mirror of
https://github.com/langgenius/dify.git
synced 2024-11-16 03:32:23 +08:00
537 lines
20 KiB
Python
537 lines
20 KiB
Python
import logging
|
|
import os
|
|
from collections.abc import Callable, Generator, Sequence
|
|
from typing import IO, Optional, Union, cast
|
|
|
|
from core.entities.embedding_type import EmbeddingInputType
|
|
from core.entities.provider_configuration import ProviderConfiguration, ProviderModelBundle
|
|
from core.entities.provider_entities import ModelLoadBalancingConfiguration
|
|
from core.errors.error import ProviderTokenNotInitError
|
|
from core.model_runtime.callbacks.base_callback import Callback
|
|
from core.model_runtime.entities.llm_entities import LLMResult
|
|
from core.model_runtime.entities.message_entities import PromptMessage, PromptMessageTool
|
|
from core.model_runtime.entities.model_entities import ModelType
|
|
from core.model_runtime.entities.rerank_entities import RerankResult
|
|
from core.model_runtime.entities.text_embedding_entities import TextEmbeddingResult
|
|
from core.model_runtime.errors.invoke import InvokeAuthorizationError, InvokeConnectionError, InvokeRateLimitError
|
|
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
|
|
from core.model_runtime.model_providers.__base.moderation_model import ModerationModel
|
|
from core.model_runtime.model_providers.__base.rerank_model import RerankModel
|
|
from core.model_runtime.model_providers.__base.speech2text_model import Speech2TextModel
|
|
from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
|
|
from core.model_runtime.model_providers.__base.tts_model import TTSModel
|
|
from core.provider_manager import ProviderManager
|
|
from extensions.ext_redis import redis_client
|
|
from models.provider import ProviderType
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class ModelInstance:
|
|
"""
|
|
Model instance class
|
|
"""
|
|
|
|
def __init__(self, provider_model_bundle: ProviderModelBundle, model: str) -> None:
|
|
self.provider_model_bundle = provider_model_bundle
|
|
self.model = model
|
|
self.provider = provider_model_bundle.configuration.provider.provider
|
|
self.credentials = self._fetch_credentials_from_bundle(provider_model_bundle, model)
|
|
self.model_type_instance = self.provider_model_bundle.model_type_instance
|
|
self.load_balancing_manager = self._get_load_balancing_manager(
|
|
configuration=provider_model_bundle.configuration,
|
|
model_type=provider_model_bundle.model_type_instance.model_type,
|
|
model=model,
|
|
credentials=self.credentials,
|
|
)
|
|
|
|
@staticmethod
|
|
def _fetch_credentials_from_bundle(provider_model_bundle: ProviderModelBundle, model: str) -> dict:
|
|
"""
|
|
Fetch credentials from provider model bundle
|
|
:param provider_model_bundle: provider model bundle
|
|
:param model: model name
|
|
:return:
|
|
"""
|
|
configuration = provider_model_bundle.configuration
|
|
model_type = provider_model_bundle.model_type_instance.model_type
|
|
credentials = configuration.get_current_credentials(model_type=model_type, model=model)
|
|
|
|
if credentials is None:
|
|
raise ProviderTokenNotInitError(f"Model {model} credentials is not initialized.")
