import datetime import json import logging import random import time import uuid from typing import List, Optional, cast from core.errors.error import LLMBadRequestError, ProviderTokenNotInitError from core.index.index import IndexBuilder from core.model_manager import ModelManager from core.model_runtime.entities.model_entities import ModelType from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel from events.dataset_event import dataset_was_deleted from events.document_event import document_was_deleted from extensions.ext_database import db from extensions.ext_redis import redis_client from flask import current_app from flask_login import current_user from libs import helper from models.account import Account from models.dataset import (AppDatasetJoin, Dataset, DatasetCollectionBinding, DatasetProcessRule, DatasetQuery, Document, DocumentSegment) from models.model import UploadFile from models.source import DataSourceBinding from services.errors.account import NoPermissionError from services.errors.dataset import DatasetNameDuplicateError from services.errors.document import DocumentIndexingError from services.errors.file import FileNotExistsError from services.vector_service import VectorService from sqlalchemy import func from tasks.clean_notion_document_task import clean_notion_document_task from tasks.deal_dataset_vector_index_task import deal_dataset_vector_index_task from tasks.delete_segment_from_index_task import delete_segment_from_index_task from tasks.document_indexing_task import document_indexing_task from tasks.document_indexing_update_task import document_indexing_update_task from tasks.recover_document_indexing_task import recover_document_indexing_task class DatasetService: @staticmethod def get_datasets(page, per_page, provider="vendor", tenant_id=None, user=None): if user: permission_filter = db.or_(Dataset.created_by == user.id, Dataset.permission == 'all_team_members') else: permission_filter = Dataset.permission == 'all_team_members' datasets = Dataset.query.filter( db.and_(Dataset.provider == provider, Dataset.tenant_id == tenant_id, permission_filter)) \ .order_by(Dataset.created_at.desc()) \ .paginate( page=page, per_page=per_page, max_per_page=100, error_out=False ) return datasets.items, datasets.total @staticmethod def get_process_rules(dataset_id): # get the latest process rule dataset_process_rule = db.session.query(DatasetProcessRule). \ filter(DatasetProcessRule.dataset_id == dataset_id). \ order_by(DatasetProcessRule.created_at.desc()). \ limit(1). \ one_or_none() if dataset_process_rule: mode = dataset_process_rule.mode rules = dataset_process_rule.rules_dict else: mode = DocumentService.DEFAULT_RULES['mode'] rules = DocumentService.DEFAULT_RULES['rules'] return { 'mode': mode, 'rules': rules } @staticmethod def get_datasets_by_ids(ids, tenant_id): datasets = Dataset.query.filter(Dataset.id.in_(ids), Dataset.tenant_id == tenant_id).paginate( page=1, per_page=len(ids), max_per_page=len(ids), error_out=False) return datasets.items, datasets.total @staticmethod def create_empty_dataset(tenant_id: str, name: str, indexing_technique: Optional[str], account: Account): # check if dataset name already exists if Dataset.query.filter_by(name=name, tenant_id=tenant_id).first(): raise DatasetNameDuplicateError( f'Dataset with name {name} already exists.') embedding_model = None if indexing_technique == 'high_quality': model_manager = ModelManager() embedding_model = model_manager.get_default_model_instance( tenant_id=tenant_id, model_type=ModelType.TEXT_EMBEDDING ) dataset = Dataset(name=name, indexing_technique=indexing_technique) # dataset = Dataset(name=name, provider=provider, config=config) dataset.created_by = account.id dataset.updated_by = account.id dataset.tenant_id = tenant_id dataset.embedding_model_provider = embedding_model.provider if embedding_model else None dataset.embedding_model = embedding_model.model if embedding_model else None db.session.add(dataset) db.session.commit() return dataset @staticmethod def get_dataset(dataset_id): dataset = Dataset.query.filter_by( id=dataset_id ).first() if dataset is None: return None else: return dataset @staticmethod def check_dataset_model_setting(dataset): if dataset.indexing_technique == 'high_quality': try: model_manager = ModelManager() model_manager.get_model_instance( tenant_id=dataset.tenant_id, provider=dataset.embedding_model_provider, model_type=ModelType.TEXT_EMBEDDING, model=dataset.embedding_model ) except LLMBadRequestError: raise ValueError( f"No Embedding Model available. Please configure a valid provider " f"in the Settings -> Model Provider.") except ProviderTokenNotInitError as ex: raise ValueError(f"The dataset in unavailable, due to: " f"{ex.description}") @staticmethod def update_dataset(dataset_id, data, user): filtered_data = {k: v for k, v in data.items() if v is not None or k == 'description'} dataset = DatasetService.get_dataset(dataset_id) DatasetService.check_dataset_permission(dataset, user) action = None if dataset.indexing_technique != data['indexing_technique']: # if update indexing_technique if data['indexing_technique'] == 'economy': action = 'remove' filtered_data['embedding_model'] = None filtered_data['embedding_model_provider'] = None filtered_data['collection_binding_id'] = None elif data['indexing_technique'] == 'high_quality': action = 'add' # get embedding model setting try: model_manager = ModelManager() embedding_model = model_manager.get_default_model_instance( tenant_id=current_user.current_tenant_id, model_type=ModelType.TEXT_EMBEDDING ) filtered_data['embedding_model'] = embedding_model.model filtered_data['embedding_model_provider'] = embedding_model.provider dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding( embedding_model.provider, embedding_model.model ) filtered_data['collection_binding_id'] = dataset_collection_binding.id except LLMBadRequestError: raise ValueError( f"No Embedding Model available. Please configure a valid provider " f"in the Settings -> Model Provider.") except ProviderTokenNotInitError as ex: raise ValueError(ex.description) filtered_data['updated_by'] = user.id filtered_data['updated_at'] = datetime.datetime.now() # update Retrieval model filtered_data['retrieval_model'] = data['retrieval_model'] dataset.query.filter_by(id=dataset_id).update(filtered_data) db.session.commit() if action: deal_dataset_vector_index_task.delay(dataset_id, action) return dataset @staticmethod def delete_dataset(dataset_id, user): # todo: cannot delete dataset if it is being processed dataset = DatasetService.get_dataset(dataset_id) if dataset is None: return False DatasetService.check_dataset_permission(dataset, user) dataset_was_deleted.send(dataset) db.session.delete(dataset) db.session.commit() return True @staticmethod def check_dataset_permission(dataset, user): if dataset.tenant_id != user.current_tenant_id: logging.debug( f'User {user.id} does not have permission to access dataset {dataset.id}') raise NoPermissionError( 'You do not have permission to access this dataset.') if dataset.permission == 'only_me' and dataset.created_by != user.id: logging.debug( f'User {user.id} does not have permission to access dataset {dataset.id}') raise NoPermissionError( 'You do not have permission to access this dataset.') @staticmethod def get_dataset_queries(dataset_id: str, page: int, per_page: int): dataset_queries = DatasetQuery.query.filter_by(dataset_id=dataset_id) \ .order_by(db.desc(DatasetQuery.created_at)) \ .paginate( page=page, per_page=per_page, max_per_page=100, error_out=False ) return dataset_queries.items, dataset_queries.total @staticmethod def get_related_apps(dataset_id: str): return AppDatasetJoin.query.filter(AppDatasetJoin.dataset_id == dataset_id) \ .order_by(db.desc(AppDatasetJoin.created_at)).all() class DocumentService: DEFAULT_RULES = { 'mode': 'custom', 'rules': { 'pre_processing_rules': [ {'id': 'remove_extra_spaces', 'enabled': True}, {'id': 'remove_urls_emails', 'enabled': False} ], 'segmentation': { 'delimiter': '\n', 'max_tokens': 500, 'chunk_overlap': 50 } } } DOCUMENT_METADATA_SCHEMA = { "book": { "title": str, "language": str, "author": str, "publisher": str, "publication_date": str, "isbn": str, "category": str, }, "web_page": { "title": str, "url": str, "language": str, "publish_date": str, "author/publisher": str, "topic/keywords": str, "description": str, }, "paper": { "title": str, "language": str, "author": str, "publish_date": str, "journal/conference_name": str, "volume/issue/page_numbers": str, "doi": str, "topic/keywords": str, "abstract": str, }, "social_media_post": { "platform": str, "author/username": str, "publish_date": str, "post_url": str, "topic/tags": str, }, "wikipedia_entry": { "title": str, "language": str, "web_page_url": str, "last_edit_date": str, "editor/contributor": str, "summary/introduction": str, }, "personal_document": { "title": str, "author": str, "creation_date": str, "last_modified_date": str, "document_type": str, "tags/category": str, }, "business_document": { "title": str, "author": str, "creation_date": str, "last_modified_date": str, "document_type": str, "department/team": str, }, "im_chat_log": { "chat_platform": str, "chat_participants/group_name": str, "start_date": str, "end_date": str, "summary": str, }, "synced_from_notion": { "title": str, "language": str, "author/creator": str, "creation_date": str, "last_modified_date": str, "notion_page_link": str, "category/tags": str, "description": str, }, "synced_from_github": { "repository_name": str, "repository_description": str, "repository_owner/organization": str, "code_filename": str, "code_file_path": str, "programming_language": str, "github_link": str, "open_source_license": str, "commit_date": str, "commit_author": str, }, "others": dict } @staticmethod def get_document(dataset_id: str, document_id: str) -> Optional[Document]: document = db.session.query(Document).filter( Document.id == document_id, Document.dataset_id == dataset_id ).first() return document @staticmethod def get_document_by_id(document_id: str) -> Optional[Document]: document = db.session.query(Document).filter( Document.id == document_id ).first() return document @staticmethod def get_document_by_dataset_id(dataset_id: str) -> List[Document]: documents = db.session.query(Document).filter( Document.dataset_id == dataset_id, Document.enabled == True ).all() return documents @staticmethod def get_batch_documents(dataset_id: str, batch: str) -> List[Document]: documents = db.session.query(Document).filter( Document.batch == batch, Document.dataset_id == dataset_id, Document.tenant_id == current_user.current_tenant_id ).all() return documents @staticmethod def get_document_file_detail(file_id: str): file_detail = db.session.query(UploadFile). \ filter(UploadFile.id == file_id). \ one_or_none() return file_detail @staticmethod def check_archived(document): if document.archived: return True else: return False @staticmethod def delete_document(document): # trigger document_was_deleted signal document_was_deleted.send(document.id, dataset_id=document.dataset_id) db.session.delete(document) db.session.commit() @staticmethod def pause_document(document): if document.indexing_status not in ["waiting", "parsing", "cleaning", "splitting", "indexing"]: raise DocumentIndexingError() # update document to be paused document.is_paused = True document.paused_by = current_user.id document.paused_at = datetime.datetime.utcnow() db.session.add(document) db.session.commit() # set document paused flag indexing_cache_key = 'document_{}_is_paused'.format(document.id) redis_client.setnx(indexing_cache_key, "True") @staticmethod def recover_document(document): if not document.is_paused: raise DocumentIndexingError() # update document to be recover document.is_paused = False document.paused_by = None document.paused_at = None db.session.add(document) db.session.commit() # delete paused flag indexing_cache_key = 'document_{}_is_paused'.format(document.id) redis_client.delete(indexing_cache_key) # trigger async task recover_document_indexing_task.delay(document.dataset_id, document.id) @staticmethod def get_documents_position(dataset_id): document = Document.query.filter_by(dataset_id=dataset_id).order_by(Document.position.desc()).first() if document: return document.position + 1 else: return 1 @staticmethod def save_document_with_dataset_id(dataset: Dataset, document_data: dict, account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None, created_from: str = 'web'): # check document limit if current_app.config['EDITION'] == 'CLOUD': if 'original_document_id' not in document_data or not document_data['original_document_id']: count = 0 if document_data["data_source"]["type"] == "upload_file": upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids'] count = len(upload_file_list) elif document_data["data_source"]["type"] == "notion_import": notion_info_list = document_data["data_source"]['info_list']['notion_info_list'] for notion_info in notion_info_list: count = count + len(notion_info['pages']) # if dataset is empty, update dataset data_source_type if not dataset.data_source_type: dataset.data_source_type = document_data["data_source"]["type"] if not dataset.indexing_technique: if 'indexing_technique' not in document_data \ or document_data['indexing_technique'] not in Dataset.INDEXING_TECHNIQUE_LIST: raise ValueError("Indexing technique is required") dataset.indexing_technique = document_data["indexing_technique"] if document_data["indexing_technique"] == 'high_quality': model_manager = ModelManager() embedding_model = model_manager.get_default_model_instance( tenant_id=current_user.current_tenant_id, model_type=ModelType.TEXT_EMBEDDING ) dataset.embedding_model = embedding_model.model dataset.embedding_model_provider = embedding_model.provider dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding( embedding_model.provider, embedding_model.model ) dataset.collection_binding_id = dataset_collection_binding.id if not dataset.retrieval_model: default_retrieval_model = { 'search_method': 'semantic_search', 'reranking_enable': False, 'reranking_model': { 'reranking_provider_name': '', 'reranking_model_name': '' }, 'top_k': 2, 'score_threshold_enabled': False } dataset.retrieval_model = document_data.get('retrieval_model') if document_data.get( 'retrieval_model') else default_retrieval_model documents = [] batch = time.strftime('%Y%m%d%H%M%S') + str(random.randint(100000, 999999)) if 'original_document_id' in document_data and document_data["original_document_id"]: document = DocumentService.update_document_with_dataset_id(dataset, document_data, account) documents.append(document) else: # save process rule if not dataset_process_rule: process_rule = document_data["process_rule"] if process_rule["mode"] == "custom": dataset_process_rule = DatasetProcessRule( dataset_id=dataset.id, mode=process_rule["mode"], rules=json.dumps(process_rule["rules"]), created_by=account.id ) elif process_rule["mode"] == "automatic": dataset_process_rule = DatasetProcessRule( dataset_id=dataset.id, mode=process_rule["mode"], rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES), created_by=account.id ) db.session.add(dataset_process_rule) db.session.commit() position = DocumentService.get_documents_position(dataset.id) document_ids = [] if document_data["data_source"]["type"] == "upload_file": upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids'] for file_id in upload_file_list: file = db.session.query(UploadFile).filter( UploadFile.tenant_id == dataset.tenant_id, UploadFile.id == file_id ).first() # raise error if file not found if not file: raise FileNotExistsError() file_name = file.name data_source_info = { "upload_file_id": file_id, } document = DocumentService.build_document(dataset, dataset_process_rule.id, document_data["data_source"]["type"], document_data["doc_form"], document_data["doc_language"], data_source_info, created_from, position, account, file_name, batch) db.session.add(document) db.session.flush() document_ids.append(document.id) documents.append(document) position += 1 elif document_data["data_source"]["type"] == "notion_import": notion_info_list = document_data["data_source"]['info_list']['notion_info_list'] exist_page_ids = [] exist_document = dict() documents = Document.query.filter_by( dataset_id=dataset.id, tenant_id=current_user.current_tenant_id, data_source_type='notion_import', enabled=True ).all() if documents: for document in documents: data_source_info = json.loads(document.data_source_info) exist_page_ids.append(data_source_info['notion_page_id']) exist_document[data_source_info['notion_page_id']] = document.id for notion_info in notion_info_list: workspace_id = notion_info['workspace_id'] data_source_binding = DataSourceBinding.query.filter( db.and_( DataSourceBinding.tenant_id == current_user.current_tenant_id, DataSourceBinding.provider == 'notion', DataSourceBinding.disabled == False, DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"' ) ).first() if not data_source_binding: raise ValueError('Data source binding not found.') for page in notion_info['pages']: if page['page_id'] not in exist_page_ids: data_source_info = { "notion_workspace_id": workspace_id, "notion_page_id": page['page_id'], "notion_page_icon": page['page_icon'], "type": page['type'] } document = DocumentService.build_document(dataset, dataset_process_rule.id, document_data["data_source"]["type"], document_data["doc_form"], document_data["doc_language"], data_source_info, created_from, position, account, page['page_name'], batch) db.session.add(document) db.session.flush() document_ids.append(document.id) documents.append(document) position += 1 else: exist_document.pop(page['page_id']) # delete not selected documents if len(exist_document) > 0: clean_notion_document_task.delay(list(exist_document.values()), dataset.id) db.session.commit() # trigger async task document_indexing_task.delay(dataset.id, document_ids) return documents, batch @staticmethod def build_document(dataset: Dataset, process_rule_id: str, data_source_type: str, document_form: str, document_language: str, data_source_info: dict, created_from: str, position: int, account: Account, name: str, batch: str): document = Document( tenant_id=dataset.tenant_id, dataset_id=dataset.id, position=position, data_source_type=data_source_type, data_source_info=json.dumps(data_source_info), dataset_process_rule_id=process_rule_id, batch=batch, name=name, created_from=created_from, created_by=account.id, doc_form=document_form, doc_language=document_language ) return document @staticmethod def get_tenant_documents_count(): documents_count = Document.query.filter(Document.completed_at.isnot(None), Document.enabled == True, Document.archived == False, Document.tenant_id == current_user.current_tenant_id).count() return documents_count @staticmethod def update_document_with_dataset_id(dataset: Dataset, document_data: dict, account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None, created_from: str = 'web'): DatasetService.check_dataset_model_setting(dataset) document = DocumentService.get_document(dataset.id, document_data["original_document_id"]) if document.display_status != 'available': raise ValueError("Document is not available") # update document name if 'name' in document_data and document_data['name']: document.name = document_data['name'] # save process rule if 'process_rule' in document_data and document_data['process_rule']: process_rule = document_data["process_rule"] if process_rule["mode"] == "custom": dataset_process_rule = DatasetProcessRule( dataset_id=dataset.id, mode=process_rule["mode"], rules=json.dumps(process_rule["rules"]), created_by=account.id ) elif process_rule["mode"] == "automatic": dataset_process_rule = DatasetProcessRule( dataset_id=dataset.id, mode=process_rule["mode"], rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES), created_by=account.id ) db.session.add(dataset_process_rule) db.session.commit() document.dataset_process_rule_id = dataset_process_rule.id # update document data source if 'data_source' in document_data and document_data['data_source']: file_name = '' data_source_info = {} if