feat:support azure tts (#2751)

This commit is contained in:
呆萌闷油瓶 2024-03-12 12:06:35 +08:00 committed by GitHub
parent 796c5626a7
commit f49b1afd6c
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 298 additions and 1 deletions

View File

@ -583,3 +583,113 @@ SPEECH2TEXT_BASE_MODELS = [
)
)
]
TTS_BASE_MODELS = [
AzureBaseModel(
base_model_name='tts-1',
entity=AIModelEntity(
model='fake-deployment-name',
label=I18nObject(
en_US='fake-deployment-name-label'
),
fetch_from=FetchFrom.CUSTOMIZABLE_MODEL,
model_type=ModelType.TTS,
model_properties={
ModelPropertyKey.DEFAULT_VOICE: 'alloy',
ModelPropertyKey.VOICES: [
{
'mode': 'alloy',
'name': 'Alloy',
'language': ['zh-Hans', 'en-US', 'de-DE', 'fr-FR', 'es-ES', 'it-IT', 'th-TH', 'id-ID']
},
{
'mode': 'echo',
'name': 'Echo',
'language': ['zh-Hans', 'en-US', 'de-DE', 'fr-FR', 'es-ES', 'it-IT', 'th-TH', 'id-ID']
},
{
'mode': 'fable',
'name': 'Fable',
'language': ['zh-Hans', 'en-US', 'de-DE', 'fr-FR', 'es-ES', 'it-IT', 'th-TH', 'id-ID']
},
{
'mode': 'onyx',
'name': 'Onyx',
'language': ['zh-Hans', 'en-US', 'de-DE', 'fr-FR', 'es-ES', 'it-IT', 'th-TH', 'id-ID']
},
{
'mode': 'nova',
'name': 'Nova',
'language': ['zh-Hans', 'en-US', 'de-DE', 'fr-FR', 'es-ES', 'it-IT', 'th-TH', 'id-ID']
},
{
'mode': 'shimmer',
'name': 'Shimmer',
'language': ['zh-Hans', 'en-US', 'de-DE', 'fr-FR', 'es-ES', 'it-IT', 'th-TH', 'id-ID']
},
],
ModelPropertyKey.WORD_LIMIT: 120,
ModelPropertyKey.AUDOI_TYPE: 'mp3',
ModelPropertyKey.MAX_WORKERS: 5
},
pricing=PriceConfig(
input=0.015,
unit=0.001,
currency='USD',
)
)
),
AzureBaseModel(
base_model_name='tts-1-hd',
entity=AIModelEntity(
model='fake-deployment-name',
label=I18nObject(
en_US='fake-deployment-name-label'
),
fetch_from=FetchFrom.CUSTOMIZABLE_MODEL,
model_type=ModelType.TTS,
model_properties={
ModelPropertyKey.DEFAULT_VOICE: 'alloy',
ModelPropertyKey.VOICES: [
{
'mode': 'alloy',
'name': 'Alloy',
'language': ['zh-Hans', 'en-US', 'de-DE', 'fr-FR', 'es-ES', 'it-IT', 'th-TH', 'id-ID']
},
{
'mode': 'echo',
'name': 'Echo',
'language': ['zh-Hans', 'en-US', 'de-DE', 'fr-FR', 'es-ES', 'it-IT', 'th-TH', 'id-ID']
},
{
'mode': 'fable',
'name': 'Fable',
'language': ['zh-Hans', 'en-US', 'de-DE', 'fr-FR', 'es-ES', 'it-IT', 'th-TH', 'id-ID']
},
{
'mode': 'onyx',
'name': 'Onyx',
'language': ['zh-Hans', 'en-US', 'de-DE', 'fr-FR', 'es-ES', 'it-IT', 'th-TH', 'id-ID']
},
{
'mode': 'nova',
'name': 'Nova',
'language': ['zh-Hans', 'en-US', 'de-DE', 'fr-FR', 'es-ES', 'it-IT', 'th-TH', 'id-ID']
},
{
'mode': 'shimmer',
'name': 'Shimmer',
'language': ['zh-Hans', 'en-US', 'de-DE', 'fr-FR', 'es-ES', 'it-IT', 'th-TH', 'id-ID']
},
],
ModelPropertyKey.WORD_LIMIT: 120,
ModelPropertyKey.AUDOI_TYPE: 'mp3',
ModelPropertyKey.MAX_WORKERS: 5
},
pricing=PriceConfig(
input=0.03,
unit=0.001,
currency='USD',
)
)
)
]