|
|
|
|
return credentials
|
|
|
|
@staticmethod
|
|
def _get_load_balancing_manager(
|
|
configuration: ProviderConfiguration, model_type: ModelType, model: str, credentials: dict
|
|
) -> Optional["LBModelManager"]:
|
|
"""
|
|
Get load balancing model credentials
|
|
:param configuration: provider configuration
|
|
:param model_type: model type
|
|
:param model: model name
|
|
:param credentials: model credentials
|
|
:return:
|
|
"""
|
|
if configuration.model_settings and configuration.using_provider_type == ProviderType.CUSTOM:
|
|
current_model_setting = None
|
|
# check if model is disabled by admin
|
|
for model_setting in configuration.model_settings:
|
|
if model_setting.model_type == model_type and model_setting.model == model:
|
|
current_model_setting = model_setting
|
|
break
|
|
|
|
# check if load balancing is enabled
|
|
if current_model_setting and current_model_setting.load_balancing_configs:
|
|
# use load balancing proxy to choose credentials
|
|
lb_model_manager = LBModelManager(
|
|
tenant_id=configuration.tenant_id,
|
|
provider=configuration.provider.provider,
|
|
model_type=model_type,
|
|
model=model,
|
|
load_balancing_configs=current_model_setting.load_balancing_configs,
|
|
managed_credentials=credentials if configuration.custom_configuration.provider else None,
|
|
)
|
|
|
|
return lb_model_manager
|
|
|
|
return None
|
|
|
|
def invoke_llm(
|
|
self,
|
|
prompt_messages: list[PromptMessage],
|
|
model_parameters: Optional[dict] = None,
|
|
tools: Sequence[PromptMessageTool] | None = None,
|
|
stop: Optional[list[str]] = None,
|
|
stream: bool = True,
|
|
user: Optional[str] = None,
|
|
callbacks: Optional[list[Callback]] = None,
|
|
) -> Union[LLMResult, Generator]:
|
|
"""
|
|
Invoke large language model
|
|
|
|
:param prompt_messages: prompt messages
|
|
:param model_parameters: model parameters
|
|
:param tools: tools for tool calling
|
|
:param stop: stop words
|
|
:param stream: is stream response
|
|
:param user: unique user id
|
|
:param callbacks: callbacks
|
|
:return: full response or stream response chunk generator result
|
|
"""
|
|
if not isinstance(self.model_type_instance, LargeLanguageModel):
|
|
raise Exception("Model type instance is not LargeLanguageModel")
|
|
|
|
self.model_type_instance = cast(LargeLanguageModel, self.model_type_instance)
|
|
return self._round_robin_invoke(
|
|
function=self.model_type_instance.invoke,
|
|
model=self.model,
|
|
credentials=self.credentials,
|
|
prompt_messages=prompt_messages,
|
|
model_parameters=model_parameters,
|
|
tools=tools,
|
|
stop=stop,
|
|
stream=stream,
|
|
user=user,
|
|
callbacks=callbacks,
|
|
)
|
|
|
|
def get_llm_num_tokens(
|
|
self, prompt_messages: list[PromptMessage], tools: Optional[list[PromptMessageTool]] = None
|
|
) -> int:
|
|
"""
|
|
Get number of tokens for llm
|
|
|
|
:param prompt_messages: prompt messages
|
|
:param tools: tools for tool calling
|
|
:return:
|
|
"""
|
|
if not isinstance(self.model_type_instance, LargeLanguageModel):
|
|
raise Exception("Model type instance is not LargeLanguageModel")
|
|
|
|
self.model_type_instance = cast(LargeLanguageModel, self.model_type_instance)
|
|
return self._round_robin_invoke(
|
|
function=self.model_type_instance.get_num_tokens,
|
|
model=self.model,
|
|
credentials=self.credentials,
|
|
prompt_messages=prompt_messages,
|
|
tools=tools,
|
|
)
|
|
|
|
def invoke_text_embedding(
|
|
self, texts: list[str], user: Optional[str] = None, input_type: EmbeddingInputType = EmbeddingInputType.DOCUMENT
|
|
) -> TextEmbeddingResult:
|
|
"""
|
|
Invoke large language model
|
|
|
|
:param texts: texts to embed
|
|
:param user: unique user id
|
|
:param input_type: input type
|
|
:return: embeddings result
|
|
"""
|
|
if not isinstance(self.model_type_instance, TextEmbeddingModel):
|
|
raise Exception("Model type instance is not TextEmbeddingModel")
|
|
|
|
self.model_type_instance = cast(TextEmbeddingModel, self.model_type_instance)
|
|
return self._round_robin_invoke(
|
|
function=self.model_type_instance.invoke,
|
|
model=self.model,
|
|
credentials=self.credentials,
|
|
texts=texts,
|
|