document_data["data_source"]["type"] == "upload_file": upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids'] for file_id in upload_file_list: file = db.session.query(UploadFile).filter( UploadFile.tenant_id == dataset.tenant_id, UploadFile.id == file_id ).first() # raise error if file not found if not file: raise FileNotExistsError() file_name = file.name data_source_info = { "upload_file_id": file_id, } elif document_data["data_source"]["type"] == "notion_import": notion_info_list = document_data["data_source"]['info_list']['notion_info_list'] for notion_info in notion_info_list: workspace_id = notion_info['workspace_id'] data_source_binding = DataSourceBinding.query.filter( db.and_( DataSourceBinding.tenant_id == current_user.current_tenant_id, DataSourceBinding.provider == 'notion', DataSourceBinding.disabled == False, DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"' ) ).first() if not data_source_binding: raise ValueError('Data source binding not found.') for page in notion_info['pages']: data_source_info = { "notion_workspace_id": workspace_id, "notion_page_id": page['page_id'], "notion_page_icon": page['page_icon'], "type": page['type'] } document.data_source_type = document_data["data_source"]["type"] document.data_source_info = json.dumps(data_source_info) document.name = file_name # update document to be waiting document.indexing_status = 'waiting' document.completed_at = None document.processing_started_at = None document.parsing_completed_at = None document.cleaning_completed_at = None document.splitting_completed_at = None document.updated_at = datetime.datetime.utcnow() document.created_from = created_from document.doc_form = document_data['doc_form'] db.session.add(document) db.session.commit() # update document segment update_params = { DocumentSegment.status: 're_segment' } DocumentSegment.query.filter_by(document_id=document.id).update(update_params) db.session.commit() # trigger async task document_indexing_update_task.delay(document.dataset_id, document.id) return document @staticmethod def save_document_without_dataset_id(tenant_id: str, document_data: dict, account: Account): count = 0 if document_data["data_source"]["type"] == "upload_file": upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids'] count = len(upload_file_list) elif document_data["data_source"]["type"] == "notion_import": notion_info_list = document_data["data_source"]['info_list']['notion_info_list'] for notion_info in notion_info_list: count = count + len(notion_info['pages']) embedding_model = None dataset_collection_binding_id = None retrieval_model = None if document_data['indexing_technique'] == 'high_quality': model_manager = ModelManager() embedding_model = model_manager.get_default_model_instance( tenant_id=current_user.current_tenant_id, model_type=ModelType.TEXT_EMBEDDING ) dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding( embedding_model.provider, embedding_model.model ) dataset_collection_binding_id = dataset_collection_binding.id if 'retrieval_model' in document_data and document_data['retrieval_model']: retrieval_model = document_data['retrieval_model'] else: default_retrieval_model = { 'search_method': 'semantic_search', 'reranking_enable': False, 'reranking_model': { 'reranking_provider_name': '', 'reranking_model_name': '' }, 'top_k': 2, 'score_threshold_enabled': False } retrieval_model = default_retrieval_model # save dataset dataset = Dataset( tenant_id=tenant_id, name='', data_source_type=document_data["data_source"]["type"], indexing_technique=document_data["indexing_technique"], created_by=account.id, embedding_model=embedding_model.model if embedding_model else None, embedding_model_provider=embedding_model.provider if embedding_model else None, collection_binding_id=dataset_collection_binding_id, retrieval_model=retrieval_model ) db.session.add(dataset) db.session.flush() documents, batch = DocumentService.save_document_with_dataset_id(dataset, document_data, account) cut_length = 18 cut_name = documents[0].name[:cut_length] dataset.name = cut_name + '...' dataset.description = 'useful for when you want to answer queries about the ' + documents[0].name db.session.commit() return dataset, documents, batch @classmethod def document_create_args_validate(cls, args: dict): if 'original_document_id' not in args or not args['original_document_id']: DocumentService.data_source_args_validate(args) DocumentService.process_rule_args_validate(args) else: if ('data_source' not in args and not args['data_source']) \ and ('process_rule' not in args and not args['process_rule']): raise ValueError("Data source or Process rule is required") else: if 'data_source' in args and args['data_source']: DocumentService.data_source_args_validate(args) if 'process_rule' in args and args['process_rule']: DocumentService.process_rule_args_validate(args) @classmethod def data_source_args_validate(cls, args: dict): if 'data_source' not in args or not args['data_source']: raise ValueError("Data source is required") if not isinstance(args['data_source'], dict): raise ValueError("Data source is invalid") if 'type' not in