mirror of
https://github.com/langgenius/dify.git
synced 2024-11-16 19:59:50 +08:00
790b885d0a
Co-authored-by: jyong <jyong@dify.ai>
180 lines
7.0 KiB
Python
180 lines
7.0 KiB
Python
from typing import List, Optional, cast
|
|
|
|
from core.agent.agent_executor import AgentConfiguration, AgentExecutor, PlanningStrategy
|
|
from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
|
|
from core.entities.application_entities import DatasetEntity, DatasetRetrieveConfigEntity, InvokeFrom, ModelConfigEntity
|
|
from core.memory.token_buffer_memory import TokenBufferMemory
|
|
from core.model_runtime.entities.model_entities import ModelFeature
|
|
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
|
|
from core.tool.dataset_multi_retriever_tool import DatasetMultiRetrieverTool
|
|
from core.tool.dataset_retriever_tool import DatasetRetrieverTool
|
|
from extensions.ext_database import db
|
|
from langchain.tools import BaseTool
|
|
from models.dataset import Dataset
|
|
|
|
|
|
class DatasetRetrievalFeature:
|
|
def retrieve(self, tenant_id: str,
|
|
model_config: ModelConfigEntity,
|
|
config: DatasetEntity,
|
|
query: str,
|
|
invoke_from: InvokeFrom,
|
|
show_retrieve_source: bool,
|
|
hit_callback: DatasetIndexToolCallbackHandler,
|
|
memory: Optional[TokenBufferMemory] = None) -> Optional[str]:
|
|
"""
|
|
Retrieve dataset.
|
|
:param tenant_id: tenant id
|
|
:param model_config: model config
|
|
:param config: dataset config
|
|
:param query: query
|
|
:param invoke_from: invoke from
|
|
:param show_retrieve_source: show retrieve source
|
|
:param hit_callback: hit callback
|
|
:param memory: memory
|
|
:return:
|
|
"""
|
|
dataset_ids = config.dataset_ids
|
|
retrieve_config = config.retrieve_config
|
|
|
|
# check model is support tool calling
|
|
model_type_instance = model_config.provider_model_bundle.model_type_instance
|
|
model_type_instance = cast(LargeLanguageModel, model_type_instance)
|
|
|
|
# get model schema
|
|
model_schema = model_type_instance.get_model_schema(
|
|
model=model_config.model,
|
|
credentials=model_config.credentials
|
|
)
|
|
|
|
if not model_schema:
|
|
return None
|
|
|
|
planning_strategy = PlanningStrategy.REACT_ROUTER
|
|
features = model_schema.features
|
|
if features:
|
|
if ModelFeature.TOOL_CALL in features \
|
|
or ModelFeature.MULTI_TOOL_CALL in features:
|
|
planning_strategy = PlanningStrategy.ROUTER
|
|
|
|
dataset_retriever_tools = self.to_dataset_retriever_tool(
|
|
tenant_id=tenant_id,
|
|
dataset_ids=dataset_ids,
|
|
retrieve_config=retrieve_config,
|
|
return_resource=show_retrieve_source,
|
|
invoke_from=invoke_from,
|
|
hit_callback=hit_callback
|
|
)
|
|
|
|
if len(dataset_retriever_tools) == 0:
|
|
return None
|
|
|
|
agent_configuration = AgentConfiguration(
|
|
strategy=planning_strategy,
|
|
model_config=model_config,
|
|
tools=dataset_retriever_tools,
|
|
memory=memory,
|
|
max_iterations=10,
|
|
max_execution_time=400.0,
|
|
early_stopping_method="generate"
|
|
)
|
|
|
|
agent_executor = AgentExecutor(agent_configuration)
|
|
|
|
should_use_agent = agent_executor.should_use_agent(query)
|
|
if not should_use_agent:
|
|
return None
|
|
|
|
result = agent_executor.run(query)
|
|
|
|
return result.output
|
|
|
|
def to_dataset_retriever_tool(self, tenant_id: str,
|
|
dataset_ids: list[str],
|
|
retrieve_config: DatasetRetrieveConfigEntity,
|
|
return_resource: bool,
|
|
invoke_from: InvokeFrom,
|
|
hit_callback: DatasetIndexToolCallbackHandler) \
|
|
-> Optional[List[BaseTool]]:
|
|
"""
|
|
A dataset tool is a tool that can be used to retrieve information from a dataset
|
|
:param tenant_id: tenant id
|
|
:param dataset_ids: dataset ids
|
|
:param retrieve_config: retrieve config
|
|
:param return_resource: return resource
|
|
:param invoke_from: invoke from
|
|
:param hit_callback: hit callback
|
|
"""
|
|
tools = []
|
|
available_datasets = []
|
|
for dataset_id in dataset_ids:
|
|
# get dataset from dataset id
|
|
dataset = db.session.query(Dataset).filter(
|
|
Dataset.tenant_id == tenant_id,
|
|
Dataset.id == dataset_id
|
|
).first()
|
|
|
|
# pass if dataset is not available
|
|
if not dataset:
|
|
continue
|
|
|
|
# pass if dataset is not available
|
|
if (dataset and dataset.available_document_count == 0
|
|
and dataset.available_document_count == 0):
|
|
continue
|
|
|
|
available_datasets.append(dataset)
|
|
|
|
if retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.SINGLE:
|
|
# get retrieval model config
|
|
default_retrieval_model = {
|
|
'search_method': 'semantic_search',
|
|
'reranking_enable': False,
|
|
'reranking_model': {
|
|
'reranking_provider_name': '',
|
|
'reranking_model_name': ''
|
|
},
|
|
'top_k': 2,
|
|
'score_threshold_enabled': False
|
|
}
|
|
|
|
for dataset in available_datasets:
|
|
retrieval_model_config = dataset.retrieval_model \
|
|
if dataset.retrieval_model else default_retrieval_model
|
|
|
|
# get top k
|
|
top_k = retrieval_model_config['top_k']
|
|
|
|
# get score threshold
|
|
score_threshold = None
|
|
score_threshold_enabled = retrieval_model_config.get("score_threshold_enabled")
|
|
if score_threshold_enabled:
|
|
score_threshold = retrieval_model_config.get("score_threshold")
|
|
|
|
tool = DatasetRetrieverTool.from_dataset(
|
|
dataset=dataset,
|
|
top_k=top_k,
|
|
score_threshold=score_threshold,
|
|
hit_callbacks=[hit_callback],
|
|
return_resource=return_resource,
|
|
retriever_from=invoke_from.to_source()
|
|
)
|
|
|
|
tools.append(tool)
|
|
elif retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.MULTIPLE:
|
|
tool = DatasetMultiRetrieverTool.from_dataset(
|
|
dataset_ids=[dataset.id for dataset in available_datasets],
|
|
tenant_id=tenant_id,
|
|
top_k=retrieve_config.top_k or 2,
|
|
score_threshold=retrieve_config.score_threshold,
|
|
hit_callbacks=[hit_callback],
|
|
return_resource=return_resource,
|
|
retriever_from=invoke_from.to_source(),
|
|
reranking_provider_name=retrieve_config.reranking_model.get('reranking_provider_name'),
|
|
reranking_model_name=retrieve_config.reranking_model.get('reranking_model_name')
|
|
)
|
|
|
|
tools.append(tool)
|
|
|
|
return tools
|