mirror of
https://github.com/langgenius/dify.git
synced 2024-11-16 11:42:29 +08:00
Merge branch 'main' of github.com:langgenius/dify into feat/plugins
This commit is contained in:
commit
e8127756e0
9
.gitignore
vendored
9
.gitignore
vendored
|
@ -153,6 +153,9 @@ docker-legacy/volumes/etcd/*
|
|||
docker-legacy/volumes/minio/*
|
||||
docker-legacy/volumes/milvus/*
|
||||
docker-legacy/volumes/chroma/*
|
||||
docker-legacy/volumes/opensearch/data/*
|
||||
docker-legacy/volumes/pgvectors/data/*
|
||||
docker-legacy/volumes/pgvector/data/*
|
||||
|
||||
docker/volumes/app/storage/*
|
||||
docker/volumes/certbot/*
|
||||
|
@ -164,6 +167,12 @@ docker/volumes/etcd/*
|
|||
docker/volumes/minio/*
|
||||
docker/volumes/milvus/*
|
||||
docker/volumes/chroma/*
|
||||
docker/volumes/opensearch/data/*
|
||||
docker/volumes/myscale/data/*
|
||||
docker/volumes/myscale/log/*
|
||||
docker/volumes/unstructured/*
|
||||
docker/volumes/pgvector/data/*
|
||||
docker/volumes/pgvecto_rs/data/*
|
||||
|
||||
docker/nginx/conf.d/default.conf
|
||||
docker/middleware.env
|
||||
|
|
|
@ -164,7 +164,7 @@ def initialize_extensions(app):
|
|||
@login_manager.request_loader
|
||||
def load_user_from_request(request_from_flask_login):
|
||||
"""Load user based on the request."""
|
||||
if request.blueprint not in ["console", "inner_api"]:
|
||||
if request.blueprint not in {"console", "inner_api"}:
|
||||
return None
|
||||
# Check if the user_id contains a dot, indicating the old format
|
||||
auth_header = request.headers.get("Authorization", "")
|
||||
|
|
|
@ -140,9 +140,9 @@ def reset_encrypt_key_pair():
|
|||
@click.command("vdb-migrate", help="migrate vector db.")
|
||||
@click.option("--scope", default="all", prompt=False, help="The scope of vector database to migrate, Default is All.")
|
||||
def vdb_migrate(scope: str):
|
||||
if scope in ["knowledge", "all"]:
|
||||
if scope in {"knowledge", "all"}:
|
||||
migrate_knowledge_vector_database()
|
||||
if scope in ["annotation", "all"]:
|
||||
if scope in {"annotation", "all"}:
|
||||
migrate_annotation_vector_database()
|
||||
|
||||
|
||||
|
|
|
@ -94,7 +94,7 @@ class ChatMessageTextApi(Resource):
|
|||
message_id = args.get("message_id", None)
|
||||
text = args.get("text", None)
|
||||
if (
|
||||
app_model.mode in [AppMode.ADVANCED_CHAT.value, AppMode.WORKFLOW.value]
|
||||
app_model.mode in {AppMode.ADVANCED_CHAT.value, AppMode.WORKFLOW.value}
|
||||
and app_model.workflow
|
||||
and app_model.workflow.features_dict
|
||||
):
|
||||
|
|
|
@ -71,7 +71,7 @@ class OAuthCallback(Resource):
|
|||
|
||||
account = _generate_account(provider, user_info)
|
||||
# Check account status
|
||||
if account.status == AccountStatus.BANNED.value or account.status == AccountStatus.CLOSED.value:
|
||||
if account.status in {AccountStatus.BANNED.value, AccountStatus.CLOSED.value}:
|
||||
return {"error": "Account is banned or closed."}, 403
|
||||
|
||||
if account.status == AccountStatus.PENDING.value:
|
||||
|
|
|
@ -354,7 +354,7 @@ class DocumentIndexingEstimateApi(DocumentResource):
|
|||
document_id = str(document_id)
|
||||
document = self.get_document(dataset_id, document_id)
|
||||
|
||||
if document.indexing_status in ["completed", "error"]:
|
||||
if document.indexing_status in {"completed", "error"}:
|
||||
raise DocumentAlreadyFinishedError()
|
||||
|
||||
data_process_rule = document.dataset_process_rule
|
||||
|
@ -421,7 +421,7 @@ class DocumentBatchIndexingEstimateApi(DocumentResource):
|
|||
info_list = []
|
||||
extract_settings = []
|
||||
for document in documents:
|
||||
if document.indexing_status in ["completed", "error"]:
|
||||
if document.indexing_status in {"completed", "error"}:
|
||||
raise DocumentAlreadyFinishedError()
|
||||
data_source_info = document.data_source_info_dict
|
||||
# format document files info
|
||||
|
@ -665,7 +665,7 @@ class DocumentProcessingApi(DocumentResource):
|
|||
db.session.commit()
|
||||
|
||||
elif action == "resume":
|
||||
if document.indexing_status not in ["paused", "error"]:
|
||||
if document.indexing_status not in {"paused", "error"}:
|
||||
raise InvalidActionError("Document not in paused or error state.")
|
||||
|
||||
document.paused_by = None
|
||||
|
|
|
@ -81,7 +81,7 @@ class ChatTextApi(InstalledAppResource):
|
|||
message_id = args.get("message_id", None)
|
||||
text = args.get("text", None)
|
||||
if (
|
||||
app_model.mode in [AppMode.ADVANCED_CHAT.value, AppMode.WORKFLOW.value]
|
||||
app_model.mode in {AppMode.ADVANCED_CHAT.value, AppMode.WORKFLOW.value}
|
||||
and app_model.workflow
|
||||
and app_model.workflow.features_dict
|
||||
):
|
||||
|
|
|
@ -92,7 +92,7 @@ class ChatApi(InstalledAppResource):
|
|||
def post(self, installed_app):
|
||||
app_model = installed_app.app
|
||||
app_mode = AppMode.value_of(app_model.mode)
|
||||
if app_mode not in [AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT]:
|
||||
if app_mode not in {AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT}:
|
||||
raise NotChatAppError()
|
||||
|
||||
parser = reqparse.RequestParser()
|
||||
|
@ -140,7 +140,7 @@ class ChatStopApi(InstalledAppResource):
|
|||
def post(self, installed_app, task_id):
|
||||
app_model = installed_app.app
|
||||
app_mode = AppMode.value_of(app_model.mode)
|
||||
if app_mode not in [AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT]:
|
||||
if app_mode not in {AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT}:
|
||||
raise NotChatAppError()
|
||||
|
||||
AppQueueManager.set_stop_flag(task_id, InvokeFrom.EXPLORE, current_user.id)
|
||||
|
|
|
@ -20,7 +20,7 @@ class ConversationListApi(InstalledAppResource):
|
|||
def get(self, installed_app):
|
||||
app_model = installed_app.app
|
||||
app_mode = AppMode.value_of(app_model.mode)
|
||||
if app_mode not in [AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT]:
|
||||
if app_mode not in {AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT}:
|
||||
raise NotChatAppError()
|
||||
|
||||
parser = reqparse.RequestParser()
|
||||
|
@ -50,7 +50,7 @@ class ConversationApi(InstalledAppResource):
|
|||
def delete(self, installed_app, c_id):
|
||||
app_model = installed_app.app
|
||||
app_mode = AppMode.value_of(app_model.mode)
|
||||
if app_mode not in [AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT]:
|
||||
if app_mode not in {AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT}:
|
||||
raise NotChatAppError()
|
||||
|
||||
conversation_id = str(c_id)
|
||||
|
@ -68,7 +68,7 @@ class ConversationRenameApi(InstalledAppResource):
|
|||
def post(self, installed_app, c_id):
|
||||
app_model = installed_app.app
|
||||
app_mode = AppMode.value_of(app_model.mode)
|
||||
if app_mode not in [AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT]:
|
||||
if app_mode not in {AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT}:
|
||||
raise NotChatAppError()
|
||||
|
||||
conversation_id = str(c_id)
|
||||
|
@ -90,7 +90,7 @@ class ConversationPinApi(InstalledAppResource):
|
|||
def patch(self, installed_app, c_id):
|
||||
app_model = installed_app.app
|
||||
app_mode = AppMode.value_of(app_model.mode)
|
||||
if app_mode not in [AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT]:
|
||||
if app_mode not in {AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT}:
|
||||
raise NotChatAppError()
|
||||
|
||||
conversation_id = str(c_id)
|
||||
|
@ -107,7 +107,7 @@ class ConversationUnPinApi(InstalledAppResource):
|
|||
def patch(self, installed_app, c_id):
|
||||
app_model = installed_app.app
|
||||
app_mode = AppMode.value_of(app_model.mode)
|
||||
if app_mode not in [AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT]:
|
||||
if app_mode not in {AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT}:
|
||||
raise NotChatAppError()
|
||||
|
||||
conversation_id = str(c_id)
|
||||
|
|
|
@ -31,7 +31,7 @@ class InstalledAppsListApi(Resource):
|
|||
"app_owner_tenant_id": installed_app.app_owner_tenant_id,
|
||||
"is_pinned": installed_app.is_pinned,
|
||||
"last_used_at": installed_app.last_used_at,
|
||||
"editable": current_user.role in ["owner", "admin"],
|
||||
"editable": current_user.role in {"owner", "admin"},
|
||||
"uninstallable": current_tenant_id == installed_app.app_owner_tenant_id,
|
||||
}
|
||||
for installed_app in installed_apps
|
||||
|
|
|
@ -40,7 +40,7 @@ class MessageListApi(InstalledAppResource):
|
|||
app_model = installed_app.app
|
||||
|
||||
app_mode = AppMode.value_of(app_model.mode)
|
||||
if app_mode not in [AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT]:
|
||||
if app_mode not in {AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT}:
|
||||
raise NotChatAppError()
|
||||
|
||||
parser = reqparse.RequestParser()
|
||||
|
@ -125,7 +125,7 @@ class MessageSuggestedQuestionApi(InstalledAppResource):
|
|||
def get(self, installed_app, message_id):
|
||||
app_model = installed_app.app
|
||||
app_mode = AppMode.value_of(app_model.mode)
|
||||
if app_mode not in [AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT]:
|
||||
if app_mode not in {AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT}:
|
||||
raise NotChatAppError()
|
||||
|
||||
message_id = str(message_id)
|
||||
|
|
|
@ -43,7 +43,7 @@ class AppParameterApi(InstalledAppResource):
|
|||
"""Retrieve app parameters."""
