dify/api/core/rag/retrieval/dataset_retrieval.py

516 lines
22 KiB
Python

import threading
from typing import Optional, cast
from flask import Flask, current_app
from core.app.app_config.entities import DatasetEntity, DatasetRetrieveConfigEntity
from core.app.entities.app_invoke_entities import InvokeFrom, ModelConfigWithCredentialsEntity
from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
from core.entities.agent_entities import PlanningStrategy
from core.memory.token_buffer_memory import TokenBufferMemory
from core.model_manager import ModelInstance, ModelManager
from core.model_runtime.entities.message_entities import PromptMessageTool
from core.model_runtime.entities.model_entities import ModelFeature, ModelType
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
from core.ops.ops_trace_manager import TraceQueueManager, TraceTask, TraceTaskName
from core.ops.utils import measure_time
from core.rag.datasource.retrieval_service import RetrievalService
from core.rag.models.document import Document
from core.rag.rerank.rerank import RerankRunner
from core.rag.retrieval.retrival_methods import RetrievalMethod
from core.rag.retrieval.router.multi_dataset_function_call_router import FunctionCallMultiDatasetRouter
from core.rag.retrieval.router.multi_dataset_react_route import ReactMultiDatasetRouter
from core.tools.tool.dataset_retriever.dataset_multi_retriever_tool import DatasetMultiRetrieverTool
from core.tools.tool.dataset_retriever.dataset_retriever_base_tool import DatasetRetrieverBaseTool
from core.tools.tool.dataset_retriever.dataset_retriever_tool import DatasetRetrieverTool
from extensions.ext_database import db
from models.dataset import Dataset, DatasetQuery, DocumentSegment
from models.dataset import Document as DatasetDocument
default_retrieval_model = {
'search_method': RetrievalMethod.SEMANTIC_SEARCH.value,
'reranking_enable': False,
'reranking_model': {
'reranking_provider_name': '',
'reranking_model_name': ''
},
'top_k': 2,
'score_threshold_enabled': False
}
class DatasetRetrieval:
def __init__(self, application_generate_entity=None):
self.application_generate_entity = application_generate_entity
def retrieve(
self, app_id: str, user_id: str, tenant_id: str,
model_config: ModelConfigWithCredentialsEntity,
config: DatasetEntity,
query: str,
invoke_from: InvokeFrom,
show_retrieve_source: bool,
hit_callback: DatasetIndexToolCallbackHandler,
message_id: str,
memory: Optional[TokenBufferMemory] = None,
) -> Optional[str]:
"""
Retrieve dataset.
:param app_id: app_id
:param user_id: user_id
:param tenant_id: tenant id
:param model_config: model config
:param config: dataset config
:param query: query
:param invoke_from: invoke from
:param show_retrieve_source: show retrieve source
:param hit_callback: hit callback
:param message_id: message id
:param memory: memory
:return:
"""
dataset_ids = config.dataset_ids
if len(dataset_ids) == 0:
return None
retrieve_config = config.retrieve_config
# check model is support tool calling
model_type_instance = model_config.provider_model_bundle.model_type_instance
model_type_instance = cast(LargeLanguageModel, model_type_instance)
model_manager = ModelManager()
model_instance = model_manager.get_model_instance(
tenant_id=tenant_id,
model_type=ModelType.LLM,
provider=model_config.provider,
model=model_config.model
)
# get model schema
model_schema = model_type_instance.get_model_schema(
model=model_config.model,
credentials=model_config.credentials
)
if not model_schema:
return None
planning_strategy = PlanningStrategy.REACT_ROUTER
features = model_schema.features
if features:
if ModelFeature.TOOL_CALL in features \
or ModelFeature.MULTI_TOOL_CALL in features:
planning_strategy = PlanningStrategy.ROUTER
available_datasets = []
for dataset_id in dataset_ids:
# get dataset from dataset id
dataset = db.session.query(Dataset).filter(
Dataset.tenant_id == tenant_id,