user=user,
|
|
input_type=input_type,
|
|
)
|
|
|
|
def get_text_embedding_num_tokens(self, texts: list[str]) -> int:
|
|
"""
|
|
Get number of tokens for text embedding
|
|
|
|
:param texts: texts to embed
|
|
:return:
|
|
"""
|
|
if not isinstance(self.model_type_instance, TextEmbeddingModel):
|
|
raise Exception("Model type instance is not TextEmbeddingModel")
|
|
|
|
self.model_type_instance = cast(TextEmbeddingModel, self.model_type_instance)
|
|
return self._round_robin_invoke(
|
|
function=self.model_type_instance.get_num_tokens,
|
|
model=self.model,
|
|
credentials=self.credentials,
|
|
texts=texts,
|
|
)
|
|
|
|
def invoke_rerank(
|
|
self,
|
|
query: str,
|
|
docs: list[str],
|
|
score_threshold: Optional[float] = None,
|
|
top_n: Optional[int] = None,
|
|
user: Optional[str] = None,
|
|
) -> RerankResult:
|
|
"""
|
|
Invoke rerank model
|
|
|
|
:param query: search query
|
|
:param docs: docs for reranking
|
|
:param score_threshold: score threshold
|
|
:param top_n: top n
|
|
:param user: unique user id
|
|
:return: rerank result
|
|
"""
|
|
if not isinstance(self.model_type_instance, RerankModel):
|
|
raise Exception("Model type instance is not RerankModel")
|
|
|
|
self.model_type_instance = cast(RerankModel, self.model_type_instance)
|
|
return self._round_robin_invoke(
|
|
function=self.model_type_instance.invoke,
|
|
model=self.model,
|
|
credentials=self.credentials,
|
|
query=query,
|
|
docs=docs,
|
|
score_threshold=score_threshold,
|
|
top_n=top_n,
|
|
user=user,
|
|
)
|
|
|
|
def invoke_moderation(self, text: str, user: Optional[str] = None) -> bool:
|
|
"""
|
|
Invoke moderation model
|
|
|
|
:param text: text to moderate
|
|
:param user: unique user id
|
|
:return: false if text is safe, true otherwise
|
|
"""
|
|
if not isinstance(self.model_type_instance, ModerationModel):
|
|
raise Exception("Model type instance is not ModerationModel")
|
|
|
|
self.model_type_instance = cast(ModerationModel, self.model_type_instance)
|
|
return self._round_robin_invoke(
|
|
function=self.model_type_instance.invoke,
|
|
model=self.model,
|
|
credentials=self.credentials,
|
|
text=text,
|
|
user=user,
|
|
)
|
|
|
|
def invoke_speech2text(self, file: IO[bytes], user: Optional[str] = None) -> str:
|
|
"""
|
|
Invoke large language model
|
|
|
|
:param file: audio file
|
|
:param user: unique user id
|
|
:return: text for given audio file
|
|
"""
|
|
if not isinstance(self.model_type_instance, Speech2TextModel):
|
|
raise Exception("Model type instance is not Speech2TextModel")
|
|
|
|
self.model_type_instance = cast(Speech2TextModel, self.model_type_instance)
|
|
return self._round_robin_invoke(
|
|
function=self.model_type_instance.invoke,
|
|
model=self.model,
|
|
credentials=self.credentials,
|
|
file=file,
|
|
user=user,
|
|
)
|
|
|
|
def invoke_tts(self, content_text: str, tenant_id: str, voice: str, user: Optional[str] = None) -> str:
|
|
"""
|
|
Invoke large language tts model
|
|
|
|
:param content_text: text content to be translated
|
|
:param tenant_id: user tenant id
|
|
:param voice: model timbre
|
|
:param user: unique user id
|
|
:return: text for given audio file
|
|
"""
|
|
if not isinstance(self.model_type_instance, TTSModel):
|
|
raise Exception("Model type instance is not TTSModel")
|
|
|
|
self.model_type_instance = cast(TTSModel, self.model_type_instance)
|
|
return self._round_robin_invoke(
|
|
function=self.model_type_instance.invoke,
|
|
model=self.model,
|
|
credentials=self.credentials,
|
|
content_text=content_text,
|
|
user=user,
|
|
tenant_id=tenant_id,
|
|
voice=voice,
|
|
)
|
|
|
|
def _round_robin_invoke(self, function: Callable, *args, **kwargs):
|
|
"""
|
|
Round-robin invoke
|
|
:param function: function to invoke
|
|
:param args: function args
|
|
:param kwargs: function kwargs
|
|
:return:
|
|
"""
|
|
if not self.load_balancing_manager:
|
|
return function(*args, **kwargs)
|
|
|
|
last_exception = None
|
|
while True:
|
|
lb_config = self.load_balancing_manager.fetch_next()
|
|
if not lb_config:
|
|
if not last_exception:
|
|
raise ProviderTokenNotInitError("Model credentials is not initialized.")