|
||||
app_model = installed_app.app
|
||||
|
||||
if app_model.mode in [AppMode.ADVANCED_CHAT.value, AppMode.WORKFLOW.value]:
|
||||
if app_model.mode in {AppMode.ADVANCED_CHAT.value, AppMode.WORKFLOW.value}:
|
||||
workflow = app_model.workflow
|
||||
if workflow is None:
|
||||
raise AppUnavailableError()
|
||||
|
|
|
@ -194,7 +194,7 @@ class WebappLogoWorkspaceApi(Resource):
|
|||
raise TooManyFilesError()
|
||||
|
||||
extension = file.filename.split(".")[-1]
|
||||
if extension.lower() not in ["svg", "png"]:
|
||||
if extension.lower() not in {"svg", "png"}:
|
||||
raise UnsupportedFileTypeError()
|
||||
|
||||
try:
|
||||
|
|
|
@ -42,7 +42,7 @@ class AppParameterApi(Resource):
|
|||
@marshal_with(parameters_fields)
|
||||
def get(self, app_model: App):
|
||||
"""Retrieve app parameters."""
|
||||
if app_model.mode in [AppMode.ADVANCED_CHAT.value, AppMode.WORKFLOW.value]:
|
||||
if app_model.mode in {AppMode.ADVANCED_CHAT.value, AppMode.WORKFLOW.value}:
|
||||
workflow = app_model.workflow
|
||||
if workflow is None:
|
||||
raise AppUnavailableError()
|
||||
|
|
|
@ -79,7 +79,7 @@ class TextApi(Resource):
|
|||
message_id = args.get("message_id", None)
|
||||
text = args.get("text", None)
|
||||
if (
|
||||
app_model.mode in [AppMode.ADVANCED_CHAT.value, AppMode.WORKFLOW.value]
|
||||
app_model.mode in {AppMode.ADVANCED_CHAT.value, AppMode.WORKFLOW.value}
|
||||
and app_model.workflow
|
||||
and app_model.workflow.features_dict
|
||||
):
|
||||
|
|
|
@ -96,7 +96,7 @@ class ChatApi(Resource):
|
|||
@validate_app_token(fetch_user_arg=FetchUserArg(fetch_from=WhereisUserArg.JSON, required=True))
|
||||
def post(self, app_model: App, end_user: EndUser):
|
||||
app_mode = AppMode.value_of(app_model.mode)
|
||||
if app_mode not in [AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT]:
|
||||
if app_mode not in {AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT}:
|
||||
raise NotChatAppError()
|
||||
|
||||
parser = reqparse.RequestParser()
|
||||
|
@ -144,7 +144,7 @@ class ChatStopApi(Resource):
|
|||
@validate_app_token(fetch_user_arg=FetchUserArg(fetch_from=WhereisUserArg.JSON, required=True))
|
||||
def post(self, app_model: App, end_user: EndUser, task_id):
|
||||
app_mode = AppMode.value_of(app_model.mode)
|
||||
if app_mode not in [AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT]:
|
||||
if app_mode not in {AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT}:
|
||||
raise NotChatAppError()
|
||||
|
||||
AppQueueManager.set_stop_flag(task_id, InvokeFrom.SERVICE_API, end_user.id)
|
||||
|
|
|
@ -18,7 +18,7 @@ class ConversationApi(Resource):
|
|||
@marshal_with(conversation_infinite_scroll_pagination_fields)
|
||||
def get(self, app_model: App, end_user: EndUser):
|
||||
app_mode = AppMode.value_of(app_model.mode)
|
||||
if app_mode not in [AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT]:
|
||||
if app_mode not in {AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT}:
|
||||
raise NotChatAppError()
|
||||
|
||||
parser = reqparse.RequestParser()
|
||||
|
@ -52,7 +52,7 @@ class ConversationDetailApi(Resource):
|
|||
@marshal_with(simple_conversation_fields)
|
||||
def delete(self, app_model: App, end_user: EndUser, c_id):
|
||||
app_mode = AppMode.value_of(app_model.mode)
|
||||
if app_mode not in [AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT]:
|
||||
if app_mode not in {AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT}:
|
||||
raise NotChatAppError()
|
||||
|
||||
conversation_id = str(c_id)
|
||||
|
@ -69,7 +69,7 @@ class ConversationRenameApi(Resource):
|
|||
@marshal_with(simple_conversation_fields)
|
||||
def post(self, app_model: App, end_user: EndUser, c_id):
|
||||
app_mode = AppMode.value_of(app_model.mode)
|
||||
if app_mode not in [AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT]:
|
||||
if app_mode not in {AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT}:
|
||||
raise NotChatAppError()
|
||||
|
||||
conversation_id = str(c_id)
|
||||
|
|
|
@ -76,7 +76,7 @@ class MessageListApi(Resource):
|
|||
@marshal_with(message_infinite_scroll_pagination_fields)
|
||||
def get(self, app_model: App, end_user: EndUser):
|
||||
app_mode = AppMode.value_of(app_model.mode)
|
||||
if app_mode not in [AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT]:
|
||||
if app_mode not in {AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT}:
|
||||
raise NotChatAppError()
|
||||
|
||||
parser = reqparse.RequestParser()
|
||||
|
@ -117,7 +117,7 @@ class MessageSuggestedApi(Resource):
|
|||
def get(self, app_model: App, end_user: EndUser, message_id):
|
||||
message_id = str(message_id)
|
||||
app_mode = AppMode.value_of(app_model.mode)
|
||||
if app_mode not in [AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT]:
|
||||
if app_mode not in {AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT}:
|
||||
raise NotChatAppError()
|
||||
|
||||
try:
|
||||
|
|
|
@ -41,7 +41,7 @@ class AppParameterApi(WebApiResource):
|
|||
@marshal_with(parameters_fields)
|
||||
def get(self, app_model: App, end_user):
|
||||
"""Retrieve app parameters."""
