import base64 import logging from typing import Optional, cast import numpy as np from sqlalchemy.exc import IntegrityError from core.embedding.embedding_constant import EmbeddingInputType from core.model_manager import ModelInstance from core.model_runtime.entities.model_entities import ModelPropertyKey from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel from core.rag.datasource.entity.embedding import Embeddings from extensions.ext_database import db from extensions.ext_redis import redis_client from libs import helper from models.dataset import Embedding logger = logging.getLogger(__name__) class CacheEmbedding(Embeddings): def __init__(self, model_instance: ModelInstance, user: Optional[str] = None) -> None: self._model_instance = model_instance self._user = user def embed_documents(self, texts: list[str]) -> list[list[float]]: """Embed search docs in batches of 10.""" # use doc embedding cache or store if not exists text_embeddings = [None for _ in range(len(texts))] embedding_queue_indices = [] for i, text in enumerate(texts): hash = helper.generate_text_hash(text) embedding = ( db.session.query(Embedding) .filter_by( model_name=self._model_instance.model, hash=hash, provider_name=self._model_instance.provider ) .first() ) if embedding: text_embeddings[i] = embedding.get_embedding() else: embedding_queue_indices.append(i) if embedding_queue_indices: embedding_queue_texts = [texts[i] for i in embedding_queue_indices] embedding_queue_embeddings = [] try: model_type_instance = cast(TextEmbeddingModel, self._model_instance.model_type_instance) model_schema = model_type_instance.get_model_schema( self._model_instance.model, self._model_instance.credentials ) max_chunks = ( model_schema.model_properties[ModelPropertyKey.MAX_CHUNKS] if model_schema and ModelPropertyKey.MAX_CHUNKS in model_schema.model_properties else 1 ) for i in range(0, len(embedding_queue_texts), max_chunks): batch_texts = embedding_queue_texts[i : i + max_chunks] embedding_result = self._model_instance.invoke_text_embedding( texts=batch_texts, user=self._user, input_type=EmbeddingInputType.DOCUMENT ) for vector in embedding_result.embeddings: try: normalized_embedding = (vector / np.linalg.norm(vector)).tolist() embedding_queue_embeddings.append(normalized_embedding) except IntegrityError: db.session.rollback() except Exception as e: logging.exception("Failed transform embedding: %s", e) cache_embeddings = [] try: for i, embedding in zip(embedding_queue_indices, embedding_queue_embeddings): text_embeddings[i] = embedding hash = helper.generate_text_hash(texts[i]) if hash not in cache_embeddings: embedding_cache = Embedding( model_name=self._model_instance.model, hash=hash, provider_name=self._model_instance.provider, ) embedding_cache.set_embedding(embedding) db.session.add(embedding_cache) cache_embeddings.append(hash) db.session.commit() except IntegrityError: db.session.rollback() except Exception as ex: db.session.rollback() logger.error("Failed to embed documents: %s", ex) raise ex return text_embeddings def embed_query(self, text: str) -> list[float]: """Embed query text.""" # use doc embedding cache or store if not exists hash = helper.generate_text_hash(text) embedding_cache_key = f"{self._model_instance.provider}_{self._model_instance.model}_{hash}" embedding = redis_client.get(embedding_cache_key) if embedding: redis_client.expire(embedding_cache_key, 600) return list(np.frombuffer(base64.b64decode(embedding), dtype="float")) try: embedding_result = self._model_instance.invoke_text_embedding( texts=[text], user=self._user, input_type=EmbeddingInputType.QUERY ) embedding_results = embedding_result.embeddings[0] embedding_results = (embedding_results / np.linalg.norm(embedding_results)).tolist() except Exception as ex: raise ex try: # encode embedding to base64 embedding_vector = np.array(embedding_results) vector_bytes = embedding_vector.tobytes() # Transform to Base64 encoded_vector = base64.b64encode(vector_bytes) # Transform to string encoded_str = encoded_vector.decode("utf-8") redis_client.setex(embedding_cache_key, 600, encoded_str) except Exception as ex: logging.exception("Failed to add embedding to redis %s", ex) return embedding_results