mirror of
https://github.com/langgenius/dify.git
synced 2024-11-16 03:32:23 +08:00
feat: bedrock model runtime enhancement (#6299)
This commit is contained in:
parent
cc0c826f36
commit
ed9e692263
|
@ -48,6 +48,28 @@ logger = logging.getLogger(__name__)
|
|||
|
||||
class BedrockLargeLanguageModel(LargeLanguageModel):
|
||||
|
||||
# please refer to the documentation: https://docs.aws.amazon.com/bedrock/latest/userguide/conversation-inference.html
|
||||
# TODO There is invoke issue: context limit on Cohere Model, will add them after fixed.
|
||||
CONVERSE_API_ENABLED_MODEL_INFO=[
|
||||
{'prefix': 'anthropic.claude-v2', 'support_system_prompts': True, 'support_tool_use': False},
|
||||
{'prefix': 'anthropic.claude-v1', 'support_system_prompts': True, 'support_tool_use': False},
|
||||
{'prefix': 'anthropic.claude-3', 'support_system_prompts': True, 'support_tool_use': True},
|
||||
{'prefix': 'meta.llama', 'support_system_prompts': True, 'support_tool_use': False},
|
||||
{'prefix': 'mistral.mistral-7b-instruct', 'support_system_prompts': False, 'support_tool_use': False},
|
||||
{'prefix': 'mistral.mixtral-8x7b-instruct', 'support_system_prompts': False, 'support_tool_use': False},
|
||||
{'prefix': 'mistral.mistral-large', 'support_system_prompts': True, 'support_tool_use': True},
|
||||
{'prefix': 'mistral.mistral-small', 'support_system_prompts': True, 'support_tool_use': True},
|
||||
{'prefix': 'amazon.titan', 'support_system_prompts': False, 'support_tool_use': False}
|
||||
]
|
||||
|
||||
@staticmethod
|
||||
def _find_model_info(model_id):
|
||||
for model in BedrockLargeLanguageModel.CONVERSE_API_ENABLED_MODEL_INFO:
|
||||
if model_id.startswith(model['prefix']):
|
||||
return model
|
||||
logger.info(f"current model id: {model_id} did not support by Converse API")
|
||||
return None
|
||||
|
||||
def _invoke(self, model: str, credentials: dict,
|
||||
prompt_messages: list[PromptMessage], model_parameters: dict,
|
||||
tools: Optional[list[PromptMessageTool]] = None, stop: Optional[list[str]] = None,
|
||||
|
@ -66,10 +88,12 @@ class BedrockLargeLanguageModel(LargeLanguageModel):
|
|||
:param user: unique user id
|
||||
:return: full response or stream response chunk generator result
|
||||
"""
|
||||
# TODO: consolidate different invocation methods for models based on base model capabilities
|
||||
# invoke anthropic models via boto3 client
|
||||
if "anthropic" in model:
|
||||
return self._generate_anthropic(model, credentials, prompt_messages, model_parameters, stop, stream, user, tools)
|
||||
|
||||
model_info= BedrockLargeLanguageModel._find_model_info(model)
|
||||
if model_info:
|
||||
model_info['model'] = model
|
||||
# invoke models via boto3 converse API
|
||||
return self._generate_with_converse(model_info, credentials, prompt_messages, model_parameters, stop, stream, user, tools)
|
||||
# invoke Cohere models via boto3 client
|
||||
if "cohere.command-r" in model:
|
||||
return self._generate_cohere_chat(model, credentials, prompt_messages, model_parameters, stop, stream, user, tools)
|
||||
|
@ -151,12 +175,12 @@ class BedrockLargeLanguageModel(LargeLanguageModel):
|
|||
return self._handle_generate_response(model, credentials, response, prompt_messages)
|
||||
|
||||
|
||||
def _generate_anthropic(self, model: str, credentials: dict, prompt_messages: list[PromptMessage], model_parameters: dict,
|
||||
def _generate_with_converse(self, model_info: dict, credentials: dict, prompt_messages: list[PromptMessage], model_parameters: dict,
|
||||
stop: Optional[list[str]] = None, stream: bool = True, user: Optional[str] = None, tools: Optional[list[PromptMessageTool]] = None,) -> Union[LLMResult, Generator]:
|
||||
"""
|
||||
Invoke Anthropic large language model
|
||||
Invoke large language model with converse API
|
||||
|
||||
:param model: model name
|
||||
:param model_info: model information
|
||||
:param credentials: model credentials
|
||||
:param prompt_messages: prompt messages
|
||||
:param model_parameters: model parameters
|
||||
|
@ -173,24 +197,24 @@ class BedrockLargeLanguageModel(LargeLanguageModel):
|
|||
inference_config, additional_model_fields = self._convert_converse_api_model_parameters(model_parameters, stop)
|
||||
|
||||
parameters = {
|
||||
'modelId': model,
|
||||
'modelId': model_info['model'],
|
||||
'messages': prompt_message_dicts,
|
||||
'inferenceConfig': inference_config,
|
||||
