feat: support elasticsearch vector database (#3558)

Co-authored-by: miendinh <miendinh@users.noreply.github.com>
Co-authored-by: crazywoola <100913391+crazywoola@users.noreply.github.com>
Co-authored-by: crazywoola <427733928@qq.com>
This commit is contained in:
miendinh 2024-08-13 16:36:20 +07:00 committed by GitHub
parent 4423710a13
commit f104b930cf
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
17 changed files with 316 additions and 9377 deletions

View File

@ -76,7 +76,7 @@ jobs:
- name: Run Workflow
run: poetry run -C api bash dev/pytest/pytest_workflow.sh
- name: Set up Vector Stores (Weaviate, Qdrant, PGVector, Milvus, PgVecto-RS, Chroma, MyScale)
- name: Set up Vector Stores (Weaviate, Qdrant, PGVector, Milvus, PgVecto-RS, Chroma, MyScale, ElasticSearch)
uses: hoverkraft-tech/compose-action@v2.0.0
with:
compose-file: |
@ -90,5 +90,6 @@ jobs:
pgvecto-rs
pgvector
chroma
elasticsearch
- name: Test Vector Stores
run: poetry run -C api bash dev/pytest/pytest_vdb.sh

View File

@ -6,5 +6,6 @@ yq eval '.services.chroma.ports += ["8000:8000"]' -i docker/docker-compose.yaml
yq eval '.services["milvus-standalone"].ports += ["19530:19530"]' -i docker/docker-compose.yaml
yq eval '.services.pgvector.ports += ["5433:5432"]' -i docker/docker-compose.yaml
yq eval '.services["pgvecto-rs"].ports += ["5431:5432"]' -i docker/docker-compose.yaml
yq eval '.services["elasticsearch"].ports += ["9200:9200"]' -i docker/docker-compose.yaml
echo "Ports exposed for sandbox, weaviate, qdrant, chroma, milvus, pgvector, pgvecto-rs."
echo "Ports exposed for sandbox, weaviate, qdrant, chroma, milvus, pgvector, pgvecto-rs, elasticsearch"

View File

@ -130,6 +130,12 @@ TENCENT_VECTOR_DB_DATABASE=dify
TENCENT_VECTOR_DB_SHARD=1
TENCENT_VECTOR_DB_REPLICAS=2
# ElasticSearch configuration
ELASTICSEARCH_HOST=127.0.0.1
ELASTICSEARCH_PORT=9200
ELASTICSEARCH_USERNAME=elastic
ELASTICSEARCH_PASSWORD=elastic
# PGVECTO_RS configuration
PGVECTO_RS_HOST=localhost
PGVECTO_RS_PORT=5431

View File

@ -344,6 +344,14 @@ def migrate_knowledge_vector_database():
"vector_store": {"class_prefix": collection_name}
}
dataset.index_struct = json.dumps(index_struct_dict)
elif vector_type == VectorType.ELASTICSEARCH:
dataset_id = dataset.id
index_name = Dataset.gen_collection_name_by_id(dataset_id)
index_struct_dict = {
"type": 'elasticsearch',
"vector_store": {"class_prefix": index_name}
}
dataset.index_struct = json.dumps(index_struct_dict)
else:
raise ValueError(f"Vector store {vector_type} is not supported.")

View File

@ -555,7 +555,7 @@ class DatasetRetrievalSettingApi(Resource):
RetrievalMethod.SEMANTIC_SEARCH.value
]
}
case VectorType.QDRANT | VectorType.WEAVIATE | VectorType.OPENSEARCH | VectorType.ANALYTICDB | VectorType.MYSCALE | VectorType.ORACLE:
case VectorType.QDRANT | VectorType.WEAVIATE | VectorType.OPENSEARCH | VectorType.ANALYTICDB | VectorType.MYSCALE | VectorType.ORACLE | VectorType.ELASTICSEARCH:
return {
'retrieval_method': [
RetrievalMethod.SEMANTIC_SEARCH.value,
@ -579,7 +579,7 @@ class DatasetRetrievalSettingMockApi(Resource):
RetrievalMethod.SEMANTIC_SEARCH.value
]
}
case VectorType.QDRANT | VectorType.WEAVIATE | VectorType.OPENSEARCH| VectorType.ANALYTICDB | VectorType.MYSCALE | VectorType.ORACLE:
case VectorType.QDRANT | VectorType.WEAVIATE | VectorType.OPENSEARCH| VectorType.ANALYTICDB | VectorType.MYSCALE | VectorType.ORACLE | VectorType.ELASTICSEARCH:
return {
'retrieval_method': [
RetrievalMethod.SEMANTIC_SEARCH.value,

