|
|
prompt=raw_prompt,
|
|
inputs={'#histories#': '', **prompt_inputs}
|
|
)
|
|
)
|
|
|
|
rest_tokens = self._calculate_rest_token([tmp_human_message], model_config)
|
|
|
|
histories = self._get_history_messages_from_memory(
|
|
memory=memory,
|
|
max_token_limit=rest_tokens,
|
|
human_prefix=role_prefix.user,
|
|
ai_prefix=role_prefix.assistant
|
|
)
|
|
prompt_inputs['#histories#'] = histories
|
|
else:
|
|
prompt_inputs['#histories#'] = ''
|
|
|
|
def _append_chat_histories(self, memory: TokenBufferMemory,
|
|
prompt_messages: list[PromptMessage],
|
|
model_config: ModelConfigEntity) -> None:
|
|
if memory:
|
|
rest_tokens = self._calculate_rest_token(prompt_messages, model_config)
|
|
histories = self._get_history_messages_list_from_memory(memory, rest_tokens)
|
|
prompt_messages.extend(histories)
|
|
|
|
def _calculate_rest_token(self, prompt_messages: list[PromptMessage], model_config: ModelConfigEntity) -> int:
|
|
rest_tokens = 2000
|
|
|
|
model_context_tokens = model_config.model_schema.model_properties.get(ModelPropertyKey.CONTEXT_SIZE)
|
|
if model_context_tokens:
|
|
model_type_instance = model_config.provider_model_bundle.model_type_instance
|
|
model_type_instance = cast(LargeLanguageModel, model_type_instance)
|
|
|
|
curr_message_tokens = model_type_instance.get_num_tokens(
|
|
model_config.model,
|
|
model_config.credentials,
|
|
prompt_messages
|
|
)
|
|
|
|
max_tokens = 0
|
|
for parameter_rule in model_config.model_schema.parameter_rules:
|
|
if (parameter_rule.name == 'max_tokens'
|
|
or (parameter_rule.use_template and parameter_rule.use_template == 'max_tokens')):
|
|
max_tokens = (model_config.parameters.get(parameter_rule.name)
|
|
or model_config.parameters.get(parameter_rule.use_template)) or 0
|
|
|
|
rest_tokens = model_context_tokens - max_tokens - curr_message_tokens
|
|
rest_tokens = max(rest_tokens, 0)
|
|
|
|
return rest_tokens
|
|
|
|
def _format_prompt(self, prompt_template: PromptTemplateParser, prompt_inputs: dict) -> str:
|
|
prompt = prompt_template.format(
|
|
prompt_inputs
|
|
)
|
|
|
|
prompt = re.sub(r'<\|.*?\|>', '', prompt)
|
|
return prompt
|
|
|
|
def _get_chat_app_completion_model_prompt_messages(self,
|
|
prompt_template_entity: PromptTemplateEntity,
|
|
inputs: dict,
|
|
query: str,
|
|
files: List[FileObj],
|
|
context: Optional[str],
|
|
memory: Optional[TokenBufferMemory],
|
|
model_config: ModelConfigEntity) -> List[PromptMessage]:
|
|
|
|
raw_prompt = prompt_template_entity.advanced_completion_prompt_template.prompt
|
|
role_prefix = prompt_template_entity.advanced_completion_prompt_template.role_prefix
|
|
|
|
prompt_messages = []
|
|
|
|
prompt_template = PromptTemplateParser(template=raw_prompt)
|
|
prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
|
|
|
|
self._set_context_variable(context, prompt_template, prompt_inputs)
|
|
|
|
self._set_query_variable(query, prompt_template, prompt_inputs)
|
|
|
|
self._set_histories_variable(
|
|
memory=memory,
|
|
raw_prompt=raw_prompt,
|
|
role_prefix=role_prefix,
|
|
prompt_template=prompt_template,
|
|
prompt_inputs=prompt_inputs,
|
|
model_config=model_config
|
|
)
|
|
|
|
prompt = self._format_prompt(prompt_template, prompt_inputs)
|
|
|
|
if files:
|
|
prompt_message_contents = [TextPromptMessageContent(data=prompt)]
|
|
for file in files:
|
|
prompt_message_contents.append(file.prompt_message_content)
|
|
|
|
prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
|
|
else:
|
|
prompt_messages.append(UserPromptMessage(content=prompt))
|
|
|
|
return prompt_messages
|
|
|
|
def _get_chat_app_chat_model_prompt_messages(self,