|
|
else:
|
|
raise last_exception
|
|
|
|
try:
|
|
if "credentials" in kwargs:
|
|
del kwargs["credentials"]
|
|
return function(*args, **kwargs, credentials=lb_config.credentials)
|
|
except InvokeRateLimitError as e:
|
|
# expire in 60 seconds
|
|
self.load_balancing_manager.cooldown(lb_config, expire=60)
|
|
last_exception = e
|
|
continue
|
|
except (InvokeAuthorizationError, InvokeConnectionError) as e:
|
|
# expire in 10 seconds
|
|
self.load_balancing_manager.cooldown(lb_config, expire=10)
|
|
last_exception = e
|
|
continue
|
|
except Exception as e:
|
|
raise e
|
|
|
|
def get_tts_voices(self, language: Optional[str] = None) -> list:
|
|
"""
|
|
Invoke large language tts model voices
|
|
|
|
:param language: tts language
|
|
:return: tts model voices
|
|
"""
|
|
if not isinstance(self.model_type_instance, TTSModel):
|
|
raise Exception("Model type instance is not TTSModel")
|
|
|
|
self.model_type_instance = cast(TTSModel, self.model_type_instance)
|
|
return self.model_type_instance.get_tts_model_voices(
|
|
model=self.model, credentials=self.credentials, language=language
|
|
)
|
|
|
|
|
|
class ModelManager:
|
|
def __init__(self) -> None:
|
|
self._provider_manager = ProviderManager()
|
|
|
|
def get_model_instance(self, tenant_id: str, provider: str, model_type: ModelType, model: str) -> ModelInstance:
|
|
"""
|
|
Get model instance
|
|
:param tenant_id: tenant id
|
|
:param provider: provider name
|
|
:param model_type: model type
|
|
:param model: model name
|
|
:return:
|
|
"""
|
|
if not provider:
|
|
return self.get_default_model_instance(tenant_id, model_type)
|
|
|
|
provider_model_bundle = self._provider_manager.get_provider_model_bundle(
|
|
tenant_id=tenant_id, provider=provider, model_type=model_type
|
|
)
|
|
|
|
return ModelInstance(provider_model_bundle, model)
|
|
|
|
def get_default_provider_model_name(self, tenant_id: str, model_type: ModelType) -> tuple[str, str]:
|
|
"""
|
|
Return first provider and the first model in the provider
|
|
:param tenant_id: tenant id
|
|
:param model_type: model type
|
|
:return: provider name, model name
|
|
"""
|
|
return self._provider_manager.get_first_provider_first_model(tenant_id, model_type)
|
|
|
|
def get_default_model_instance(self, tenant_id: str, model_type: ModelType) -> ModelInstance:
|
|
"""
|
|
Get default model instance
|
|
:param tenant_id: tenant id
|
|
:param model_type: model type
|
|
:return:
|
|
"""
|
|
default_model_entity = self._provider_manager.get_default_model(tenant_id=tenant_id, model_type=model_type)
|
|
|
|
if not default_model_entity:
|
|
raise ProviderTokenNotInitError(f"Default model not found for {model_type}")
|
|
|
|
return self.get_model_instance(
|
|
tenant_id=tenant_id,
|
|
provider=default_model_entity.provider.provider,
|
|
model_type=model_type,
|
|
model=default_model_entity.model,
|
|
)
|
|
|
|
|
|
class LBModelManager:
|
|
def __init__(
|
|
self,
|
|
tenant_id: str,
|
|
provider: str,
|
|
model_type: ModelType,
|
|
model: str,
|
|
load_balancing_configs: list[ModelLoadBalancingConfiguration],
|
|
managed_credentials: Optional[dict] = None,
|
|
) -> None:
|
|
"""
|
|
Load balancing model manager
|
|
:param tenant_id: tenant_id
|
|
:param provider: provider
|
|
:param model_type: model_type
|
|
:param model: model name
|
|
:param load_balancing_configs: all load balancing configurations
|
|
:param managed_credentials: credentials if load balancing configuration name is __inherit__
|
|
"""
|
|
self._tenant_id = tenant_id
|
|
self._provider = provider
|
|
self._model_type = model_type
|
|
self._model = model