Dataset.id == dataset_id
).first()
# pass if dataset is not available
if not dataset:
continue
# pass if dataset is not available
if (dataset and dataset.available_document_count == 0
and dataset.available_document_count == 0):
continue
available_datasets.append(dataset)
all_documents = []
user_from = 'account' if invoke_from in [InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER] else 'end_user'
if retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.SINGLE:
all_documents = self.single_retrieve(
app_id, tenant_id, user_id, user_from, available_datasets, query,
model_instance,
model_config, planning_strategy, message_id
)
elif retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.MULTIPLE:
all_documents = self.multiple_retrieve(
app_id, tenant_id, user_id, user_from,
available_datasets, query, retrieve_config.top_k,
retrieve_config.score_threshold,
retrieve_config.reranking_model.get('reranking_provider_name'),
retrieve_config.reranking_model.get('reranking_model_name'),
message_id,
)
document_score_list = {}
for item in all_documents:
if item.metadata.get('score'):
document_score_list[item.metadata['doc_id']] = item.metadata['score']
document_context_list = []
index_node_ids = [document.metadata['doc_id'] for document in all_documents]
segments = DocumentSegment.query.filter(
DocumentSegment.dataset_id.in_(dataset_ids),
DocumentSegment.completed_at.isnot(None),
DocumentSegment.status == 'completed',
DocumentSegment.enabled == True,
DocumentSegment.index_node_id.in_(index_node_ids)
).all()
if segments:
index_node_id_to_position = {id: position for position, id in enumerate(index_node_ids)}
sorted_segments = sorted(segments,
key=lambda segment: index_node_id_to_position.get(segment.index_node_id,
float('inf')))
for segment in sorted_segments:
if segment.answer:
document_context_list.append(f'question:{segment.get_sign_content()} answer:{segment.answer}')
else:
document_context_list.append(segment.get_sign_content())
if show_retrieve_source:
context_list = []
resource_number = 1
for segment in sorted_segments:
dataset = Dataset.query.filter_by(
id=segment.dataset_id
).first()
document = DatasetDocument.query.filter(DatasetDocument.id == segment.document_id,
DatasetDocument.enabled == True,
DatasetDocument.archived == False,
).first()
if dataset and document:
source = {
'position': resource_number,
'dataset_id': dataset.id,
'dataset_name': dataset.name,
'document_id': document.id,
'document_name': document.name,
'data_source_type': document.data_source_type,
'segment_id': segment.id,
'retriever_from': invoke_from.to_source(),
'score': document_score_list.get(segment.index_node_id, None)
}
if invoke_from.to_source() == 'dev':
source['hit_count'] = segment.hit_count
source['word_count'] = segment.word_count
source['segment_position'] = segment.position
source['index_node_hash'] = segment.index_node_hash
if segment.answer:
source['content'] = f'question:{segment.content} \nanswer:{segment.answer}'
else:
source['content'] = segment.content
context_list.append(source)
resource_number += 1
if hit_callback:
hit_callback.return_retriever_resource_info(context_list)
return str("\n".join(document_context_list))
return ''
def single_retrieve(
self, app_id: str,
tenant_id: str,
user_id: str,
user_from: str,
available_datasets: list,
query: str,
model_instance: ModelInstance,
model_config: ModelConfigWithCredentialsEntity,
planning_strategy: PlanningStrategy,
message_id: Optional[str] = None,
):
tools = []
for dataset in available_datasets:
description = dataset.description
if not description:
description = 'useful for when you want to answer queries about the ' + dataset.name
description = description.replace('\n', '').replace('\r', '')
message_tool = PromptMessageTool(
name=dataset.id,
description=description,
parameters={
"type": "object",
"properties": {},
"required": [],
}
)
tools.append(message_tool)
dataset_id = None