|
||||
if app_model.mode in [AppMode.ADVANCED_CHAT.value, AppMode.WORKFLOW.value]:
|
||||
if app_model.mode in {AppMode.ADVANCED_CHAT.value, AppMode.WORKFLOW.value}:
|
||||
workflow = app_model.workflow
|
||||
if workflow is None:
|
||||
raise AppUnavailableError()
|
||||
|
|
|
@ -78,7 +78,7 @@ class TextApi(WebApiResource):
|
|||
message_id = args.get("message_id", None)
|
||||
text = args.get("text", None)
|
||||
if (
|
||||
app_model.mode in [AppMode.ADVANCED_CHAT.value, AppMode.WORKFLOW.value]
|
||||
app_model.mode in {AppMode.ADVANCED_CHAT.value, AppMode.WORKFLOW.value}
|
||||
and app_model.workflow
|
||||
and app_model.workflow.features_dict
|
||||
):
|
||||
|
|
|
@ -87,7 +87,7 @@ class CompletionStopApi(WebApiResource):
|
|||
class ChatApi(WebApiResource):
|
||||
def post(self, app_model, end_user):
|
||||
app_mode = AppMode.value_of(app_model.mode)
|
||||
if app_mode not in [AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT]:
|
||||
if app_mode not in {AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT}:
|
||||
raise NotChatAppError()
|
||||
|
||||
parser = reqparse.RequestParser()
|
||||
|
@ -136,7 +136,7 @@ class ChatApi(WebApiResource):
|
|||
class ChatStopApi(WebApiResource):
|
||||
def post(self, app_model, end_user, task_id):
|
||||
app_mode = AppMode.value_of(app_model.mode)
|
||||
if app_mode not in [AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT]:
|
||||
if app_mode not in {AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT}:
|
||||
raise NotChatAppError()
|
||||
|
||||
AppQueueManager.set_stop_flag(task_id, InvokeFrom.WEB_APP, end_user.id)
|
||||
|
|
|
@ -18,7 +18,7 @@ class ConversationListApi(WebApiResource):
|
|||
@marshal_with(conversation_infinite_scroll_pagination_fields)
|
||||
def get(self, app_model, end_user):
|
||||
app_mode = AppMode.value_of(app_model.mode)
|
||||
if app_mode not in [AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT]:
|
||||
if app_mode not in {AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT}:
|
||||
raise NotChatAppError()
|
||||
|
||||
parser = reqparse.RequestParser()
|
||||
|
@ -56,7 +56,7 @@ class ConversationListApi(WebApiResource):
|
|||
class ConversationApi(WebApiResource):
|
||||
def delete(self, app_model, end_user, c_id):
|
||||
app_mode = AppMode.value_of(app_model.mode)
|
||||
if app_mode not in [AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT]:
|
||||
if app_mode not in {AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT}:
|
||||
raise NotChatAppError()
|
||||
|
||||
conversation_id = str(c_id)
|
||||
|
@ -73,7 +73,7 @@ class ConversationRenameApi(WebApiResource):
|
|||
@marshal_with(simple_conversation_fields)
|
||||
def post(self, app_model, end_user, c_id):
|
||||
app_mode = AppMode.value_of(app_model.mode)
|
||||
if app_mode not in [AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT]:
|
||||
if app_mode not in {AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT}:
|
||||
raise NotChatAppError()
|
||||
|
||||
conversation_id = str(c_id)
|
||||
|
@ -92,7 +92,7 @@ class ConversationRenameApi(WebApiResource):
|
|||
class ConversationPinApi(WebApiResource):
|
||||
def patch(self, app_model, end_user, c_id):
|
||||
app_mode = AppMode.value_of(app_model.mode)
|
||||
if app_mode not in [AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT]:
|
||||
if app_mode not in {AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT}:
|
||||
raise NotChatAppError()
|
||||
|
||||
conversation_id = str(c_id)
|
||||
|
@ -108,7 +108,7 @@ class ConversationPinApi(WebApiResource):
|
|||
class ConversationUnPinApi(WebApiResource):
|
||||
def patch(self, app_model, end_user, c_id):
|
||||
app_mode = AppMode.value_of(app_model.mode)
|
||||
if app_mode not in [AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT]:
|
||||
if app_mode not in {AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT}:
|
||||
raise NotChatAppError()
|
||||
|
||||
conversation_id = str(c_id)
|
||||
|
|
|
@ -78,7 +78,7 @@ class MessageListApi(WebApiResource):
|
|||
@marshal_with(message_infinite_scroll_pagination_fields)
|
||||
def get(self, app_model, end_user):
|
||||
app_mode = AppMode.value_of(app_model.mode)
|
||||
if app_mode not in [AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT]:
|
||||
if app_mode not in {AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT}:
|
||||
raise NotChatAppError()
|
||||
|
||||
parser = reqparse.RequestParser()
|
||||
|
@ -160,7 +160,7 @@ class MessageMoreLikeThisApi(WebApiResource):
|
|||
class MessageSuggestedQuestionApi(WebApiResource):
|
||||
def get(self, app_model, end_user, message_id):
|
||||
app_mode = AppMode.value_of(app_model.mode)
|
||||
if app_mode not in [AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT]:
|
||||
if app_mode not in {AppMode.CHAT, AppMode.AGENT_CHAT, AppMode.ADVANCED_CHAT}:
|
||||
raise NotCompletionAppError()
|
||||
|
||||
message_id = str(message_id)
|
||||
|
|
|
@ -90,7 +90,7 @@ class CotAgentOutputParser:
|
|||
|
||||
if not in_code_block and not in_json:
|
||||
if delta.lower() == action_str[action_idx] and action_idx == 0:
|
||||
if last_character not in ["\n", " ", ""]:
|
||||
if last_character not in {"\n", " ", ""}:
|
||||
index += steps
|
||||
yield delta
|
||||
continue
|
||||
|
@ -117,7 +117,7 @@ class CotAgentOutputParser:
|
|||
action_idx = 0
|
||||
|
||||
if delta.lower() == thought_str[thought_idx] and thought_idx == 0:
|
||||
if last_character not in ["\n", " ", ""]:
|
||||
if last_character not in {"\n", " ", ""}:
|
||||
index += steps
|
||||
yield delta
|
||||
continue
|
||||
|
|
|
@ -29,7 +29,7 @@ class BaseAppConfigManager:
|
|||
additional_features.show_retrieve_source = RetrievalResourceConfigManager.convert(config=config_dict)
|
||||
|
||||
additional_features.file_upload = FileUploadConfigManager.convert(
|
||||
config=config_dict, is_vision=app_mode in [AppMode.CHAT, AppMode.COMPLETION, AppMode.AGENT_CHAT]
|
||||
config=config_dict, is_vision=app_mode in {AppMode.CHAT, AppMode.COMPLETION, AppMode.AGENT_CHAT}
|
||||
)
|
||||
|
||||
additional_features.opening_statement, additional_features.suggested_questions = (
|
||||
|
|
|
@ -18,7 +18,7 @@ class AgentConfigManager:
|
|||
|
||||
if agent_strategy == "function_call":
|
||||
strategy = AgentEntity.Strategy.FUNCTION_CALLING
|
||||
elif agent_strategy == "cot" or agent_strategy == "react":
|
||||
elif agent_strategy in {"cot", "react"}:
|
||||
strategy = AgentEntity.Strategy.CHAIN_OF_THOUGHT
|
||||
else:
|
||||
# old configs, try to detect default strategy
|
||||
|
@ -43,10 +43,10 @@ class AgentConfigManager:
|
|||
|
||||
agent_tools.append(AgentToolEntity(**agent_tool_properties))
|
||||
|
||||
if "strategy" in config["agent_mode"] and config["agent_mode"]["strategy"] not in [
|
||||
if "strategy" in config["agent_mode"] and config["agent_mode"]["strategy"] not in {
|
||||
"react_router",
|
||||
"router",
|
||||
]:
|
||||
}:
|
||||
agent_prompt = agent_dict.get("prompt", None) or {}
|
||||
# check model mode
|
||||
model_mode = config.get("model", {}).get("mode", "completion")
|
||||
|
|
|
@ -167,7 +167,7 @@ class DatasetConfigManager:
|
|||
config["agent_mode"]["strategy"] = PlanningStrategy.ROUTER.value
|
||||
|
||||
has_datasets = False
|
||||
if config["agent_mode"]["strategy"] in [PlanningStrategy.ROUTER.value, PlanningStrategy.REACT_ROUTER.value]:
|
||||
if config["agent_mode"]["strategy"] in {PlanningStrategy.ROUTER.value, PlanningStrategy.REACT_ROUTER.value}:
|
||||
for tool in config["agent_mode"]["tools"]:
|
||||
key = list(tool.keys())[0]
|
||||
if key == "dataset":
|
||||
|
|
|
@ -42,12 +42,12 @@ class BasicVariablesConfigManager:
|
|||
variable=variable["variable"], type=variable["type"], config=variable["config"]
|
||||
)
|
||||
)
|
||||
elif variable_type in [
|
||||
elif variable_type in {
|
||||
VariableEntityType.TEXT_INPUT,
|
||||
VariableEntityType.PARAGRAPH,
|
||||
VariableEntityType.NUMBER,
|
||||
VariableEntityType.SELECT,
|
||||
]:
|
||||
}:
|
||||
variable = variables[variable_type]
|
||||
variable_entities.append(
|
||||
VariableEntity(
|
||||
|
@ -97,7 +97,7 @@ class BasicVariablesConfigManager:
|
|||
variables = []
|
||||
for item in config["user_input_form"]:
|
||||
key = list(item.keys())[0]
|
||||
if key not in ["text-input", "select", "paragraph", "number", "external_data_tool"]:
|
||||
if key not in {"text-input", "select", "paragraph", "number", "external_data_tool"}:
|
||||
raise ValueError("Keys in user_input_form list can only be 'text-input', 'paragraph' or 'select'")
|
||||
|
||||
form_item = item[key]
|
||||
|
|
|
@ -54,14 +54,14 @@ class FileUploadConfigManager:
|
|||
|
||||
if is_vision:
|
||||
detail = config["file_upload"]["image"]["detail"]
|
||||
if detail not in ["high", "low"]:
|
||||
if detail not in {"high", "low"}:
|
||||
raise ValueError("detail must be in ['high', 'low']")
|
||||
|
||||
transfer_methods = config["file_upload"]["image"]["transfer_methods"]
|
||||
if not isinstance(transfer_methods, list):
|
||||
raise ValueError("transfer_methods must be of list type")
|
||||
for method in transfer_methods:
|
||||
if method not in ["remote_url", "local_file"]:
|
||||
if method not in {"remote_url", "local_file"}:
|
||||
raise ValueError("transfer_methods must be in ['remote_url', 'local_file']")
|
||||
|
||||
return config, ["file_upload"]
|
||||
|
|
|
@ -73,7 +73,7 @@ class AdvancedChatAppRunner(WorkflowBasedAppRunner):
|
|||
raise ValueError("Workflow not initialized")
|
||||
|
||||
user_id = None
|
||||