'additionalModelRequestFields': additional_model_fields,
|
||||
}
|
||||
|
||||
if system and len(system) > 0:
|
||||
if model_info['support_system_prompts'] and system and len(system) > 0:
|
||||
parameters['system'] = system
|
||||
|
||||
if tools:
|
||||
if model_info['support_tool_use'] and tools:
|
||||
parameters['toolConfig'] = self._convert_converse_tool_config(tools=tools)
|
||||
|
||||
if stream:
|
||||
response = bedrock_client.converse_stream(**parameters)
|
||||
return self._handle_converse_stream_response(model, credentials, response, prompt_messages)
|
||||
return self._handle_converse_stream_response(model_info['model'], credentials, response, prompt_messages)
|
||||
else:
|
||||
response = bedrock_client.converse(**parameters)
|
||||
return self._handle_converse_response(model, credentials, response, prompt_messages)
|
||||
return self._handle_converse_response(model_info['model'], credentials, response, prompt_messages)
|
||||
|
||||
def _handle_converse_response(self, model: str, credentials: dict, response: dict,
|
||||
prompt_messages: list[PromptMessage]) -> LLMResult:
|
||||
|
@ -203,10 +227,30 @@ class BedrockLargeLanguageModel(LargeLanguageModel):
|
|||
:param prompt_messages: prompt messages
|
||||
:return: full response chunk generator result
|
||||
"""
|
||||
response_content = response['output']['message']['content']
|
||||
# transform assistant message to prompt message
|
||||
assistant_prompt_message = AssistantPromptMessage(
|
||||
content=response['output']['message']['content'][0]['text']
|
||||
)
|
||||
if response['stopReason'] == 'tool_use':
|
||||
tool_calls = []
|
||||
text, tool_use = self._extract_tool_use(response_content)
|
||||
|
||||
tool_call = AssistantPromptMessage.ToolCall(
|
||||
id=tool_use['toolUseId'],
|
||||
type='function',
|
||||
function=AssistantPromptMessage.ToolCall.ToolCallFunction(
|
||||
name=tool_use['name'],
|
||||
arguments=json.dumps(tool_use['input'])
|
||||
)
|
||||
)
|
||||
tool_calls.append(tool_call)
|
||||
|
||||
assistant_prompt_message = AssistantPromptMessage(
|
||||
content=text,
|
||||
tool_calls=tool_calls
|
||||
)
|
||||
else:
|
||||
assistant_prompt_message = AssistantPromptMessage(
|
||||
content=response_content[0]['text']
|
||||
)
|
||||
|
||||
# calculate num tokens
|
||||
if response['usage']:
|
||||
|
@ -229,6 +273,18 @@ class BedrockLargeLanguageModel(LargeLanguageModel):
|
|||
)
|
||||
return result
|
||||
|
||||
def _extract_tool_use(self, content:dict)-> tuple[str, dict]:
|
||||
tool_use = {}
|
||||
text = ''
|
||||
for item in content:
|
||||
if 'toolUse' in item:
|
||||
tool_use = item['toolUse']
|
||||
elif 'text' in item:
|
||||
text = item['text']
|
||||
else:
|
||||
raise ValueError(f"Got unknown item: {item}")
|
||||
return text, tool_use
|
||||
|
||||
def _handle_converse_stream_response(self, model: str, credentials: dict, response: dict,
|
||||
prompt_messages: list[PromptMessage], ) -> Generator:
|
||||
"""
|
||||
|
@ -340,14 +396,12 @@ class BedrockLargeLanguageModel(LargeLanguageModel):
|
|||
"""
|
||||
|
||||
system = []
|
||||
prompt_message_dicts = []
|
||||
for message in prompt_messages:
|
||||
if isinstance(message, SystemPromptMessage):
|
||||
message.content=message.content.strip()
|
||||
system.append({"text": message.content})
|
||||
|
||||
prompt_message_dicts = []
|
||||
for message in prompt_messages:
|
||||
if not isinstance(message, SystemPromptMessage):
|
||||
else:
|
||||
prompt_message_dicts.append(self._convert_prompt_message_to_dict(message))
|
||||
|
||||
return system, prompt_message_dicts
|
||||
|
@ -448,7 +502,6 @@ class BedrockLargeLanguageModel(LargeLanguageModel):
|
|||
}
|
||||
else:
|
||||
raise ValueError(f"Got unknown type {message}")
|
||||
|
||||
return message_dict
|
||||
|
||||
def get_num_tokens(self, model: str, credentials: dict, prompt_messages: list[PromptMessage] | str,
|
||||
|
|
|
@ -2,6 +2,9 @@ model: mistral.mistral-large-2402-v1:0
|
|||
label:
|
||||
en_US: Mistral Large
|
||||
model_type: llm
|
||||
features:
|
||||
- tool-call
|
||||
- agent-thought
|
||||
model_properties:
|
||||
mode: completion
|
||||
context_size: 32000
|
||||
|
|
|
@ -2,6 +2,8 @@ model: mistral.mistral-small-2402-v1:0
|
|||
label:
|
||||
en_US: Mistral Small
|
||||
model_type: llm
|
||||
features:
|
||||
- tool-call
|
||||
model_properties:
|
||||
mode: completion
|
||||
context_size: 32000
|
||||
|
|
Loading…
Reference in New Issue
Block a user