args['data_source'] or not args['data_source']['type']: raise ValueError("Data source type is required") if args['data_source']['type'] not in Document.DATA_SOURCES: raise ValueError("Data source type is invalid") if 'info_list' not in args['data_source'] or not args['data_source']['info_list']: raise ValueError("Data source info is required") if args['data_source']['type'] == 'upload_file': if 'file_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][ 'file_info_list']: raise ValueError("File source info is required") if args['data_source']['type'] == 'notion_import': if 'notion_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][ 'notion_info_list']: raise ValueError("Notion source info is required") @classmethod def process_rule_args_validate(cls, args: dict): if 'process_rule' not in args or not args['process_rule']: raise ValueError("Process rule is required") if not isinstance(args['process_rule'], dict): raise ValueError("Process rule is invalid") if 'mode' not in args['process_rule'] or not args['process_rule']['mode']: raise ValueError("Process rule mode is required") if args['process_rule']['mode'] not in DatasetProcessRule.MODES: raise ValueError("Process rule mode is invalid") if args['process_rule']['mode'] == 'automatic': args['process_rule']['rules'] = {} else: if 'rules' not in args['process_rule'] or not args['process_rule']['rules']: raise ValueError("Process rule rules is required") if not isinstance(args['process_rule']['rules'], dict): raise ValueError("Process rule rules is invalid") if 'pre_processing_rules' not in args['process_rule']['rules'] \ or args['process_rule']['rules']['pre_processing_rules'] is None: raise ValueError("Process rule pre_processing_rules is required") if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list): raise ValueError("Process rule pre_processing_rules is invalid") unique_pre_processing_rule_dicts = {} for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']: if 'id' not in pre_processing_rule or not pre_processing_rule['id']: raise ValueError("Process rule pre_processing_rules id is required") if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES: raise ValueError("Process rule pre_processing_rules id is invalid") if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None: raise ValueError("Process rule pre_processing_rules enabled is required") if not isinstance(pre_processing_rule['enabled'], bool): raise ValueError("Process rule pre_processing_rules enabled is invalid") unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values()) if 'segmentation' not in args['process_rule']['rules'] \ or args['process_rule']['rules']['segmentation'] is None: raise ValueError("Process rule segmentation is required") if not isinstance(args['process_rule']['rules']['segmentation'], dict): raise ValueError("Process rule segmentation is invalid") if 'separator' not in args['process_rule']['rules']['segmentation'] \ or not args['process_rule']['rules']['segmentation']['separator']: raise ValueError("Process rule segmentation separator is required") if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str): raise ValueError("Process rule segmentation separator is invalid") if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \ or not args['process_rule']['rules']['segmentation']['max_tokens']: raise ValueError("Process rule segmentation max_tokens is required") if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int): raise ValueError("Process rule segmentation max_tokens is invalid") @classmethod def estimate_args_validate(cls, args: dict): if 'info_list' not in args or not args['info_list']: raise ValueError("Data source info is required") if not isinstance(args['info_list'], dict): raise ValueError("Data info is invalid") if 'process_rule' not in args or not args['process_rule']: raise ValueError("Process rule is required") if not isinstance(args['process_rule'], dict): raise ValueError("Process rule is invalid") if 'mode' not in args['process_rule'] or not args['process_rule']['mode']: raise ValueError("Process rule mode is required") if args['process_rule']['mode'] not in DatasetProcessRule.MODES: raise ValueError("Process rule mode is invalid") if args['process_rule']['mode'] == 'automatic': args['process_rule']['rules'] = {} else: if 'rules' not in args['process_rule'] or not args['process_rule']['rules']: raise ValueError("Process rule rules is required") if not isinstance(args['process_rule']['rules'], dict): raise ValueError("Process rule rules is invalid") if 'pre_processing_rules' not in args['process_rule']['rules'] \ or args['process_rule']['rules']['pre_processing_rules'] is None: raise ValueError("Process rule pre_processing_rules is required") if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list): raise ValueError("Process rule pre_processing_rules is invalid") unique_pre_processing_rule_dicts = {} for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']: if 'id' not in pre_processing_rule or not pre_processing_rule['id']: raise ValueError("Process rule pre_processing_rules id is