View File

@ -0,0 +1,191 @@
import json
from typing import Any
import requests
from elasticsearch import Elasticsearch
from flask import current_app
from pydantic import BaseModel, model_validator
from core.rag.datasource.entity.embedding import Embeddings
from core.rag.datasource.vdb.vector_base import BaseVector
from core.rag.datasource.vdb.vector_factory import AbstractVectorFactory
from core.rag.datasource.vdb.vector_type import VectorType
from core.rag.models.document import Document
from models.dataset import Dataset
class ElasticSearchConfig(BaseModel):
host: str
port: str
username: str
password: str
@model_validator(mode='before')
def validate_config(cls, values: dict) -> dict:
if not values['host']:
raise ValueError("config HOST is required")
if not values['port']:
raise ValueError("config PORT is required")
if not values['username']:
raise ValueError("config USERNAME is required")
if not values['password']:
raise ValueError("config PASSWORD is required")
return values
class ElasticSearchVector(BaseVector):
def __init__(self, index_name: str, config: ElasticSearchConfig, attributes: list):
super().__init__(index_name.lower())
self._client = self._init_client(config)
self._attributes = attributes
def _init_client(self, config: ElasticSearchConfig) -> Elasticsearch:
try:
client = Elasticsearch(
hosts=f'{config.host}:{config.port}',
basic_auth=(config.username, config.password),
request_timeout=100000,
retry_on_timeout=True,
max_retries=10000,
)
except requests.exceptions.ConnectionError:
raise ConnectionError("Vector database connection error")
return client
def get_type(self) -> str:
return 'elasticsearch'
def add_texts(self, documents: list[Document], embeddings: list[list[float]], **kwargs):
uuids = self._get_uuids(documents)
texts = [d.page_content for d in documents]
metadatas = [d.metadata for d in documents]
if not self._client.indices.exists(index=self._collection_name):
dim = len(embeddings[0])
mapping = {
"properties": {
"text": {
"type": "text"
},
"vector": {
"type": "dense_vector",
"index": True,
"dims": dim,
"similarity": "l2_norm"
},
}
}
self._client.indices.create(index=self._collection_name, mappings=mapping)
added_ids = []
for i, text in enumerate(texts):
self._client.index(index=self._collection_name,
id=uuids[i],
document={
"text": text,
"vector": embeddings[i] if embeddings[i] else None,
"metadata": metadatas[i] if metadatas[i] else {},
})
added_ids.append(uuids[i])
self._client.indices.refresh(index=self._collection_name)
return uuids
def text_exists(self, id: str) -> bool:
return self._client.exists(index=self._collection_name, id=id).__bool__()
def delete_by_ids(self, ids: list[str]) -> None:
for id in ids:
self._client.delete(index=self._collection_name, id=id)
def delete_by_metadata_field(self, key: str, value: str) -> None:
query_str = {
'query': {
'match': {
f'metadata.{key}': f'{value}'
}
}
}
results = self._client.search(index=self._collection_name, body=query_str)
ids = [hit['_id'] for hit in results['hits']['hits']]
if ids:
self.delete_by_ids(ids)
def delete(self) -> None:
self._client.indices.delete(index=self._collection_name)
def search_by_vector(self, query_vector: list[float], **kwargs: Any) -> list[Document]:
query_str = {
"query": {
"script_score": {
"query": {
"match_all": {}
},
"script": {
"source": "cosineSimilarity(params.query_vector, 'vector') + 1.0",
"params": {
"query_vector": query_vector
}
}
}
}
}
results = self._client.search(index=self._collection_name, body=query_str)
docs_and_scores = []
for hit in results['hits']['hits']:
docs_and_scores.append(
(Document(page_content=hit['_source']['text'], metadata=hit['_source']['metadata']), hit['_score']))
docs = []
for doc, score in docs_and_scores:
score_threshold = kwargs.get("score_threshold", .0) if kwargs.get('score_threshold', .0) else 0.0
if score > score_threshold:
doc.metadata['score'] = score
docs.append(doc)
# Sort the documents by score in descending order
docs = sorted(docs, key=lambda x: x.metadata['score'], reverse=True)
return docs
def search_by_full_text(self, query: str, **kwargs: Any) -> list[Document]:
query_str = {
"match": {
"text": query
}
}
results = self._client.search(index=self._collection_name, query=query_str)
docs = []
for hit in results['hits']['hits']:
docs.append(Document(page_content=hit['_source']['text'], metadata=hit['_source']['metadata']))
return docs
def create(self, texts: list[Document], embeddings: list[list[float]], **kwargs):
return self.add_texts(texts, embeddings, **kwargs)
class ElasticSearchVectorFactory(AbstractVectorFactory):
def init_vector(self, dataset: Dataset, attributes: list, embeddings: Embeddings) -> ElasticSearchVector:
if dataset.index_struct_dict:
class_prefix: str = dataset.index_struct_dict['vector_store']['class_prefix']
collection_name = class_prefix
else:
dataset_id = dataset.id
collection_name = Dataset.gen_collection_name_by_id(dataset_id)
dataset.index_struct = json.dumps(
self.gen_index_struct_dict(VectorType.ELASTICSEARCH, collection_name))
config = current_app.config
return ElasticSearchVector(
index_name=collection_name,
config=ElasticSearchConfig(
host=config.get('ELASTICSEARCH_HOST'),
port=config.get('ELASTICSEARCH_PORT'),
username=config.get('ELASTICSEARCH_USERNAME'),
password=config.get('ELASTICSEARCH_PASSWORD'),
),
attributes=[]
)