if self.application_generate_entity.invoke_from in [InvokeFrom.WEB_APP, InvokeFrom.SERVICE_API]:
|
||||
if self.application_generate_entity.invoke_from in {InvokeFrom.WEB_APP, InvokeFrom.SERVICE_API}:
|
||||
end_user = db.session.query(EndUser).filter(EndUser.id == self.application_generate_entity.user_id).first()
|
||||
if end_user:
|
||||
user_id = end_user.session_id
|
||||
|
@ -175,7 +175,7 @@ class AdvancedChatAppRunner(WorkflowBasedAppRunner):
|
|||
user_id=self.application_generate_entity.user_id,
|
||||
user_from=(
|
||||
UserFrom.ACCOUNT
|
||||
if self.application_generate_entity.invoke_from in [InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER]
|
||||
if self.application_generate_entity.invoke_from in {InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER}
|
||||
else UserFrom.END_USER
|
||||
),
|
||||
invoke_from=self.application_generate_entity.invoke_from,
|
||||
|
|
|
@ -16,7 +16,7 @@ class AppGenerateResponseConverter(ABC):
|
|||
def convert(
|
||||
cls, response: Union[AppBlockingResponse, Generator[AppStreamResponse, Any, None]], invoke_from: InvokeFrom
|
||||
) -> dict[str, Any] | Generator[str, Any, None]:
|
||||
if invoke_from in [InvokeFrom.DEBUGGER, InvokeFrom.SERVICE_API]:
|
||||
if invoke_from in {InvokeFrom.DEBUGGER, InvokeFrom.SERVICE_API}:
|
||||
if isinstance(response, AppBlockingResponse):
|
||||
return cls.convert_blocking_full_response(response)
|
||||
else:
|
||||
|
|
|
@ -22,11 +22,11 @@ class BaseAppGenerator:
|
|||
return var.default or ""
|
||||
if (
|
||||
var.type
|
||||
in (
|
||||
in {
|
||||
VariableEntityType.TEXT_INPUT,
|
||||
VariableEntityType.SELECT,
|
||||
VariableEntityType.PARAGRAPH,
|
||||
)
|
||||
}
|
||||
and user_input_value
|
||||
and not isinstance(user_input_value, str)
|
||||
):
|
||||
|
@ -44,7 +44,7 @@ class BaseAppGenerator:
|
|||
options = var.options or []
|
||||
if user_input_value not in options:
|
||||
raise ValueError(f"{var.variable} in input form must be one of the following: {options}")
|
||||
elif var.type in (VariableEntityType.TEXT_INPUT, VariableEntityType.PARAGRAPH):
|
||||
elif var.type in {VariableEntityType.TEXT_INPUT, VariableEntityType.PARAGRAPH}:
|
||||
if var.max_length and user_input_value and len(user_input_value) > var.max_length:
|
||||
raise ValueError(f"{var.variable} in input form must be less than {var.max_length} characters")
|
||||
|
||||
|
|
|
@ -32,7 +32,7 @@ class AppQueueManager:
|
|||
self._user_id = user_id
|
||||
self._invoke_from = invoke_from
|
||||
|
||||
user_prefix = "account" if self._invoke_from in [InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER] else "end-user"
|
||||
user_prefix = "account" if self._invoke_from in {InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER} else "end-user"
|
||||
redis_client.setex(
|
||||
AppQueueManager._generate_task_belong_cache_key(self._task_id), 1800, f"{user_prefix}-{self._user_id}"
|
||||
)
|
||||
|
@ -118,7 +118,7 @@ class AppQueueManager:
|
|||
if result is None:
|
||||
return
|
||||
|
||||
user_prefix = "account" if invoke_from in [InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER] else "end-user"
|
||||
user_prefix = "account" if invoke_from in {InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER} else "end-user"
|
||||
if result.decode("utf-8") != f"{user_prefix}-{user_id}":
|
||||
return
|
||||
|
||||
|
|
|
@ -148,7 +148,7 @@ class MessageBasedAppGenerator(BaseAppGenerator):
|
|||
# get from source
|
||||
end_user_id = None
|
||||
account_id = None
|
||||
if application_generate_entity.invoke_from in [InvokeFrom.WEB_APP, InvokeFrom.SERVICE_API]:
|
||||
if application_generate_entity.invoke_from in {InvokeFrom.WEB_APP, InvokeFrom.SERVICE_API}:
|
||||
from_source = "api"
|
||||
end_user_id = application_generate_entity.user_id
|
||||
else:
|
||||
|
@ -165,11 +165,11 @@ class MessageBasedAppGenerator(BaseAppGenerator):
|
|||
model_provider = application_generate_entity.model_conf.provider
|
||||
model_id = application_generate_entity.model_conf.model
|
||||
override_model_configs = None
|
||||
if app_config.app_model_config_from == EasyUIBasedAppModelConfigFrom.ARGS and app_config.app_mode in [
|
||||
if app_config.app_model_config_from == EasyUIBasedAppModelConfigFrom.ARGS and app_config.app_mode in {
|
||||
AppMode.AGENT_CHAT,
|
||||
AppMode.CHAT,
|
||||
AppMode.COMPLETION,
|
||||
]:
|
||||
}:
|
||||
override_model_configs = app_config.app_model_config_dict
|
||||
|
||||
# get conversation introduction
|
||||
|
|
|
@ -53,7 +53,7 @@ class WorkflowAppRunner(WorkflowBasedAppRunner):
|
|||
app_config = cast(WorkflowAppConfig, app_config)
|
||||
|
||||
user_id = None
|
||||
if self.application_generate_entity.invoke_from in [InvokeFrom.WEB_APP, InvokeFrom.SERVICE_API]:
|
||||
if self.application_generate_entity.invoke_from in {InvokeFrom.WEB_APP, InvokeFrom.SERVICE_API}:
|
||||
end_user = db.session.query(EndUser).filter(EndUser.id == self.application_generate_entity.user_id).first()
|
||||
if end_user:
|
||||
user_id = end_user.session_id
|
||||
|
@ -113,7 +113,7 @@ class WorkflowAppRunner(WorkflowBasedAppRunner):
|
|||
user_id=self.application_generate_entity.user_id,
|
||||
user_from=(
|
||||
UserFrom.ACCOUNT
|
||||
if self.application_generate_entity.invoke_from in [InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER]
|
||||
if self.application_generate_entity.invoke_from in {InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER}
|
||||
else UserFrom.END_USER
|
||||
),
|
||||
invoke_from=self.application_generate_entity.invoke_from,
|
||||
|
|
|
@ -63,7 +63,7 @@ class AnnotationReplyFeature:
|
|||
score = documents[0].metadata["score"]
|
||||
annotation = AppAnnotationService.get_annotation_by_id(annotation_id)
|
||||
if annotation:
|
||||
if invoke_from in [InvokeFrom.SERVICE_API, InvokeFrom.WEB_APP]:
|
||||
if invoke_from in {InvokeFrom.SERVICE_API, InvokeFrom.WEB_APP}:
|
||||
from_source = "api"
|
||||
else:
|
||||
from_source = "console"
|
||||
|
|
|
@ -372,7 +372,7 @@ class EasyUIBasedGenerateTaskPipeline(BasedGenerateTaskPipeline, MessageCycleMan
|
|||
self._message,
|
||||
application_generate_entity=self._application_generate_entity,
|
||||
conversation=self._conversation,
|
||||
is_first_message=self._application_generate_entity.app_config.app_mode in [AppMode.AGENT_CHAT, AppMode.CHAT]
|
||||
is_first_message=self._application_generate_entity.app_config.app_mode in {AppMode.AGENT_CHAT, AppMode.CHAT}
|
||||
and self._application_generate_entity.conversation_id is None,
|
||||
extras=self._application_generate_entity.extras,
|
||||
)
|
||||
|
|
|
@ -383,7 +383,7 @@ class WorkflowCycleManage:
|
|||
:param workflow_node_execution: workflow node execution
|
||||
:return:
|
||||
"""
|
||||
if workflow_node_execution.node_type in [NodeType.ITERATION.value, NodeType.LOOP.value]:
|
||||
if workflow_node_execution.node_type in {NodeType.ITERATION.value, NodeType.LOOP.value}:
|
||||
return None
|
||||
|
||||
response = NodeStartStreamResponse(
|
||||
|
@ -430,7 +430,7 @@ class WorkflowCycleManage:
|
|||
:param workflow_node_execution: workflow node execution
|
||||
:return:
|
||||
"""
|
||||
if workflow_node_execution.node_type in [NodeType.ITERATION.value, NodeType.LOOP.value]:
|
||||
if workflow_node_execution.node_type in {NodeType.ITERATION.value, NodeType.LOOP.value}:
|
||||
return None
|
||||
|
||||
return NodeFinishStreamResponse(
|
||||
|
|
|
@ -29,7 +29,7 @@ class DatasetIndexToolCallbackHandler:
|
|||
source="app",
|
||||
source_app_id=self._app_id,
|
||||
created_by_role=(
|
||||
"account" if self._invoke_from in [InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER] else "end_user"
|
||||
"account" if self._invoke_from in {InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER} else "end_user"
|
||||
),
|
||||
created_by=self._user_id,
|
||||
)
|
||||
|
|
|
@ -65,7 +65,7 @@ class CacheEmbedding(Embeddings):
|
|||
except IntegrityError:
|
||||
db.session.rollback()
|
||||
except Exception as e:
|
||||
logging.exception("Failed transform embedding: ", e)
|
||||
logging.exception("Failed transform embedding: %s", e)
|
||||
cache_embeddings = []
|
||||
try:
|
||||
for i, embedding in zip(embedding_queue_indices, embedding_queue_embeddings):
|
||||
|
@ -85,7 +85,7 @@ class CacheEmbedding(Embeddings):
|
|||
db.session.rollback()
|
||||
except Exception as ex:
|
||||
db.session.rollback()
|
||||
logger.error("Failed to embed documents: ", ex)
|
||||
logger.error("Failed to embed documents: %s", ex)
|
||||
raise ex
|
||||
|
||||
return text_embeddings
|
||||
|
@ -116,10 +116,7 @@ class CacheEmbedding(Embeddings):
|
|||
# Transform to string
|
||||
encoded_str = encoded_vector.decode("utf-8")
|
||||
redis_client.setex(embedding_cache_key, 600, encoded_str)
|
||||
|
||||
except IntegrityError:
|
||||
db.session.rollback()
|
||||
except:
|
||||
logging.exception("Failed to add embedding to redis")
|
||||
except Exception as ex:
|
||||
logging.exception("Failed to add embedding to redis %s", ex)
|
||||
|
||||
return embedding_results
|
||||
|
|
|
@ -292,7 +292,7 @@ class IndexingRunner:
|
|||
self, index_processor: BaseIndexProcessor, dataset_document: DatasetDocument, process_rule: dict
|
||||
) -> list[Document]:
|
||||
# load file
|
||||
if dataset_document.data_source_type not in ["upload_file", "notion_import", "website_crawl"]:
|
||||
if dataset_document.data_source_type not in {"upload_file", "notion_import", "website_crawl"}:
|
||||
return []
|
||||
|
||||
data_source_info = dataset_document.data_source_info_dict