required") if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES: raise ValueError("Process rule pre_processing_rules id is invalid") if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None: raise ValueError("Process rule pre_processing_rules enabled is required") if not isinstance(pre_processing_rule['enabled'], bool): raise ValueError("Process rule pre_processing_rules enabled is invalid") unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values()) if 'segmentation' not in args['process_rule']['rules'] \ or args['process_rule']['rules']['segmentation'] is None: raise ValueError("Process rule segmentation is required") if not isinstance(args['process_rule']['rules']['segmentation'], dict): raise ValueError("Process rule segmentation is invalid") if 'separator' not in args['process_rule']['rules']['segmentation'] \ or not args['process_rule']['rules']['segmentation']['separator']: raise ValueError("Process rule segmentation separator is required") if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str): raise ValueError("Process rule segmentation separator is invalid") if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \ or not args['process_rule']['rules']['segmentation']['max_tokens']: raise ValueError("Process rule segmentation max_tokens is required") if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int): raise ValueError("Process rule segmentation max_tokens is invalid") class SegmentService: @classmethod def segment_create_args_validate(cls, args: dict, document: Document): if document.doc_form == 'qa_model': if 'answer' not in args or not args['answer']: raise ValueError("Answer is required") if not args['answer'].strip(): raise ValueError("Answer is empty") if 'content' not in args or not args['content'] or not args['content'].strip(): raise ValueError("Content is empty") @classmethod def create_segment(cls, args: dict, document: Document, dataset: Dataset): content = args['content'] doc_id = str(uuid.uuid4()) segment_hash = helper.generate_text_hash(content) tokens = 0 if dataset.indexing_technique == 'high_quality': model_manager = ModelManager() embedding_model = model_manager.get_model_instance( tenant_id=current_user.current_tenant_id, provider=dataset.embedding_model_provider, model_type=ModelType.TEXT_EMBEDDING, model=dataset.embedding_model ) # calc embedding use tokens model_type_instance = cast(TextEmbeddingModel, embedding_model.model_type_instance) tokens = model_type_instance.get_num_tokens( model=embedding_model.model, credentials=embedding_model.credentials, texts=[content] ) max_position = db.session.query(func.max(DocumentSegment.position)).filter( DocumentSegment.document_id == document.id ).scalar() segment_document = DocumentSegment( tenant_id=current_user.current_tenant_id, dataset_id=document.dataset_id, document_id=document.id, index_node_id=doc_id, index_node_hash=segment_hash, position=max_position + 1 if max_position else 1, content=content, word_count=len(content), tokens=tokens, status='completed', indexing_at=datetime.datetime.utcnow(), completed_at=datetime.datetime.utcnow(), created_by=current_user.id ) if document.doc_form == 'qa_model': segment_document.answer = args['answer'] db.session.add(segment_document) db.session.commit() # save vector index try: VectorService.create_segment_vector(args['keywords'], segment_document, dataset) except Exception as e: logging.exception("create segment index failed") segment_document.enabled = False segment_document.disabled_at = datetime.datetime.utcnow() segment_document.status = 'error' segment_document.error = str(e) db.session.commit() segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment_document.id).first() return segment @classmethod def multi_create_segment(cls, segments: list, document: Document, dataset: Dataset): embedding_model = None if dataset.indexing_technique == 'high_quality': model_manager = ModelManager() embedding_model = model_manager.get_model_instance( tenant_id=current_user.current_tenant_id, provider=dataset.embedding_model_provider, model_type=ModelType.TEXT_EMBEDDING, model=dataset.embedding_model ) max_position = db.session.query(func.max(DocumentSegment.position)).filter( DocumentSegment.document_id == document.id ).scalar() pre_segment_data_list = [] segment_data_list = [] for segment_item in segments: content = segment_item['content'] doc_id = str(uuid.uuid4()) segment_hash = helper.generate_text_hash(content) tokens = 0 if dataset.indexing_technique == 'high_quality' and embedding_model: # calc embedding use tokens model_type_instance = cast(TextEmbeddingModel, embedding_model.model_type_instance) tokens = model_type_instance.get_num_tokens( model=embedding_model.model, credentials=embedding_model.credentials, texts=[content] ) segment_document = DocumentSegment( tenant_id=current_user.current_tenant_id, dataset_id=document.dataset_id, document_id=document.id, index_node_id=doc_id, index_node_hash=segment_hash, position=max_position + 1 if max_position else 