View File

@ -71,6 +71,9 @@ class Vector:
case VectorType.RELYT:
from core.rag.datasource.vdb.relyt.relyt_vector import RelytVectorFactory
return RelytVectorFactory
case VectorType.ELASTICSEARCH:
from core.rag.datasource.vdb.elasticsearch.elasticsearch_vector import ElasticSearchVectorFactory
return ElasticSearchVectorFactory
case VectorType.TIDB_VECTOR:
from core.rag.datasource.vdb.tidb_vector.tidb_vector import TiDBVectorFactory
return TiDBVectorFactory

View File

@ -15,3 +15,4 @@ class VectorType(str, Enum):
OPENSEARCH = 'opensearch'
TENCENT = 'tencent'
ORACLE = 'oracle'
ELASTICSEARCH = 'elasticsearch'

40
api/poetry.lock generated
View File

@ -2100,6 +2100,44 @@ primp = ">=0.5.5"
dev = ["mypy (>=1.11.0)", "pytest (>=8.3.1)", "pytest-asyncio (>=0.23.8)", "ruff (>=0.5.5)"]
lxml = ["lxml (>=5.2.2)"]
[[package]]
name = "elastic-transport"
version = "8.15.0"
description = "Transport classes and utilities shared among Python Elastic client libraries"
optional = false
python-versions = ">=3.8"
files = [
{file = "elastic_transport-8.15.0-py3-none-any.whl", hash = "sha256:d7080d1dada2b4eee69e7574f9c17a76b42f2895eff428e562f94b0360e158c0"},
{file = "elastic_transport-8.15.0.tar.gz", hash = "sha256:85d62558f9baafb0868c801233a59b235e61d7b4804c28c2fadaa866b6766233"},
]
[package.dependencies]
certifi = "*"
urllib3 = ">=1.26.2,<3"
[package.extras]
develop = ["aiohttp", "furo", "httpx", "opentelemetry-api", "opentelemetry-sdk", "orjson", "pytest", "pytest-asyncio", "pytest-cov", "pytest-httpserver", "pytest-mock", "requests", "respx", "sphinx (>2)", "sphinx-autodoc-typehints", "trustme"]
[[package]]
name = "elasticsearch"
version = "8.14.0"
description = "Python client for Elasticsearch"
optional = false
python-versions = ">=3.7"
files = [
{file = "elasticsearch-8.14.0-py3-none-any.whl", hash = "sha256:cef8ef70a81af027f3da74a4f7d9296b390c636903088439087b8262a468c130"},
{file = "elasticsearch-8.14.0.tar.gz", hash = "sha256:aa2490029dd96f4015b333c1827aa21fd6c0a4d223b00dfb0fe933b8d09a511b"},
]
[package.dependencies]
elastic-transport = ">=8.13,<9"
[package.extras]
async = ["aiohttp (>=3,<4)"]
orjson = ["orjson (>=3)"]
requests = ["requests (>=2.4.0,!=2.32.2,<3.0.0)"]
vectorstore-mmr = ["numpy (>=1)", "simsimd (>=3)"]
[[package]]
name = "emoji"
version = "2.12.1"
@ -9546,4 +9584,4 @@ cffi = ["cffi (>=1.11)"]
[metadata]
lock-version = "2.0"
python-versions = ">=3.10,<3.13"
content-hash = "2b822039247a445f72e04e967aef84f841781e2789b70071acad022f36ba26a5"
content-hash = "05dfa6b9bce9ed8ac21caf58eff1596f146080ab2ab6987924b189be673c22cf"

View File

@ -181,6 +181,7 @@ zhipuai = "1.0.7"
rank-bm25 = "~0.2.2"
openpyxl = "^3.1.5"
kaleido = "0.2.1"
elasticsearch = "8.14.0"
############################################################
# Tool dependencies required by tool implementations

