mirror of
https://github.com/langgenius/dify.git
synced 2024-11-16 19:59:50 +08:00
119 lines
4.6 KiB
Python
119 lines
4.6 KiB
Python
import logging
|
|
from typing import Optional
|
|
|
|
from core.embedding.cached_embedding import CacheEmbedding
|
|
from core.entities.application_entities import InvokeFrom
|
|
from core.index.vector_index.vector_index import VectorIndex
|
|
from core.model_manager import ModelManager
|
|
from core.model_runtime.entities.model_entities import ModelType
|
|
from extensions.ext_database import db
|
|
from flask import current_app
|
|
from models.dataset import Dataset
|
|
from models.model import App, AppAnnotationSetting, Message, MessageAnnotation
|
|
from services.annotation_service import AppAnnotationService
|
|
from services.dataset_service import DatasetCollectionBindingService
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class AnnotationReplyFeature:
|
|
def query(self, app_record: App,
|
|
message: Message,
|
|
query: str,
|
|
user_id: str,
|
|
invoke_from: InvokeFrom) -> Optional[MessageAnnotation]:
|
|
"""
|
|
Query app annotations to reply
|
|
:param app_record: app record
|
|
:param message: message
|
|
:param query: query
|
|
:param user_id: user id
|
|
:param invoke_from: invoke from
|
|
:return:
|
|
"""
|
|
annotation_setting = db.session.query(AppAnnotationSetting).filter(
|
|
AppAnnotationSetting.app_id == app_record.id).first()
|
|
|
|
if not annotation_setting:
|
|
return None
|
|
|
|
collection_binding_detail = annotation_setting.collection_binding_detail
|
|
|
|
try:
|
|
score_threshold = annotation_setting.score_threshold or 1
|
|
embedding_provider_name = collection_binding_detail.provider_name
|
|
embedding_model_name = collection_binding_detail.model_name
|
|
|
|
model_manager = ModelManager()
|
|
model_instance = model_manager.get_model_instance(
|
|
tenant_id=app_record.tenant_id,
|
|
provider=embedding_provider_name,
|
|
model_type=ModelType.TEXT_EMBEDDING,
|
|
model=embedding_model_name
|
|
)
|
|
|
|
# get embedding model
|
|
embeddings = CacheEmbedding(model_instance)
|
|
|
|
dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
|
|
embedding_provider_name,
|
|
embedding_model_name,
|
|
'annotation'
|
|
)
|
|
|
|
dataset = Dataset(
|
|
id=app_record.id,
|
|
tenant_id=app_record.tenant_id,
|
|
indexing_technique='high_quality',
|
|
embedding_model_provider=embedding_provider_name,
|
|
embedding_model=embedding_model_name,
|
|
collection_binding_id=dataset_collection_binding.id
|
|
)
|
|
|
|
vector_index = VectorIndex(
|
|
dataset=dataset,
|
|
config=current_app.config,
|
|
embeddings=embeddings,
|
|
attributes=['doc_id', 'annotation_id', 'app_id']
|
|
)
|
|
|
|
documents = vector_index.search(
|
|
query=query,
|
|
search_type='similarity_score_threshold',
|
|
search_kwargs={
|
|
'k': 1,
|
|
'score_threshold': score_threshold,
|
|
'filter': {
|
|
'group_id': [dataset.id]
|
|
}
|
|
}
|
|
)
|
|
|
|
if documents:
|
|
annotation_id = documents[0].metadata['annotation_id']
|
|
score = documents[0].metadata['score']
|
|
annotation = AppAnnotationService.get_annotation_by_id(annotation_id)
|
|
if annotation:
|
|
if invoke_from in [InvokeFrom.SERVICE_API, InvokeFrom.WEB_APP]:
|
|
from_source = 'api'
|
|
else:
|
|
from_source = 'console'
|
|
|
|
# insert annotation history
|
|
AppAnnotationService.add_annotation_history(annotation.id,
|
|
app_record.id,
|
|
annotation.question,
|
|
annotation.content,
|
|
query,
|
|
user_id,
|
|
message.id,
|
|
from_source,
|
|
score)
|
|
|
|
return annotation
|
|
except Exception as e:
|
|
logger.warning(f'Query annotation failed, exception: {str(e)}.')
|
|
return None
|
|
|
|
return None
|