import datetime import logging import time import click from celery import shared_task from flask import current_app from core.indexing_runner import DocumentIsPausedException, IndexingRunner from core.rag.index_processor.index_processor_factory import IndexProcessorFactory from extensions.ext_database import db from models.dataset import Dataset, Document, DocumentSegment from services.feature_service import FeatureService @shared_task(queue='dataset') def duplicate_document_indexing_task(dataset_id: str, document_ids: list): """ Async process document :param dataset_id: :param document_ids: Usage: duplicate_document_indexing_task.delay(dataset_id, document_id) """ documents = [] start_at = time.perf_counter() dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first() # check document limit features = FeatureService.get_features(dataset.tenant_id) try: if features.billing.enabled: vector_space = features.vector_space count = len(document_ids) batch_upload_limit = int(current_app.config['BATCH_UPLOAD_LIMIT']) if count > batch_upload_limit: raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.") if 0 < vector_space.limit <= vector_space.size: raise ValueError("Your total number of documents plus the number of uploads have over the limit of " "your subscription.") except Exception as e: for document_id in document_ids: document = db.session.query(Document).filter( Document.id == document_id, Document.dataset_id == dataset_id ).first() if document: document.indexing_status = 'error' document.error = str(e) document.stopped_at = datetime.datetime.utcnow() db.session.add(document) db.session.commit() return for document_id in document_ids: logging.info(click.style('Start process document: {}'.format(document_id), fg='green')) document = db.session.query(Document).filter( Document.id == document_id, Document.dataset_id == dataset_id ).first() if document: # clean old data index_type = document.doc_form index_processor = IndexProcessorFactory(index_type).init_index_processor() segments = db.session.query(DocumentSegment).filter(DocumentSegment.document_id == document_id).all() if segments: index_node_ids = [segment.index_node_id for segment in segments] # delete from vector index index_processor.clean(dataset, index_node_ids) for segment in segments: db.session.delete(segment) db.session.commit() document.indexing_status = 'parsing' document.processing_started_at = datetime.datetime.utcnow() documents.append(document) db.session.add(document) db.session.commit() try: indexing_runner = IndexingRunner() indexing_runner.run(documents) end_at = time.perf_counter() logging.info(click.style('Processed dataset: {} latency: {}'.format(dataset_id, end_at - start_at), fg='green')) except DocumentIsPausedException as ex: logging.info(click.style(str(ex), fg='yellow')) except Exception: pass