dify/api/core/features/annotation_reply.py

119 lines
4.6 KiB
Python

import logging
from typing import Optional
from core.embedding.cached_embedding import CacheEmbedding
from core.entities.application_entities import InvokeFrom
from core.index.vector_index.vector_index import VectorIndex
from core.model_manager import ModelManager
from core.model_runtime.entities.model_entities import ModelType
from extensions.ext_database import db
from flask import current_app
from models.dataset import Dataset
from models.model import App, AppAnnotationSetting, Message, MessageAnnotation
from services.annotation_service import AppAnnotationService
from services.dataset_service import DatasetCollectionBindingService
logger = logging.getLogger(__name__)
class AnnotationReplyFeature:
def query(self, app_record: App,
message: Message,
query: str,
user_id: str,
invoke_from: InvokeFrom) -> Optional[MessageAnnotation]:
"""
Query app annotations to reply
:param app_record: app record
:param message: message
:param query: query
:param user_id: user id
:param invoke_from: invoke from
:return:
"""
annotation_setting = db.session.query(AppAnnotationSetting).filter(
AppAnnotationSetting.app_id == app_record.id).first()
if not annotation_setting:
return None
collection_binding_detail = annotation_setting.collection_binding_detail
try:
score_threshold = annotation_setting.score_threshold or 1
embedding_provider_name = collection_binding_detail.provider_name
embedding_model_name = collection_binding_detail.model_name
model_manager = ModelManager()
model_instance = model_manager.get_model_instance(
tenant_id=app_record.tenant_id,
provider=embedding_provider_name,
model_type=ModelType.TEXT_EMBEDDING,
model=embedding_model_name
)
# get embedding model
embeddings = CacheEmbedding(model_instance)
dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
embedding_provider_name,
embedding_model_name,
'annotation'
)
dataset = Dataset(
id=app_record.id,
tenant_id=app_record.tenant_id,
indexing_technique='high_quality',
embedding_model_provider=embedding_provider_name,
embedding_model=embedding_model_name,
collection_binding_id=dataset_collection_binding.id
)
vector_index = VectorIndex(
dataset=dataset,
config=current_app.config,
embeddings=embeddings,
attributes=['doc_id', 'annotation_id', 'app_id']
)
documents = vector_index.search(
query=query,
search_type='similarity_score_threshold',
search_kwargs={
'k': 1,
'score_threshold': score_threshold,
'filter': {
'group_id': [dataset.id]
}
}
)
if documents:
annotation_id = documents[0].metadata['annotation_id']
score = documents[0].metadata['score']
annotation = AppAnnotationService.get_annotation_by_id(annotation_id)
if annotation:
if invoke_from in [InvokeFrom.SERVICE_API, InvokeFrom.WEB_APP]:
from_source = 'api'
else:
from_source = 'console'
# insert annotation history
AppAnnotationService.add_annotation_history(annotation.id,
app_record.id,
annotation.question,
annotation.content,
query,
user_id,
message.id,
from_source,
score)
return annotation
except Exception as e:
logger.warning(f'Query annotation failed, exception: {str(e)}.')
return None
return None