dify/api
2024-06-17 14:18:49 +08:00
..
.vscode build: initial support for poetry build tool (#4513) 2024-06-11 13:11:28 +08:00
constants feat: Added hindi translation i18n (#5240) 2024-06-15 21:01:03 +08:00
controllers Feat/firecrawl data source (#5232) 2024-06-15 02:46:02 +08:00
core fix: not checked require_summary of duckduckgo search raise error (#5303) 2024-06-17 14:18:49 +08:00
docker
events fix: add event handler to delete the site when the related app deleted (#5282) 2024-06-17 08:47:26 +08:00
extensions add aws s3 iam check (#5174) 2024-06-14 15:19:59 +08:00
fields fix: workspace member's last_active should be last_active_time, but not last_login_time (#4906) 2024-06-14 20:49:19 +08:00
libs Feat/firecrawl data source (#5232) 2024-06-15 02:46:02 +08:00
migrations Feat/firecrawl data source (#5232) 2024-06-15 02:46:02 +08:00
models Feat/firecrawl data source (#5232) 2024-06-15 02:46:02 +08:00
schedule
services Feat/firecrawl data source (#5232) 2024-06-15 02:46:02 +08:00
tasks Feat/firecrawl data source (#5232) 2024-06-15 02:46:02 +08:00
templates
tests Feat/firecrawl data source (#5232) 2024-06-15 02:46:02 +08:00
.dockerignore
.env.example Feat/firecrawl data source (#5232) 2024-06-15 02:46:02 +08:00
app.py
commands.py feat: support tencent vector db (#3568) 2024-06-14 19:25:17 +08:00
config.py version to 0.6.11 (#5224) 2024-06-15 02:46:24 +08:00
Dockerfile
poetry.lock feat: support tencent vector db (#3568) 2024-06-14 19:25:17 +08:00
poetry.toml build: initial support for poetry build tool (#4513) 2024-06-11 13:11:28 +08:00
pyproject.toml fix(core): Reorder field_validator and classmethod to fit Pydantic V2. (#5257) 2024-06-17 10:04:28 +08:00
README.md Update README.md (#5228) 2024-06-14 22:31:01 +08:00
requirements-dev.txt
requirements.txt feat: support tencent vector db (#3568) 2024-06-14 19:25:17 +08:00

Dify Backend API

Usage

  1. Start the docker-compose stack

    The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

    cd ../docker
    docker-compose -f docker-compose.middleware.yaml -p dify up -d
    cd ../api
    
  2. Copy .env.example to .env

  3. Generate a SECRET_KEY in the .env file.

    sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
    
  4. Create environment.

    Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

    Using pip can be found below.

  5. Install dependencies

    poetry install
    

    In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

    poetry shell                                               # activate current environment
    poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
    poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
    
  6. Run migrate

    Before the first launch, migrate the database to the latest version.

    poetry run python -m flask db upgrade
    
  7. Start backend

    poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
    
  8. Start Dify web service.

  9. Setup your application by visiting http://localhost:3000...

  10. If you need to debug local async processing, please start the worker service.

poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail

The started celery app handles the async tasks, e.g. dataset importing and documents indexing.

Testing

  1. Install dependencies for both the backend and the test environment

    poetry install --with dev
    
  2. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml

    cd ../
    poetry run -C api bash dev/pytest/pytest_all_tests.sh
    

Usage with pip

Note

In the next version, we will deprecate pip as the primary package management tool for dify api service, currently Poetry and pip coexist.

  1. Start the docker-compose stack

    The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

    cd ../docker
    docker-compose -f docker-compose.middleware.yaml -p dify up -d
    cd ../api
    
  2. Copy .env.example to .env

  3. Generate a SECRET_KEY in the .env file.

    sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
    
  4. Create environment.

    If you use Anaconda, create a new environment and activate it

    conda create --name dify python=3.10
    conda activate dify
    
  5. Install dependencies

    pip install -r requirements.txt
    
  6. Run migrate

    Before the first launch, migrate the database to the latest version.

    flask db upgrade
    
  7. Start backend:

    flask run --host 0.0.0.0 --port=5001 --debug
    
  8. Setup your application by visiting http://localhost:5001/console/api/setup or other apis...

  9. If you need to debug local async processing, please start the worker service.

celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail

The started celery app handles the async tasks, e.g. dataset importing and documents indexing.

Testing

  1. Install dependencies for both the backend and the test environment

    pip install -r requirements.txt -r requirements-dev.txt
    
  2. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml

    dev/pytest/pytest_all_tests.sh