View File

@ -16,6 +16,7 @@ supported_model_types:
- llm
- text-embedding
- speech2text
- tts
configurate_methods:
- customizable-model
model_credential_schema:
@ -118,6 +119,18 @@ model_credential_schema:
show_on:
- variable: __model_type
value: speech2text
- label:
en_US: tts-1
value: tts-1
show_on:
- variable: __model_type
value: tts
- label:
en_US: tts-1-hd
value: tts-1-hd
show_on:
- variable: __model_type
value: tts
placeholder:
zh_Hans: 在此输入您的模型版本
en_US: Enter your model version

View File

@ -0,0 +1,174 @@
import concurrent.futures
import copy
from functools import reduce
from io import BytesIO
from typing import Optional
from flask import Response, stream_with_context
from openai import AzureOpenAI
from pydub import AudioSegment
from core.model_runtime.entities.model_entities import AIModelEntity
from core.model_runtime.errors.invoke import InvokeBadRequestError
from core.model_runtime.errors.validate import CredentialsValidateFailedError
from core.model_runtime.model_providers.__base.tts_model import TTSModel
from core.model_runtime.model_providers.azure_openai._common import _CommonAzureOpenAI
from core.model_runtime.model_providers.azure_openai._constant import TTS_BASE_MODELS, AzureBaseModel
from extensions.ext_storage import storage
class AzureOpenAIText2SpeechModel(_CommonAzureOpenAI, TTSModel):
"""
Model class for OpenAI Speech to text model.
"""
def _invoke(self, model: str, tenant_id: str, credentials: dict,
content_text: str, voice: str, streaming: bool, user: Optional[str] = None) -> any:
"""
_invoke text2speech model
:param model: model name
:param tenant_id: user tenant id
:param credentials: model credentials
:param content_text: text content to be translated
:param voice: model timbre
:param streaming: output is streaming
:param user: unique user id
:return: text translated to audio file
"""
audio_type = self._get_model_audio_type(model, credentials)
if not voice or voice not in [d['value'] for d in self.get_tts_model_voices(model=model, credentials=credentials)]:
voice = self._get_model_default_voice(model, credentials)
if streaming:
return Response(stream_with_context(self._tts_invoke_streaming(model=model,
credentials=credentials,
content_text=content_text,
tenant_id=tenant_id,
voice=voice)),
status=200, mimetype=f'audio/{audio_type}')
else:
return self._tts_invoke(model=model, credentials=credentials, content_text=content_text, voice=voice)
def validate_credentials(self, model: str, credentials: dict, user: Optional[str] = None) -> None:
"""
validate credentials text2speech model
:param model: model name
:param credentials: model credentials
:param user: unique user id
:return: text translated to audio file
"""
try:
self._tts_invoke(
model=model,
credentials=credentials,
content_text='Hello Dify!',
voice=self._get_model_default_voice(model, credentials),
)
except Exception as ex:
raise CredentialsValidateFailedError(str(ex))
def _tts_invoke(self, model: str, credentials: dict, content_text: str, voice: str) -> Response:
"""
_tts_invoke text2speech model
:param model: model name
:param credentials: model credentials
:param content_text: text content to be translated
:param voice: model timbre
:return: text translated to audio file
"""
audio_type = self._get_model_audio_type(model, credentials)
word_limit = self._get_model_word_limit(model, credentials)
max_workers = self._get_model_workers_limit(model, credentials)
try:
sentences = list(self._split_text_into_sentences(text=content_text, limit=word_limit))
audio_bytes_list = list()