|
||||
|
|
|
@ -52,7 +52,7 @@ class TokenBufferMemory:
|
|||
files = db.session.query(MessageFile).filter(MessageFile.message_id == message.id).all()
|
||||
if files:
|
||||
file_extra_config = None
|
||||
if self.conversation.mode not in [AppMode.ADVANCED_CHAT.value, AppMode.WORKFLOW.value]:
|
||||
if self.conversation.mode not in {AppMode.ADVANCED_CHAT.value, AppMode.WORKFLOW.value}:
|
||||
file_extra_config = FileUploadConfigManager.convert(self.conversation.model_config)
|
||||
else:
|
||||
if message.workflow_run_id:
|
||||
|
|
|
@ -27,17 +27,17 @@ class ModelType(Enum):
|
|||
|
||||
:return: model type
|
||||
"""
|
||||
if origin_model_type == "text-generation" or origin_model_type == cls.LLM.value:
|
||||
if origin_model_type in {"text-generation", cls.LLM.value}:
|
||||
return cls.LLM
|
||||
elif origin_model_type == "embeddings" or origin_model_type == cls.TEXT_EMBEDDING.value:
|
||||
elif origin_model_type in {"embeddings", cls.TEXT_EMBEDDING.value}:
|
||||
return cls.TEXT_EMBEDDING
|
||||
elif origin_model_type == "reranking" or origin_model_type == cls.RERANK.value:
|
||||
elif origin_model_type in {"reranking", cls.RERANK.value}:
|
||||
return cls.RERANK
|
||||
elif origin_model_type == "speech2text" or origin_model_type == cls.SPEECH2TEXT.value:
|
||||
elif origin_model_type in {"speech2text", cls.SPEECH2TEXT.value}:
|
||||
return cls.SPEECH2TEXT
|
||||
elif origin_model_type == "tts" or origin_model_type == cls.TTS.value:
|
||||
elif origin_model_type in {"tts", cls.TTS.value}:
|
||||
return cls.TTS
|
||||
elif origin_model_type == "text2img" or origin_model_type == cls.TEXT2IMG.value:
|
||||
elif origin_model_type in {"text2img", cls.TEXT2IMG.value}:
|
||||
return cls.TEXT2IMG
|
||||
elif origin_model_type == cls.MODERATION.value:
|
||||
return cls.MODERATION
|
||||
|
|
|
@ -494,7 +494,7 @@ class AnthropicLargeLanguageModel(LargeLanguageModel):
|
|||
mime_type = data_split[0].replace("data:", "")
|
||||
base64_data = data_split[1]
|
||||
|
||||
if mime_type not in ["image/jpeg", "image/png", "image/gif", "image/webp"]:
|
||||
if mime_type not in {"image/jpeg", "image/png", "image/gif", "image/webp"}:
|
||||
raise ValueError(
|
||||
f"Unsupported image type {mime_type}, "
|
||||
f"only support image/jpeg, image/png, image/gif, and image/webp"
|
||||
|
|
|
@ -85,14 +85,14 @@ class AzureOpenAIText2SpeechModel(_CommonAzureOpenAI, TTSModel):
|
|||
for i in range(len(sentences))
|
||||
]
|
||||
for future in futures:
|
||||
yield from future.result().__enter__().iter_bytes(1024)
|
||||
yield from future.result().__enter__().iter_bytes(1024) # noqa:PLC2801
|
||||
|
||||
else:
|
||||
response = client.audio.speech.with_streaming_response.create(
|
||||
model=model, voice=voice, response_format="mp3", input=content_text.strip()
|
||||
)
|
||||
|
||||
yield from response.__enter__().iter_bytes(1024)
|
||||
yield from response.__enter__().iter_bytes(1024) # noqa:PLC2801
|
||||
except Exception as ex:
|
||||
raise InvokeBadRequestError(str(ex))
|
||||
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
model: eu.anthropic.claude-3-haiku-20240307-v1:0
|
||||
label:
|
||||
en_US: Claude 3 Haiku(Cross Region Inference)
|
||||
en_US: Claude 3 Haiku(EU.Cross Region Inference)
|
||||
model_type: llm
|
||||
features:
|
||||
- agent-thought
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
model: eu.anthropic.claude-3-5-sonnet-20240620-v1:0
|
||||
label:
|
||||
en_US: Claude 3.5 Sonnet(Cross Region Inference)
|
||||
en_US: Claude 3.5 Sonnet(EU.Cross Region Inference)
|
||||
model_type: llm
|
||||
features:
|
||||
- agent-thought
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
model: eu.anthropic.claude-3-sonnet-20240229-v1:0
|
||||
label:
|
||||
en_US: Claude 3 Sonnet(Cross Region Inference)
|
||||
en_US: Claude 3 Sonnet(EU.Cross Region Inference)
|
||||
model_type: llm
|
||||
features:
|
||||
- agent-thought
|
||||
|
|
|
@ -1,8 +1,8 @@
|
|||
# standard import
|
||||
import base64
|
||||
import io
|
||||
import json
|
||||
import logging
|
||||
import mimetypes
|
||||
from collections.abc import Generator
|
||||
from typing import Optional, Union, cast
|
||||
|
||||
|
@ -17,7 +17,6 @@ from botocore.exceptions import (
|
|||
ServiceNotInRegionError,
|
||||
UnknownServiceError,
|
||||
)
|
||||
from PIL.Image import Image
|
||||
|
||||
# local import
|
||||
from core.model_runtime.callbacks.base_callback import Callback
|
||||
|
@ -443,8 +442,9 @@ class BedrockLargeLanguageModel(LargeLanguageModel):
|
|||
try:
|
||||
url = message_content.data
|
||||
image_content = requests.get(url).content
|
||||
with Image.open(io.BytesIO(image_content)) as img:
|
||||
mime_type = f"image/{img.format.lower()}"
|
||||
if "?" in url:
|
||||
url = url.split("?")[0]
|
||||
mime_type, _ = mimetypes.guess_type(url)
|
||||
base64_data = base64.b64encode(image_content).decode("utf-8")
|
||||
except Exception as ex:
|
||||
raise ValueError(f"Failed to fetch image data from url {message_content.data}, {ex}")
|
||||
|
@ -454,7 +454,7 @@ class BedrockLargeLanguageModel(LargeLanguageModel):
|
|||
base64_data = data_split[1]
|
||||
image_content = base64.b64decode(base64_data)
|
||||
|
||||
if mime_type not in ["image/jpeg", "image/png", "image/gif", "image/webp"]:
|
||||
if mime_type not in {"image/jpeg", "image/png", "image/gif", "image/webp"}:
|
||||
raise ValueError(
|
||||
f"Unsupported image type {mime_type}, "
|
||||
f"only support image/jpeg, image/png, image/gif, and image/webp"
|
||||
|
@ -886,16 +886,16 @@ class BedrockLargeLanguageModel(LargeLanguageModel):
|
|||
|
||||
if error_code == "AccessDeniedException":
|
||||
return InvokeAuthorizationError(error_msg)
|
||||
elif error_code in ["ResourceNotFoundException", "ValidationException"]:
|
||||
elif error_code in {"ResourceNotFoundException", "ValidationException"}:
|
||||
return InvokeBadRequestError(error_msg)
|
||||
elif error_code in ["ThrottlingException", "ServiceQuotaExceededException"]:
|
||||
elif error_code in {"ThrottlingException", "ServiceQuotaExceededException"}:
|
||||
return InvokeRateLimitError(error_msg)
|
||||
elif error_code in [
|
||||
elif error_code in {
|
||||
"ModelTimeoutException",
|
||||
"ModelErrorException",
|
||||
"InternalServerException",
|
||||
"ModelNotReadyException",
|
||||
]:
|
||||
}:
|
||||
return InvokeServerUnavailableError(error_msg)
|
||||
elif error_code == "ModelStreamErrorException":
|
||||
return InvokeConnectionError(error_msg)
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
model: us.anthropic.claude-3-haiku-20240307-v1:0
|
||||
label:
|
||||
en_US: Claude 3 Haiku(Cross Region Inference)
|
||||
en_US: Claude 3 Haiku(US.Cross Region Inference)
|
||||
model_type: llm
|
||||
features:
|
||||
- agent-thought
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
model: us.anthropic.claude-3-opus-20240229-v1:0
|
||||
label:
|
||||
en_US: Claude 3 Opus(Cross Region Inference)
|
||||
en_US: Claude 3 Opus(US.Cross Region Inference)
|
||||
model_type: llm
|
||||
features:
|
||||
- agent-thought
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
model: us.anthropic.claude-3-5-sonnet-20240620-v1:0
|
||||
label:
|
||||
en_US: Claude 3.5 Sonnet(Cross Region Inference)
|
||||
en_US: Claude 3.5 Sonnet(US.Cross Region Inference)
|
||||
model_type: llm
|
||||
features:
|
||||
- agent-thought
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
model: us.anthropic.claude-3-sonnet-20240229-v1:0
|
||||
label:
|
||||
en_US: Claude 3 Sonnet(Cross Region Inference)
|
||||
en_US: Claude 3 Sonnet(US.Cross Region Inference)
|
||||
model_type: llm
|
||||
features:
|
||||
- agent-thought
|
||||
|
|
|
@ -186,16 +186,16 @@ class BedrockTextEmbeddingModel(TextEmbeddingModel):
|
|||
|
||||
if error_code == "AccessDeniedException":
|
||||
return InvokeAuthorizationError(error_msg)
|
||||
elif error_code in ["ResourceNotFoundException", "ValidationException"]:
|
||||
elif error_code in {"ResourceNotFoundException", "ValidationException"}:
|
||||
return InvokeBadRequestError(error_msg)
|
||||
elif error_code in ["ThrottlingException", "ServiceQuotaExceededException"]:
|
||||
elif error_code in {"ThrottlingException", "ServiceQuotaExceededException"}:
|
||||
return InvokeRateLimitError(error_msg)
|
||||
elif error_code in [
|
||||
elif error_code in {
|
||||
"ModelTimeoutException",
|
||||
"ModelErrorException",
|
||||
"InternalServerException",
|
||||
"ModelNotReadyException",
|
||||
]:
|
||||
}:
|
||||
return InvokeServerUnavailableError(error_msg)
|
||||
elif error_code == "ModelStreamErrorException":
|
||||
return InvokeConnectionError(error_msg)
|
||||
|
|
|
@ -6,10 +6,10 @@ from collections.abc import Generator
|
|||
from typing import Optional, Union, cast
|
||||
|
||||
import google.ai.generativelanguage as glm
|
||||
import google.api_core.exceptions as exceptions
|
||||
import google.generativeai as genai
|
||||
import google.generativeai.client as client
|
||||
import requests
|
||||
from google.api_core import exceptions
|
||||
from google.generativeai import client
|
||||
from google.generativeai.types import ContentType, GenerateContentResponse, HarmBlockThreshold, HarmCategory
|
||||
from google.generativeai.types.content_types import to_part
|
||||
from PIL import Image
|
||||
|
|
|
@ -77,7 +77,7 @@ class HuggingfaceHubLargeLanguageModel(_CommonHuggingfaceHub, LargeLanguageModel
|
|||
if "huggingfacehub_api_type" not in credentials:
|
||||
raise CredentialsValidateFailedError("Huggingface Hub Endpoint Type must be provided.")
