mirror of
https://github.com/langgenius/dify.git
synced 2024-11-16 19:59:50 +08:00
41 lines
1.5 KiB
Python
41 lines
1.5 KiB
Python
from flask import current_app
|
|
from langchain.embeddings import OpenAIEmbeddings
|
|
|
|
from core.embedding.cached_embedding import CacheEmbedding
|
|
from core.index.keyword_table_index.keyword_table_index import KeywordTableIndex, KeywordTableConfig
|
|
from core.index.vector_index.vector_index import VectorIndex
|
|
from core.llm.llm_builder import LLMBuilder
|
|
from models.dataset import Dataset
|
|
|
|
|
|
class IndexBuilder:
|
|
@classmethod
|
|
def get_index(cls, dataset: Dataset, indexing_technique: str, ignore_high_quality_check: bool = False):
|
|
if indexing_technique == "high_quality":
|
|
if not ignore_high_quality_check and dataset.indexing_technique != 'high_quality':
|
|
return None
|
|
|
|
model_credentials = LLMBuilder.get_model_credentials(
|
|
tenant_id=dataset.tenant_id,
|
|
model_provider=LLMBuilder.get_default_provider(dataset.tenant_id, 'text-embedding-ada-002'),
|
|
model_name='text-embedding-ada-002'
|
|
)
|
|
|
|
embeddings = CacheEmbedding(OpenAIEmbeddings(
|
|
**model_credentials
|
|
))
|
|
|
|
return VectorIndex(
|
|
dataset=dataset,
|
|
config=current_app.config,
|
|
embeddings=embeddings
|
|
)
|
|
elif indexing_technique == "economy":
|
|
return KeywordTableIndex(
|
|
dataset=dataset,
|
|
config=KeywordTableConfig(
|
|
max_keywords_per_chunk=10
|
|
)
|
|
)
|
|
else:
|
|
raise ValueError('Unknown indexing technique') |