# Create a thread pool and map the function to the list of sentences
with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor:
futures = [executor.submit(self._process_sentence, sentence=sentence, model=model, voice=voice,
credentials=credentials) for sentence in sentences]
for future in futures:
try:
if future.result():
audio_bytes_list.append(future.result())
except Exception as ex:
raise InvokeBadRequestError(str(ex))
if len(audio_bytes_list) > 0:
audio_segments = [AudioSegment.from_file(BytesIO(audio_bytes), format=audio_type) for audio_bytes in
audio_bytes_list if audio_bytes]
combined_segment = reduce(lambda x, y: x + y, audio_segments)
buffer: BytesIO = BytesIO()
combined_segment.export(buffer, format=audio_type)
buffer.seek(0)
return Response(buffer.read(), status=200, mimetype=f"audio/{audio_type}")
except Exception as ex:
raise InvokeBadRequestError(str(ex))
# Todo: To improve the streaming function
def _tts_invoke_streaming(self, model: str, tenant_id: str, credentials: dict, content_text: str,
voice: str) -> any:
"""
_tts_invoke_streaming text2speech model
:param model: model name
:param tenant_id: user tenant id
:param credentials: model credentials
:param content_text: text content to be translated
:param voice: model timbre
:return: text translated to audio file
"""
# transform credentials to kwargs for model instance
credentials_kwargs = self._to_credential_kwargs(credentials)
if not voice or voice not in self.get_tts_model_voices(model=model, credentials=credentials):
voice = self._get_model_default_voice(model, credentials)
word_limit = self._get_model_word_limit(model, credentials)
audio_type = self._get_model_audio_type(model, credentials)
tts_file_id = self._get_file_name(content_text)
file_path = f'generate_files/audio/{tenant_id}/{tts_file_id}.{audio_type}'
try:
client = AzureOpenAI(**credentials_kwargs)
sentences = list(self._split_text_into_sentences(text=content_text, limit=word_limit))
for sentence in sentences:
response = client.audio.speech.create(model=model, voice=voice, input=sentence.strip())
# response.stream_to_file(file_path)
storage.save(file_path, response.read())
except Exception as ex:
raise InvokeBadRequestError(str(ex))
def _process_sentence(self, sentence: str, model: str,
voice, credentials: dict):
"""
_tts_invoke openai text2speech model api
:param model: model name
:param credentials: model credentials
:param voice: model timbre
:param sentence: text content to be translated
:return: text translated to audio file
"""
# transform credentials to kwargs for model instance
credentials_kwargs = self._to_credential_kwargs(credentials)
client = AzureOpenAI(**credentials_kwargs)
response = client.audio.speech.create(model=model, voice=voice, input=sentence.strip())
if isinstance(response.read(), bytes):
return response.read()
def get_customizable_model_schema(self, model: str, credentials: dict) -> Optional[AIModelEntity]:
ai_model_entity = self._get_ai_model_entity(credentials['base_model_name'], model)
return ai_model_entity.entity
@staticmethod
def _get_ai_model_entity(base_model_name: str, model: str) -> AzureBaseModel:
for ai_model_entity in TTS_BASE_MODELS:
if ai_model_entity.base_model_name == base_model_name:
ai_model_entity_copy = copy.deepcopy(ai_model_entity)
ai_model_entity_copy.entity.model = model
ai_model_entity_copy.entity.label.en_US = model
ai_model_entity_copy.entity.label.zh_Hans = model
return ai_model_entity_copy
return None

View File

@ -11,7 +11,7 @@ flask-cors~=4.0.0
gunicorn~=21.2.0
gevent~=23.9.1
langchain==0.0.250
openai~=1.3.6
openai~=1.13.3
tiktoken~=0.5.2
psycopg2-binary~=2.9.6
pycryptodome==3.19.1