|
|
prompt_template_entity: PromptTemplateEntity,
|
|
inputs: dict,
|
|
query: str,
|
|
files: List[FileObj],
|
|
context: Optional[str],
|
|
memory: Optional[TokenBufferMemory],
|
|
model_config: ModelConfigEntity) -> List[PromptMessage]:
|
|
raw_prompt_list = prompt_template_entity.advanced_chat_prompt_template.messages
|
|
|
|
prompt_messages = []
|
|
|
|
for prompt_item in raw_prompt_list:
|
|
raw_prompt = prompt_item.text
|
|
|
|
prompt_template = PromptTemplateParser(template=raw_prompt)
|
|
prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
|
|
|
|
self._set_context_variable(context, prompt_template, prompt_inputs)
|
|
|
|
prompt = self._format_prompt(prompt_template, prompt_inputs)
|
|
|
|
if prompt_item.role == PromptMessageRole.USER:
|
|
prompt_messages.append(UserPromptMessage(content=prompt))
|
|
elif prompt_item.role == PromptMessageRole.SYSTEM and prompt:
|
|
prompt_messages.append(SystemPromptMessage(content=prompt))
|
|
elif prompt_item.role == PromptMessageRole.ASSISTANT:
|
|
prompt_messages.append(AssistantPromptMessage(content=prompt))
|
|
|
|
self._append_chat_histories(memory, prompt_messages, model_config)
|
|
|
|
if files:
|
|
prompt_message_contents = [TextPromptMessageContent(data=query)]
|
|
for file in files:
|
|
prompt_message_contents.append(file.prompt_message_content)
|
|
|
|
prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
|
|
else:
|
|
prompt_messages.append(UserPromptMessage(content=query))
|
|
|
|
return prompt_messages
|
|
|
|
def _get_completion_app_completion_model_prompt_messages(self,
|
|
prompt_template_entity: PromptTemplateEntity,
|
|
inputs: dict,
|
|
context: Optional[str]) -> List[PromptMessage]:
|
|
raw_prompt = prompt_template_entity.advanced_completion_prompt_template.prompt
|
|
|
|
prompt_messages = []
|
|
|
|
prompt_template = PromptTemplateParser(template=raw_prompt)
|
|
prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
|
|
|
|
self._set_context_variable(context, prompt_template, prompt_inputs)
|
|
|
|
prompt = self._format_prompt(prompt_template, prompt_inputs)
|
|
|
|
prompt_messages.append(UserPromptMessage(content=prompt))
|
|
|
|
return prompt_messages
|
|
|
|
def _get_completion_app_chat_model_prompt_messages(self,
|
|
prompt_template_entity: PromptTemplateEntity,
|
|
inputs: dict,
|
|
files: List[FileObj],
|
|
context: Optional[str]) -> List[PromptMessage]:
|
|
raw_prompt_list = prompt_template_entity.advanced_chat_prompt_template.messages
|
|
|
|
prompt_messages = []
|
|
|
|
for prompt_item in raw_prompt_list:
|
|
raw_prompt = prompt_item.text
|
|
|
|
prompt_template = PromptTemplateParser(template=raw_prompt)
|
|
prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
|
|
|
|
self._set_context_variable(context, prompt_template, prompt_inputs)
|
|
|
|
prompt = self._format_prompt(prompt_template, prompt_inputs)
|
|
|
|
if prompt_item.role == PromptMessageRole.USER:
|
|
prompt_messages.append(UserPromptMessage(content=prompt))
|
|
elif prompt_item.role == PromptMessageRole.SYSTEM and prompt:
|
|
prompt_messages.append(SystemPromptMessage(content=prompt))
|
|
elif prompt_item.role == PromptMessageRole.ASSISTANT:
|
|
prompt_messages.append(AssistantPromptMessage(content=prompt))
|
|
|
|
for prompt_message in prompt_messages[::-1]:
|
|
if prompt_message.role == PromptMessageRole.USER:
|
|
if files:
|
|
prompt_message_contents = [TextPromptMessageContent(data=prompt_message.content)]
|
|
for file in files:
|
|
prompt_message_contents.append(file.prompt_message_content)
|
|
|
|
prompt_message.content = prompt_message_contents
|
|
break
|
|
|
|
return prompt_messages
|