View File

@ -0,0 +1,25 @@
from core.rag.datasource.vdb.elasticsearch.elasticsearch_vector import ElasticSearchConfig, ElasticSearchVector
from tests.integration_tests.vdb.test_vector_store import (
AbstractVectorTest,
setup_mock_redis,
)
class ElasticSearchVectorTest(AbstractVectorTest):
def __init__(self):
super().__init__()
self.attributes = ['doc_id', 'dataset_id', 'document_id', 'doc_hash']
self.vector = ElasticSearchVector(
index_name=self.collection_name.lower(),
config=ElasticSearchConfig(
host='http://localhost',
port='9200',
username='elastic',
password='elastic'
),
attributes=self.attributes
)
def test_elasticsearch_vector(setup_mock_redis):
ElasticSearchVectorTest().run_all_tests()

View File

@ -7,4 +7,5 @@ pytest api/tests/integration_tests/vdb/chroma \
api/tests/integration_tests/vdb/pgvector \
api/tests/integration_tests/vdb/qdrant \
api/tests/integration_tests/vdb/weaviate \
api/tests/integration_tests/vdb/elasticsearch \
api/tests/integration_tests/vdb/test_vector_store.py

View File

@ -169,6 +169,11 @@ services:
CHROMA_DATABASE: default_database
CHROMA_AUTH_PROVIDER: chromadb.auth.token_authn.TokenAuthClientProvider
CHROMA_AUTH_CREDENTIALS: xxxxxx
# ElasticSearch Config
ELASTICSEARCH_HOST: 127.0.0.1
ELASTICSEARCH_PORT: 9200
ELASTICSEARCH_USERNAME: elastic
ELASTICSEARCH_PASSWORD: elastic
# Mail configuration, support: resend, smtp
MAIL_TYPE: ''
# default send from email address, if not specified
@ -371,6 +376,11 @@ services:
CHROMA_DATABASE: default_database
CHROMA_AUTH_PROVIDER: chromadb.auth.token_authn.TokenAuthClientProvider
CHROMA_AUTH_CREDENTIALS: xxxxxx
# ElasticSearch Config
ELASTICSEARCH_HOST: 127.0.0.1
ELASTICSEARCH_PORT: 9200
ELASTICSEARCH_USERNAME: elastic
ELASTICSEARCH_PASSWORD: elastic
# Notion import configuration, support public and internal
NOTION_INTEGRATION_TYPE: public
NOTION_CLIENT_SECRET: you-client-secret

View File

@ -125,6 +125,10 @@ x-shared-env: &shared-api-worker-env
CHROMA_DATABASE: ${CHROMA_DATABASE:-default_database}
CHROMA_AUTH_PROVIDER: ${CHROMA_AUTH_PROVIDER:-chromadb.auth.token_authn.TokenAuthClientProvider}
CHROMA_AUTH_CREDENTIALS: ${CHROMA_AUTH_CREDENTIALS:-}
ELASTICSEARCH_HOST: ${ELASTICSEARCH_HOST:-127.0.0.1}
ELASTICSEARCH_PORT: ${ELASTICSEARCH_PORT:-9200}
ELASTICSEARCH_USERNAME: ${ELASTICSEARCH_USERNAME:-elastic}
ELASTICSEARCH_PASSWORD: ${ELASTICSEARCH_PASSWORD:-elastic}
# AnalyticDB configuration
ANALYTICDB_KEY_ID: ${ANALYTICDB_KEY_ID:-}
ANALYTICDB_KEY_SECRET: ${ANALYTICDB_KEY_SECRET:-}
@ -595,6 +599,27 @@ services:
ports:
- "${MYSCALE_PORT:-8123}:${MYSCALE_PORT:-8123}"
elasticsearch:
image: docker.elastic.co/elasticsearch/elasticsearch:8.14.3
container_name: elasticsearch
profiles:
- elasticsearch
restart: always
environment:
- "ELASTIC_PASSWORD=${ELASTICSEARCH_USERNAME:-elastic}"
- "cluster.name=dify-es-cluster"
- "node.name=dify-es0"
- "discovery.type=single-node"
- "xpack.security.http.ssl.enabled=false"
- "xpack.license.self_generated.type=trial"
ports:
- "${ELASTICSEARCH_PORT:-9200}:${ELASTICSEARCH_PORT:-9200}"
healthcheck:
test: ["CMD", "curl", "-s", "http://localhost:9200/_cluster/health?pretty"]
interval: 30s
timeout: 10s
retries: 50
# unstructured .
# (if used, you need to set ETL_TYPE to Unstructured in the api & worker service.)
unstructured:

File diff suppressed because it is too large Load Diff