|
||||
|
||||
if credentials["huggingfacehub_api_type"] not in ("inference_endpoints", "hosted_inference_api"):
|
||||
if credentials["huggingfacehub_api_type"] not in {"inference_endpoints", "hosted_inference_api"}:
|
||||
raise CredentialsValidateFailedError("Huggingface Hub Endpoint Type is invalid.")
|
||||
|
||||
if "huggingfacehub_api_token" not in credentials:
|
||||
|
@ -94,7 +94,7 @@ class HuggingfaceHubLargeLanguageModel(_CommonHuggingfaceHub, LargeLanguageModel
|
|||
credentials["huggingfacehub_api_token"], model
|
||||
)
|
||||
|
||||
if credentials["task_type"] not in ("text2text-generation", "text-generation"):
|
||||
if credentials["task_type"] not in {"text2text-generation", "text-generation"}:
|
||||
raise CredentialsValidateFailedError(
|
||||
"Huggingface Hub Task Type must be one of text2text-generation, text-generation."
|
||||
)
|
||||
|
|
|
@ -49,8 +49,7 @@ class HuggingfaceTeiRerankModel(RerankModel):
|
|||
return RerankResult(model=model, docs=[])
|
||||
server_url = credentials["server_url"]
|
||||
|
||||
if server_url.endswith("/"):
|
||||
server_url = server_url[:-1]
|
||||
server_url = server_url.removesuffix("/")
|
||||
|
||||
try:
|
||||
results = TeiHelper.invoke_rerank(server_url, query, docs)
|
||||
|
|
|
@ -75,7 +75,7 @@ class TeiHelper:
|
|||
if len(model_type.keys()) < 1:
|
||||
raise RuntimeError("model_type is empty")
|
||||
model_type = list(model_type.keys())[0]
|
||||
if model_type not in ["embedding", "reranker"]:
|
||||
if model_type not in {"embedding", "reranker"}:
|
||||
raise RuntimeError(f"invalid model_type: {model_type}")
|
||||
|
||||
max_input_length = response_json.get("max_input_length", 512)
|
||||
|
|
|
@ -42,8 +42,7 @@ class HuggingfaceTeiTextEmbeddingModel(TextEmbeddingModel):
|
|||
"""
|
||||
server_url = credentials["server_url"]
|
||||
|
||||
if server_url.endswith("/"):
|
||||
server_url = server_url[:-1]
|
||||
server_url = server_url.removesuffix("/")
|
||||
|
||||
# get model properties
|
||||
context_size = self._get_context_size(model, credentials)
|
||||
|
@ -119,8 +118,7 @@ class HuggingfaceTeiTextEmbeddingModel(TextEmbeddingModel):
|
|||
num_tokens = 0
|
||||
server_url = credentials["server_url"]
|
||||
|
||||
if server_url.endswith("/"):
|
||||
server_url = server_url[:-1]
|
||||
server_url = server_url.removesuffix("/")
|
||||
|
||||
batch_tokens = TeiHelper.invoke_tokenize(server_url, texts)
|
||||
num_tokens = sum(len(tokens) for tokens in batch_tokens)
|
||||
|
|
|
@ -2,3 +2,4 @@
|
|||
- hunyuan-standard
|
||||
- hunyuan-standard-256k
|
||||
- hunyuan-pro
|
||||
- hunyuan-turbo
|
||||
|
|
|
@ -0,0 +1,38 @@
|
|||
model: hunyuan-turbo
|
||||
label:
|
||||
zh_Hans: hunyuan-turbo
|
||||
en_US: hunyuan-turbo
|
||||
model_type: llm
|
||||
features:
|
||||
- agent-thought
|
||||
- tool-call
|
||||
- multi-tool-call
|
||||
- stream-tool-call
|
||||
model_properties:
|
||||
mode: chat
|
||||
context_size: 32000
|
||||
parameter_rules:
|
||||
- name: temperature
|
||||
use_template: temperature
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: max_tokens
|
||||
use_template: max_tokens
|
||||
default: 1024
|
||||
min: 1
|
||||
max: 32000
|
||||
- name: enable_enhance
|
||||
label:
|
||||
zh_Hans: 功能增强
|
||||
en_US: Enable Enhancement
|
||||
type: boolean
|
||||
help:
|
||||
zh_Hans: 功能增强(如搜索)开关,关闭时将直接由主模型生成回复内容,可以降低响应时延(对于流式输出时的首字时延尤为明显)。但在少数场景里,回复效果可能会下降。
|
||||
en_US: Allow the model to perform external search to enhance the generation results.
|
||||
required: false
|
||||
default: true
|
||||
pricing:
|
||||
input: '0.015'
|
||||
output: '0.05'
|
||||
unit: '0.001'
|
||||
currency: RMB
|
|
@ -18,9 +18,9 @@ class JinaProvider(ModelProvider):
|
|||
try:
|
||||
model_instance = self.get_model_instance(ModelType.TEXT_EMBEDDING)
|
||||
|
||||
# Use `jina-embeddings-v2-base-en` model for validate,
|
||||
# Use `jina-embeddings-v3` model for validate,
|
||||
# no matter what model you pass in, text completion model or chat model
|
||||
model_instance.validate_credentials(model="jina-embeddings-v2-base-en", credentials=credentials)
|
||||
model_instance.validate_credentials(model="jina-embeddings-v3", credentials=credentials)
|
||||
except CredentialsValidateFailedError as ex:
|
||||
raise ex
|
||||
except Exception as ex:
|
||||
|
|
|
@ -48,8 +48,7 @@ class JinaRerankModel(RerankModel):
|
|||
return RerankResult(model=model, docs=[])
|
||||
|
||||
base_url = credentials.get("base_url", "https://api.jina.ai/v1")
|
||||
if base_url.endswith("/"):
|
||||
base_url = base_url[:-1]
|
||||
base_url = base_url.removesuffix("/")
|
||||
|
||||
try:
|
||||
response = httpx.post(
|
||||
|
|
|
@ -0,0 +1,9 @@
|
|||
model: jina-embeddings-v3
|
||||
model_type: text-embedding
|
||||
model_properties:
|
||||
context_size: 8192
|
||||
max_chunks: 2048
|
||||
pricing:
|
||||
input: '0.001'
|
||||
unit: '0.001'
|
||||
currency: USD
|
|
@ -44,8 +44,7 @@ class JinaTextEmbeddingModel(TextEmbeddingModel):
|
|||
raise CredentialsValidateFailedError("api_key is required")
|
||||
|
||||
base_url = credentials.get("base_url", self.api_base)
|
||||
if base_url.endswith("/"):
|
||||
base_url = base_url[:-1]
|
||||
base_url = base_url.removesuffix("/")
|
||||
|
||||
url = base_url + "/embeddings"
|
||||
headers = {"Authorization": "Bearer " + api_key, "Content-Type": "application/json"}
|
||||
|
@ -57,6 +56,9 @@ class JinaTextEmbeddingModel(TextEmbeddingModel):
|
|||
|
||||
data = {"model": model, "input": [transform_jina_input_text(model, text) for text in texts]}
|
||||
|
||||
if model == "jina-embeddings-v3":
|
||||
data["task"] = "text-matching"
|
||||
|
||||
try:
|
||||
response = post(url, headers=headers, data=dumps(data))
|
||||
except Exception as e:
|
||||
|
|
|
@ -100,9 +100,9 @@ class MinimaxChatCompletion:
|
|||
return self._handle_chat_generate_response(response)
|
||||
|
||||
def _handle_error(self, code: int, msg: str):
|
||||
if code == 1000 or code == 1001 or code == 1013 or code == 1027:
|
||||
if code in {1000, 1001, 1013, 1027}:
|
||||
raise InternalServerError(msg)
|
||||
elif code == 1002 or code == 1039:
|
||||
elif code in {1002, 1039}:
|
||||
raise RateLimitReachedError(msg)
|
||||
elif code == 1004:
|
||||
raise InvalidAuthenticationError(msg)
|
||||
|
|
|
@ -105,9 +105,9 @@ class MinimaxChatCompletionPro:
|
|||
return self._handle_chat_generate_response(response)
|
||||
|
||||
def _handle_error(self, code: int, msg: str):
|
||||
if code == 1000 or code == 1001 or code == 1013 or code == 1027:
|
||||
if code in {1000, 1001, 1013, 1027}:
|
||||
raise InternalServerError(msg)
|
||||
elif code == 1002 or code == 1039:
|
||||
elif code in {1002, 1039}:
|
||||
raise RateLimitReachedError(msg)
|
||||
elif code == 1004:
|
||||
raise InvalidAuthenticationError(msg)
|
||||
|
|
|
@ -114,7 +114,7 @@ class MinimaxTextEmbeddingModel(TextEmbeddingModel):
|
|||
raise CredentialsValidateFailedError("Invalid api key")
|
||||
|
||||
def _handle_error(self, code: int, msg: str):
|
||||
if code == 1000 or code == 1001:
|
||||
if code in {1000, 1001}:
|
||||
raise InternalServerError(msg)
|
||||
elif code == 1002:
|
||||
raise RateLimitReachedError(msg)
|