1, content=content, word_count=len(content), tokens=tokens, status='completed', indexing_at=datetime.datetime.utcnow(), completed_at=datetime.datetime.utcnow(), created_by=current_user.id ) if document.doc_form == 'qa_model': segment_document.answer = segment_item['answer'] db.session.add(segment_document) segment_data_list.append(segment_document) pre_segment_data = { 'segment': segment_document, 'keywords': segment_item['keywords'] } pre_segment_data_list.append(pre_segment_data) try: # save vector index VectorService.multi_create_segment_vector(pre_segment_data_list, dataset) except Exception as e: logging.exception("create segment index failed") for segment_document in segment_data_list: segment_document.enabled = False segment_document.disabled_at = datetime.datetime.utcnow() segment_document.status = 'error' segment_document.error = str(e) db.session.commit() return segment_data_list @classmethod def update_segment(cls, args: dict, segment: DocumentSegment, document: Document, dataset: Dataset): indexing_cache_key = 'segment_{}_indexing'.format(segment.id) cache_result = redis_client.get(indexing_cache_key) if cache_result is not None: raise ValueError("Segment is indexing, please try again later") try: content = args['content'] if segment.content == content: if document.doc_form == 'qa_model': segment.answer = args['answer'] if 'keywords' in args and args['keywords']: segment.keywords = args['keywords'] if'enabled' in args and args['enabled'] is not None: segment.enabled = args['enabled'] db.session.add(segment) db.session.commit() # update segment index task if args['keywords']: kw_index = IndexBuilder.get_index(dataset, 'economy') # delete from keyword index kw_index.delete_by_ids([segment.index_node_id]) # save keyword index kw_index.update_segment_keywords_index(segment.index_node_id, segment.keywords) else: segment_hash = helper.generate_text_hash(content) tokens = 0 if dataset.indexing_technique == 'high_quality': model_manager = ModelManager() embedding_model = model_manager.get_model_instance( tenant_id=current_user.current_tenant_id, provider=dataset.embedding_model_provider, model_type=ModelType.TEXT_EMBEDDING, model=dataset.embedding_model ) # calc embedding use tokens model_type_instance = cast(TextEmbeddingModel, embedding_model.model_type_instance) tokens = model_type_instance.get_num_tokens( model=embedding_model.model, credentials=embedding_model.credentials, texts=[content] ) segment.content = content segment.index_node_hash = segment_hash segment.word_count = len(content) segment.tokens = tokens segment.status = 'completed' segment.indexing_at = datetime.datetime.utcnow() segment.completed_at = datetime.datetime.utcnow() segment.updated_by = current_user.id segment.updated_at = datetime.datetime.utcnow() if document.doc_form == 'qa_model': segment.answer = args['answer'] db.session.add(segment) db.session.commit() # update segment vector index VectorService.update_segment_vector(args['keywords'], segment, dataset) except Exception as e: logging.exception("update segment index failed") segment.enabled = False segment.disabled_at = datetime.datetime.utcnow() segment.status = 'error' segment.error = str(e) db.session.commit() segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment.id).first() return segment @classmethod def delete_segment(cls, segment: DocumentSegment, document: Document, dataset: Dataset): indexing_cache_key = 'segment_{}_delete_indexing'.format(segment.id) cache_result = redis_client.get(indexing_cache_key) if cache_result is not None: raise ValueError("Segment is deleting.") # enabled segment need to delete index if segment.enabled: # send delete segment index task redis_client.setex(indexing_cache_key, 600, 1) delete_segment_from_index_task.delay(segment.id, segment.index_node_id, dataset.id, document.id) db.session.delete(segment) db.session.commit() class DatasetCollectionBindingService: @classmethod def get_dataset_collection_binding(cls, provider_name: str, model_name: str, collection_type: str = 'dataset') -> DatasetCollectionBinding: dataset_collection_binding = db.session.query(DatasetCollectionBinding). \ filter(DatasetCollectionBinding.provider_name == provider_name, DatasetCollectionBinding.model_name == model_name, DatasetCollectionBinding.type == collection_type). \ order_by(DatasetCollectionBinding.created_at). \ first() if not dataset_collection_binding: dataset_collection_binding = DatasetCollectionBinding( provider_name=provider_name, model_name=model_name, collection_name="Vector_index_" + str(uuid.uuid4()).replace("-", "_") + '_Node', type=collection_type ) db.session.add(dataset_collection_binding) db.session.commit() return dataset_collection_binding @classmethod def get_dataset_collection_binding_by_id_and_type(cls, collection_binding_id: str, collection_type: str = 'dataset') -> DatasetCollectionBinding: dataset_collection_binding = db.session.query(DatasetCollectionBinding). \ filter(DatasetCollectionBinding.id == collection_binding_id, DatasetCollectionBinding.type == collection_type). \ order_by(DatasetCollectionBinding.created_at). \ first() return dataset_collection_binding