|
|
self._load_balancing_configs = load_balancing_configs
|
|
|
|
for load_balancing_config in self._load_balancing_configs[:]: # Iterate over a shallow copy of the list
|
|
if load_balancing_config.name == "__inherit__":
|
|
if not managed_credentials:
|
|
# remove __inherit__ if managed credentials is not provided
|
|
self._load_balancing_configs.remove(load_balancing_config)
|
|
else:
|
|
load_balancing_config.credentials = managed_credentials
|
|
|
|
def fetch_next(self) -> Optional[ModelLoadBalancingConfiguration]:
|
|
"""
|
|
Get next model load balancing config
|
|
Strategy: Round Robin
|
|
:return:
|
|
"""
|
|
cache_key = "model_lb_index:{}:{}:{}:{}".format(
|
|
self._tenant_id, self._provider, self._model_type.value, self._model
|
|
)
|
|
|
|
cooldown_load_balancing_configs = []
|
|
max_index = len(self._load_balancing_configs)
|
|
|
|
while True:
|
|
current_index = redis_client.incr(cache_key)
|
|
current_index = cast(int, current_index)
|
|
if current_index >= 10000000:
|
|
current_index = 1
|
|
redis_client.set(cache_key, current_index)
|
|
|
|
redis_client.expire(cache_key, 3600)
|
|
if current_index > max_index:
|
|
current_index = current_index % max_index
|
|
|
|
real_index = current_index - 1
|
|
if real_index > max_index:
|
|
real_index = 0
|
|
|
|
config = self._load_balancing_configs[real_index]
|
|
|
|
if self.in_cooldown(config):
|
|
cooldown_load_balancing_configs.append(config)
|
|
if len(cooldown_load_balancing_configs) >= len(self._load_balancing_configs):
|
|
# all configs are in cooldown
|
|
return None
|
|
|
|
continue
|
|
|
|
if bool(os.environ.get("DEBUG", "False").lower() == "true"):
|
|
logger.info(
|
|
f"Model LB\nid: {config.id}\nname:{config.name}\n"
|
|
f"tenant_id: {self._tenant_id}\nprovider: {self._provider}\n"
|
|
f"model_type: {self._model_type.value}\nmodel: {self._model}"
|
|
)
|
|
|
|
return config
|
|
|
|
return None
|
|
|
|
def cooldown(self, config: ModelLoadBalancingConfiguration, expire: int = 60) -> None:
|
|
"""
|
|
Cooldown model load balancing config
|
|
:param config: model load balancing config
|
|
:param expire: cooldown time
|
|
:return:
|
|
"""
|
|
cooldown_cache_key = "model_lb_index:cooldown:{}:{}:{}:{}:{}".format(
|
|
self._tenant_id, self._provider, self._model_type.value, self._model, config.id
|
|
)
|
|
|
|
redis_client.setex(cooldown_cache_key, expire, "true")
|
|
|
|
def in_cooldown(self, config: ModelLoadBalancingConfiguration) -> bool:
|
|
"""
|
|
Check if model load balancing config is in cooldown
|
|
:param config: model load balancing config
|
|
:return:
|
|
"""
|
|
cooldown_cache_key = "model_lb_index:cooldown:{}:{}:{}:{}:{}".format(
|
|
self._tenant_id, self._provider, self._model_type.value, self._model, config.id
|
|
)
|
|
|
|
res = redis_client.exists(cooldown_cache_key)
|
|
res = cast(bool, res)
|
|
return res
|
|
|
|
@staticmethod
|
|
def get_config_in_cooldown_and_ttl(
|
|
tenant_id: str, provider: str, model_type: ModelType, model: str, config_id: str
|
|
) -> tuple[bool, int]:
|
|
"""
|
|
Get model load balancing config is in cooldown and ttl
|
|
:param tenant_id: workspace id
|
|
:param provider: provider name
|
|
:param model_type: model type
|
|
:param model: model name
|
|
:param config_id: model load balancing config id
|
|
:return:
|
|
"""
|
|
cooldown_cache_key = "model_lb_index:cooldown:{}:{}:{}:{}:{}".format(
|
|
tenant_id, provider, model_type.value, model, config_id
|
|
)
|
|
|
|
ttl = redis_client.ttl(cooldown_cache_key)
|
|
if ttl == -2:
|
|
return False, 0
|
|
|
|
ttl = cast(int, ttl)
|
|
return True, ttl
|