||||
|
|
|
@ -31,3 +31,4 @@ pricing:
|
|||
output: '0.002'
|
||||
unit: '0.001'
|
||||
currency: USD
|
||||
deprecated: true
|
||||
|
|
|
@ -31,3 +31,4 @@ pricing:
|
|||
output: '0.004'
|
||||
unit: '0.001'
|
||||
currency: USD
|
||||
deprecated: true
|
||||
|
|
|
@ -125,7 +125,7 @@ class OpenAILargeLanguageModel(_CommonOpenAI, LargeLanguageModel):
|
|||
model_mode = self.get_model_mode(base_model, credentials)
|
||||
|
||||
# transform response format
|
||||
if "response_format" in model_parameters and model_parameters["response_format"] in ["JSON", "XML"]:
|
||||
if "response_format" in model_parameters and model_parameters["response_format"] in {"JSON", "XML"}:
|
||||
stop = stop or []
|
||||
if model_mode == LLMMode.CHAT:
|
||||
# chat model
|
||||
|
@ -615,8 +615,10 @@ class OpenAILargeLanguageModel(_CommonOpenAI, LargeLanguageModel):
|
|||
|
||||
block_as_stream = False
|
||||
if model.startswith("o1"):
|
||||
if stream:
|
||||
block_as_stream = True
|
||||
stream = False
|
||||
|
||||
if "stream_options" in extra_model_kwargs:
|
||||
del extra_model_kwargs["stream_options"]
|
||||
|
||||
|
|
|
@ -11,9 +11,9 @@ model_properties:
|
|||
parameter_rules:
|
||||
- name: max_tokens
|
||||
use_template: max_tokens
|
||||
default: 65563
|
||||
default: 65536
|
||||
min: 1
|
||||
max: 65563
|
||||
max: 65536
|
||||
- name: response_format
|
||||
label:
|
||||
zh_Hans: 回复格式
|
||||
|
|
|
@ -11,9 +11,9 @@ model_properties:
|
|||
parameter_rules:
|
||||
- name: max_tokens
|
||||
use_template: max_tokens
|
||||
default: 65563
|
||||
default: 65536
|
||||
min: 1
|
||||
max: 65563
|
||||
max: 65536
|
||||
- name: response_format
|
||||
label:
|
||||
zh_Hans: 回复格式
|
||||
|
|
|
@ -89,14 +89,14 @@ class OpenAIText2SpeechModel(_CommonOpenAI, TTSModel):
|
|||
for i in range(len(sentences))
|
||||
]
|
||||
for future in futures:
|
||||
yield from future.result().__enter__().iter_bytes(1024)
|
||||
yield from future.result().__enter__().iter_bytes(1024) # noqa:PLC2801
|
||||
|
||||
else:
|
||||
response = client.audio.speech.with_streaming_response.create(
|
||||
model=model, voice=voice, response_format="mp3", input=content_text.strip()
|
||||
)
|
||||
|
||||
yield from response.__enter__().iter_bytes(1024)
|
||||
yield from response.__enter__().iter_bytes(1024) # noqa:PLC2801
|
||||
except Exception as ex:
|
||||
raise InvokeBadRequestError(str(ex))
|
||||
|
||||
|
|
|
@ -12,7 +12,6 @@ class OpenRouterLargeLanguageModel(OAIAPICompatLargeLanguageModel):
|
|||
credentials["endpoint_url"] = "https://openrouter.ai/api/v1"
|
||||
credentials["mode"] = self.get_model_mode(model).value
|
||||
credentials["function_calling_type"] = "tool_call"
|
||||
return
|
||||
|
||||
def _invoke(
|
||||
self,
|
||||
|
|
|
@ -154,7 +154,7 @@ class ReplicateLargeLanguageModel(_CommonReplicate, LargeLanguageModel):
|
|||
)
|
||||
|
||||
for key, value in input_properties:
|
||||
if key not in ["system_prompt", "prompt"] and "stop" not in key:
|
||||
if key not in {"system_prompt", "prompt"} and "stop" not in key:
|
||||
value_type = value.get("type")
|
||||
|
||||
if not value_type:
|
||||
|
|
|
@ -86,7 +86,7 @@ class ReplicateEmbeddingModel(_CommonReplicate, TextEmbeddingModel):
|
|||
)
|
||||
|
||||
for input_property in input_properties:
|
||||
if input_property[0] in ("text", "texts", "inputs"):
|
||||
if input_property[0] in {"text", "texts", "inputs"}:
|
||||
text_input_key = input_property[0]
|
||||
return text_input_key
|
||||
|
||||
|
@ -96,7 +96,7 @@ class ReplicateEmbeddingModel(_CommonReplicate, TextEmbeddingModel):
|
|||
def _generate_embeddings_by_text_input_key(
|
||||
client: ReplicateClient, replicate_model_version: str, text_input_key: str, texts: list[str]
|
||||
) -> list[list[float]]:
|
||||
if text_input_key in ("text", "inputs"):
|
||||
if text_input_key in {"text", "inputs"}:
|
||||
embeddings = []
|
||||
for text in texts:
|
||||
result = client.run(replicate_model_version, input={text_input_key: text})
|
||||
|
|
|
@ -30,8 +30,7 @@ class SiliconflowRerankModel(RerankModel):
|
|||
return RerankResult(model=model, docs=[])
|
||||
|
||||
base_url = credentials.get("base_url", "https://api.siliconflow.cn/v1")
|
||||
if base_url.endswith("/"):
|
||||
base_url = base_url[:-1]
|
||||
base_url = base_url.removesuffix("/")
|
||||
try:
|
||||
response = httpx.post(
|
||||
base_url + "/rerank",
|
||||
|
|
|
@ -89,7 +89,7 @@ class TongyiLargeLanguageModel(LargeLanguageModel):
|
|||
:param tools: tools for tool calling
|
||||
:return:
|
||||
"""
|
||||
if model in ["qwen-turbo-chat", "qwen-plus-chat"]:
|
||||
if model in {"qwen-turbo-chat", "qwen-plus-chat"}:
|
||||
model = model.replace("-chat", "")
|
||||
if model == "farui-plus":
|
||||
model = "qwen-farui-plus"
|
||||
|
@ -157,7 +157,7 @@ class TongyiLargeLanguageModel(LargeLanguageModel):
|
|||
|
||||
mode = self.get_model_mode(model, credentials)
|
||||
|
||||
if model in ["qwen-turbo-chat", "qwen-plus-chat"]:
|
||||
if model in {"qwen-turbo-chat", "qwen-plus-chat"}:
|
||||
model = model.replace("-chat", "")
|
||||
|
||||
extra_model_kwargs = {}
|
||||
|
@ -201,7 +201,7 @@ class TongyiLargeLanguageModel(LargeLanguageModel):
|
|||
:param prompt_messages: prompt messages
|
||||
:return: llm response
|
||||
"""
|
||||
if response.status_code != 200 and response.status_code != HTTPStatus.OK:
|
||||
if response.status_code not in {200, HTTPStatus.OK}:
|
||||
raise ServiceUnavailableError(response.message)
|
||||
# transform assistant message to prompt message
|
||||
assistant_prompt_message = AssistantPromptMessage(
|
||||
|
@ -240,7 +240,7 @@ class TongyiLargeLanguageModel(LargeLanguageModel):
|
|||
full_text = ""
|
||||
tool_calls = []
|
||||
for index, response in enumerate(responses):
|
||||
if response.status_code != 200 and response.status_code != HTTPStatus.OK:
|
||||
if response.status_code not in {200, HTTPStatus.OK}:
|
||||
raise ServiceUnavailableError(
|
||||
f"Failed to invoke model {model}, status code: {response.status_code}, "
|
||||
f"message: {response.message}"
|
||||
|
|
|
@ -93,7 +93,7 @@ class UpstageLargeLanguageModel(_CommonUpstage, LargeLanguageModel):
|
|||
"""
|
||||
Code block mode wrapper for invoking large language model
|
||||
"""
|
||||
if "response_format" in model_parameters and model_parameters["response_format"] in ["JSON", "XML"]:
|
||||
if "response_format" in model_parameters and model_parameters["response_format"] in {"JSON", "XML"}:
|
||||
stop = stop or []
|
||||
self._transform_chat_json_prompts(
|
||||
model=model,
|
||||
|
|
|
@ -5,7 +5,6 @@ import logging
|
|||
from collections.abc import Generator
|
||||
from typing import Optional, Union, cast
|
||||
|
||||
import google.api_core.exceptions as exceptions
|
||||
import google.auth.transport.requests
|
||||
import vertexai.generative_models as glm
|
||||
from anthropic import AnthropicVertex, Stream
|
||||
|
@ -17,6 +16,7 @@ from anthropic.types import (
|
|||
MessageStopEvent,
|
||||
MessageStreamEvent,
|
||||
)
|
||||
from google.api_core import exceptions
|
||||
from google.cloud import aiplatform
|
||||
from google.oauth2 import service_account
|
||||
from PIL import Image
|
