dify/api
2023-06-07 00:45:25 +08:00
..
constants Initial commit 2023-05-15 08:51:32 +08:00
controllers fix: segment search by keyword (#303) 2023-06-07 00:45:25 +08:00
core fix markdown parser (#230) 2023-06-06 19:51:40 +08:00
docker Initial commit 2023-05-15 08:51:32 +08:00
events Initial commit 2023-05-15 08:51:32 +08:00
extensions feat: add redis ssl support (#65) 2023-05-17 15:40:21 +08:00
libs feat: fix json end with `` (#285) 2023-06-02 17:34:24 +08:00
migrations feat: explore support multi language (#202) 2023-05-25 18:53:28 +08:00
models feat: new stats (#265) 2023-05-31 11:20:24 +08:00
services Feat: Support re-segmentation (#114) 2023-06-01 23:19:36 +08:00
tasks delete segment not commit (#309) 2023-06-06 23:16:51 +08:00
tests Initial commit 2023-05-15 08:51:32 +08:00
.dockerignore Initial commit 2023-05-15 08:51:32 +08:00
.env.example fix: bootstrap env (#127) 2023-05-23 10:48:03 +08:00
app.py Initial commit 2023-05-15 08:51:32 +08:00
commands.py feat: explore support multi language (#202) 2023-05-25 18:53:28 +08:00
config.py feat: bump to 0.3.1 (#253) 2023-05-30 11:31:22 +08:00
Dockerfile Initial commit 2023-05-15 08:51:32 +08:00
README.md feat: add celery document (#118) 2023-05-20 21:26:07 +08:00
requirements.txt Initial commit 2023-05-15 08:51:32 +08:00

Dify Backend API

Usage

  1. Start the docker-compose stack

    The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

    cd ../docker
    docker-compose -f docker-compose.middleware.yaml up -d
    cd ../api
    
  2. Copy .env.example to .env

  3. Generate a SECRET_KEY in the .env file.

    openssl rand -base64 42
    
  4. Install dependencies

    pip install -r requirements.txt
    
  5. Run migrate

    Before the first launch, migrate the database to the latest version.

    flask db upgrade
    
  6. Start backend:

    flask run --host 0.0.0.0 --port=5001 --debug
    
  7. Setup your application by visiting http://localhost:5001/console/api/setup or other apis...

  8. If you need to debug local async processing, you can run celery -A app.celery worker, celery can do dataset importing and other async tasks.