if planning_strategy == PlanningStrategy.REACT_ROUTER:
react_multi_dataset_router = ReactMultiDatasetRouter()
dataset_id = react_multi_dataset_router.invoke(query, tools, model_config, model_instance,
user_id, tenant_id)
elif planning_strategy == PlanningStrategy.ROUTER:
function_call_router = FunctionCallMultiDatasetRouter()
dataset_id = function_call_router.invoke(query, tools, model_config, model_instance)
if dataset_id:
# get retrieval model config
dataset = db.session.query(Dataset).filter(
Dataset.id == dataset_id
).first()
if dataset:
retrieval_model_config = dataset.retrieval_model \
if dataset.retrieval_model else default_retrieval_model
# get top k
top_k = retrieval_model_config['top_k']
# get retrieval method
if dataset.indexing_technique == "economy":
retrival_method = 'keyword_search'
else:
retrival_method = retrieval_model_config['search_method']
# get reranking model
reranking_model = retrieval_model_config['reranking_model'] \
if retrieval_model_config['reranking_enable'] else None
# get score threshold
score_threshold = .0
score_threshold_enabled = retrieval_model_config.get("score_threshold_enabled")
if score_threshold_enabled:
score_threshold = retrieval_model_config.get("score_threshold")
with measure_time() as timer:
results = RetrievalService.retrieve(
retrival_method=retrival_method, dataset_id=dataset.id,
query=query,
top_k=top_k, score_threshold=score_threshold,
reranking_model=reranking_model
)
self._on_query(query, [dataset_id], app_id, user_from, user_id)
if results:
self._on_retrival_end(results, message_id, timer)
return results
return []
def multiple_retrieve(
self,
app_id: str,
tenant_id: str,
user_id: str,
user_from: str,
available_datasets: list,
query: str,
top_k: int,
score_threshold: float,
reranking_provider_name: str,
reranking_model_name: str,
message_id: Optional[str] = None,
):
threads = []
all_documents = []
dataset_ids = [dataset.id for dataset in available_datasets]
for dataset in available_datasets:
retrieval_thread = threading.Thread(target=self._retriever, kwargs={
'flask_app': current_app._get_current_object(),
'dataset_id': dataset.id,
'query': query,
'top_k': top_k,
'all_documents': all_documents,
})
threads.append(retrieval_thread)
retrieval_thread.start()
for thread in threads:
thread.join()
# do rerank for searched documents
model_manager = ModelManager()
rerank_model_instance = model_manager.get_model_instance(
tenant_id=tenant_id,
provider=reranking_provider_name,
model_type=ModelType.RERANK,
model=reranking_model_name
)
rerank_runner = RerankRunner(rerank_model_instance)
with measure_time() as timer:
all_documents = rerank_runner.run(
query, all_documents,
score_threshold,
top_k
)
self._on_query(query, dataset_ids, app_id, user_from, user_id)
if all_documents:
self._on_retrival_end(all_documents, message_id, timer)
return all_documents
def _on_retrival_end(
self, documents: list[Document], message_id: Optional[str] = None, timer: Optional[dict] = None
) -> None:
"""Handle retrival end."""
for document in documents:
query = db.session.query(DocumentSegment).filter(
DocumentSegment.index_node_id == document.metadata['doc_id']
)
# if 'dataset_id' in document.metadata:
if 'dataset_id' in document.metadata:
query = query.filter(DocumentSegment.dataset_id == document.metadata['dataset_id'])
# add hit count to document segment
query.update(
{DocumentSegment.hit_count: DocumentSegment.hit_count + 1},
synchronize_session=False
)
db.session.commit()
# get tracing instance
trace_manager: TraceQueueManager = self.application_generate_entity.trace_manager if self.application_generate_entity else None
if trace_manager:
trace_manager.add_trace_task(
TraceTask(
TraceTaskName.DATASET_RETRIEVAL_TRACE,
message_id=message_id,
documents=documents,
timer=timer
)
)
def _on_query(self, query: str, dataset_ids: list[str], app_id: str, user_from: str, user_id: str) -> None:
"""
Handle query.
"""
if not query:
return
dataset_queries = []
for dataset_id in dataset_ids:
dataset_query = DatasetQuery(
dataset_id=dataset_id,
content=query,
source='app',
source_app_id=app_id,
created_by_role=user_from,
created_by=user_id
)
dataset_queries.append(dataset_query)
if dataset_queries:
db.session.add_all(dataset_queries)
db.session.commit()
def _retriever(self, flask_app: Flask, dataset_id: str, query: str, top_k: int, all_documents: list):
with flask_app.app_context():
dataset = db.session.query(Dataset).filter(
Dataset.id == dataset_id
).first()
if not dataset:
return []
# get retrieval model , if the model is not setting , using default
retrieval_model = dataset.retrieval_model if dataset.retrieval_model else default_retrieval_model
if dataset.indexing_technique == "economy":
# use keyword table query
documents = RetrievalService.retrieve(retrival_method='keyword_search',
dataset_id=dataset.id,
query=query,
top_k=top_k
)
if documents:
all_documents.extend(documents)
else:
if top_k > 0:
# retrieval source
documents = RetrievalService.retrieve(retrival_method=retrieval_model['search_method'],
dataset_id=dataset.id,
query=query,
top_k=top_k,
score_threshold=retrieval_model['score_threshold']
if retrieval_model['score_threshold_enabled'] else None,
reranking_model=retrieval_model['reranking_model']
if retrieval_model['reranking_enable'] else None
)
all_documents.extend(documents)
def to_dataset_retriever_tool(self, tenant_id: str,
dataset_ids: list[str],
retrieve_config: DatasetRetrieveConfigEntity,
return_resource: bool,
invoke_from: InvokeFrom,
hit_callback: DatasetIndexToolCallbackHandler) \
-> Optional[list[DatasetRetrieverBaseTool]]:
"""
A dataset tool is a tool that can be used to retrieve information from a dataset
:param tenant_id: tenant id
:param dataset_ids: dataset ids
:param retrieve_config: retrieve config
:param return_resource: return resource
:param invoke_from: invoke from
:param hit_callback: hit callback
"""
tools = []
available_datasets = []
for dataset_id in dataset_ids:
# get dataset from dataset id
dataset = db.session.query(Dataset).filter(
Dataset.tenant_id == tenant_id,
Dataset.id == dataset_id
).first()
# pass if dataset is not available
if not dataset:
continue
# pass if dataset is not available
if (dataset and dataset.available_document_count == 0
and dataset.available_document_count == 0):
continue
available_datasets.append(dataset)
if retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.SINGLE:
# get retrieval model config
default_retrieval_model = {
'search_method': RetrievalMethod.SEMANTIC_SEARCH.value,
'reranking_enable': False,
'reranking_model': {
'reranking_provider_name': '',
'reranking_model_name': ''
},
'top_k': 2,
'score_threshold_enabled': False
}
for dataset in available_datasets:
retrieval_model_config = dataset.retrieval_model \
if dataset.retrieval_model else default_retrieval_model
# get top k
top_k = retrieval_model_config['top_k']
# get score threshold
score_threshold = None
score_threshold_enabled = retrieval_model_config.get("score_threshold_enabled")
if score_threshold_enabled:
score_threshold = retrieval_model_config.get("score_threshold")
tool = DatasetRetrieverTool.from_dataset(
dataset=dataset,
top_k=top_k,
score_threshold=score_threshold,
hit_callbacks=[hit_callback],
return_resource=return_resource,
retriever_from=invoke_from.to_source()
)
tools.append(tool)
elif retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.MULTIPLE:
tool = DatasetMultiRetrieverTool.from_dataset(
dataset_ids=[dataset.id for dataset in available_datasets],
tenant_id=tenant_id,
top_k=retrieve_config.top_k or 2,
score_threshold=retrieve_config.score_threshold,
hit_callbacks=[hit_callback],
return_resource=return_resource,
retriever_from=invoke_from.to_source(),
reranking_provider_name=retrieve_config.reranking_model.get('reranking_provider_name'),
reranking_model_name=retrieve_config.reranking_model.get('reranking_model_name')
)
tools.append(tool)
return tools