||||
|
@ -346,7 +346,7 @@ class VertexAiLargeLanguageModel(LargeLanguageModel):
|
|||
mime_type = data_split[0].replace("data:", "")
|
||||
base64_data = data_split[1]
|
||||
|
||||
if mime_type not in ["image/jpeg", "image/png", "image/gif", "image/webp"]:
|
||||
if mime_type not in {"image/jpeg", "image/png", "image/gif", "image/webp"}:
|
||||
raise ValueError(
|
||||
f"Unsupported image type {mime_type}, "
|
||||
f"only support image/jpeg, image/png, image/gif, and image/webp"
|
||||
|
|
|
@ -96,7 +96,6 @@ class Signer:
|
|||
signing_key = Signer.get_signing_secret_key_v4(credentials.sk, md.date, md.region, md.service)
|
||||
sign = Util.to_hex(Util.hmac_sha256(signing_key, signing_str))
|
||||
request.headers["Authorization"] = Signer.build_auth_header_v4(sign, md, credentials)
|
||||
return
|
||||
|
||||
@staticmethod
|
||||
def hashed_canonical_request_v4(request, meta):
|
||||
|
@ -105,7 +104,7 @@ class Signer:
|
|||
|
||||
signed_headers = {}
|
||||
for key in request.headers:
|
||||
if key in ["Content-Type", "Content-Md5", "Host"] or key.startswith("X-"):
|
||||
if key in {"Content-Type", "Content-Md5", "Host"} or key.startswith("X-"):
|
||||
signed_headers[key.lower()] = request.headers[key]
|
||||
|
||||
if "host" in signed_headers:
|
||||
|
|
|
@ -69,7 +69,7 @@ class ErnieBotLargeLanguageModel(LargeLanguageModel):
|
|||
"""
|
||||
Code block mode wrapper for invoking large language model
|
||||
"""
|
||||
if "response_format" in model_parameters and model_parameters["response_format"] in ["JSON", "XML"]:
|
||||
if "response_format" in model_parameters and model_parameters["response_format"] in {"JSON", "XML"}:
|
||||
response_format = model_parameters["response_format"]
|
||||
stop = stop or []
|
||||
self._transform_json_prompts(
|
||||
|
|
|
@ -459,8 +459,7 @@ class XinferenceAILargeLanguageModel(LargeLanguageModel):
|
|||
if "server_url" not in credentials:
|
||||
raise CredentialsValidateFailedError("server_url is required in credentials")
|
||||
|
||||
if credentials["server_url"].endswith("/"):
|
||||
credentials["server_url"] = credentials["server_url"][:-1]
|
||||
credentials["server_url"] = credentials["server_url"].removesuffix("/")
|
||||
|
||||
api_key = credentials.get("api_key") or "abc"
|
||||
|
||||
|
|
|
@ -50,8 +50,7 @@ class XinferenceRerankModel(RerankModel):
|
|||
server_url = credentials["server_url"]
|
||||
model_uid = credentials["model_uid"]
|
||||
api_key = credentials.get("api_key")
|
||||
if server_url.endswith("/"):
|
||||
server_url = server_url[:-1]
|
||||
server_url = server_url.removesuffix("/")
|
||||
auth_headers = {"Authorization": f"Bearer {api_key}"} if api_key else {}
|
||||
|
||||
params = {"documents": docs, "query": query, "top_n": top_n, "return_documents": True}
|
||||
|
@ -98,8 +97,7 @@ class XinferenceRerankModel(RerankModel):
|
|||
if "/" in credentials["model_uid"] or "?" in credentials["model_uid"] or "#" in credentials["model_uid"]:
|
||||
raise CredentialsValidateFailedError("model_uid should not contain /, ?, or #")
|
||||
|
||||
if credentials["server_url"].endswith("/"):
|
||||
credentials["server_url"] = credentials["server_url"][:-1]
|
||||
credentials["server_url"] = credentials["server_url"].removesuffix("/")
|
||||
|
||||
# initialize client
|
||||
client = Client(
|
||||
|
|
|
@ -45,8 +45,7 @@ class XinferenceSpeech2TextModel(Speech2TextModel):
|
|||
if "/" in credentials["model_uid"] or "?" in credentials["model_uid"] or "#" in credentials["model_uid"]:
|
||||
raise CredentialsValidateFailedError("model_uid should not contain /, ?, or #")
|
||||
|
||||
if credentials["server_url"].endswith("/"):
|
||||
credentials["server_url"] = credentials["server_url"][:-1]
|
||||
credentials["server_url"] = credentials["server_url"].removesuffix("/")
|
||||
|
||||
# initialize client
|
||||
client = Client(
|
||||
|
@ -116,8 +115,7 @@ class XinferenceSpeech2TextModel(Speech2TextModel):
|
|||
server_url = credentials["server_url"]
|
||||
model_uid = credentials["model_uid"]
|
||||
api_key = credentials.get("api_key")
|
||||
if server_url.endswith("/"):
|
||||
server_url = server_url[:-1]
|
||||
server_url = server_url.removesuffix("/")
|
||||
auth_headers = {"Authorization": f"Bearer {api_key}"} if api_key else {}
|
||||
|
||||
try:
|
||||
|
|
|
@ -45,8 +45,7 @@ class XinferenceTextEmbeddingModel(TextEmbeddingModel):
|
|||
server_url = credentials["server_url"]
|
||||
model_uid = credentials["model_uid"]
|
||||
api_key = credentials.get("api_key")
|
||||
if server_url.endswith("/"):
|
||||
server_url = server_url[:-1]
|
||||
server_url = server_url.removesuffix("/")
|
||||
auth_headers = {"Authorization": f"Bearer {api_key}"} if api_key else {}
|
||||
|
||||
try:
|
||||
|
@ -118,8 +117,7 @@ class XinferenceTextEmbeddingModel(TextEmbeddingModel):
|
|||
|
||||
if extra_args.max_tokens:
|
||||
credentials["max_tokens"] = extra_args.max_tokens
|
||||
if server_url.endswith("/"):
|
||||
server_url = server_url[:-1]
|
||||
server_url = server_url.removesuffix("/")
|
||||
|
||||
client = Client(
|
||||
base_url=server_url,
|
||||
|
|
|
@ -73,8 +73,7 @@ class XinferenceText2SpeechModel(TTSModel):
|
|||
if "/" in credentials["model_uid"] or "?" in credentials["model_uid"] or "#" in credentials["model_uid"]:
|
||||
raise CredentialsValidateFailedError("model_uid should not contain /, ?, or #")
|
||||
|
||||
if credentials["server_url"].endswith("/"):
|
||||
credentials["server_url"] = credentials["server_url"][:-1]
|
||||
credentials["server_url"] = credentials["server_url"].removesuffix("/")
|
||||
|
||||
extra_param = XinferenceHelper.get_xinference_extra_parameter(
|
||||
server_url=credentials["server_url"],
|
||||
|
@ -189,8 +188,7 @@ class XinferenceText2SpeechModel(TTSModel):
|
|||
:param voice: model timbre
|
||||
:return: text translated to audio file
|
||||
"""
|
||||
if credentials["server_url"].endswith("/"):
|
||||
credentials["server_url"] = credentials["server_url"][:-1]
|
||||
credentials["server_url"] = credentials["server_url"].removesuffix("/")
|
||||
|
||||
try:
|
||||
api_key = credentials.get("api_key")
|
||||
|
|
|
@ -103,7 +103,7 @@ class XinferenceHelper:
|
|||
model_handle_type = "embedding"
|
||||
elif response_json.get("model_type") == "audio":
|
||||
model_handle_type = "audio"
|
||||
if model_family and model_family in ["ChatTTS", "CosyVoice", "FishAudio"]:
|
||||
if model_family and model_family in {"ChatTTS", "CosyVoice", "FishAudio"}:
|
||||
model_ability.append("text-to-audio")
|
||||
else:
|
||||
model_ability.append("audio-to-text")
|
||||
|
|
|
@ -186,10 +186,10 @@ class ZhipuAILargeLanguageModel(_CommonZhipuaiAI, LargeLanguageModel):
|
|||
new_prompt_messages: list[PromptMessage] = []
|
||||
for prompt_message in prompt_messages:
|
||||
copy_prompt_message = prompt_message.copy()
|
||||
if copy_prompt_message.role in [PromptMessageRole.USER, PromptMessageRole.SYSTEM, PromptMessageRole.TOOL]:
|
||||
if copy_prompt_message.role in {PromptMessageRole.USER, PromptMessageRole.SYSTEM, PromptMessageRole.TOOL}:
|
||||
if isinstance(copy_prompt_message.content, list):
|
||||
# check if model is 'glm-4v'
|
||||
if model not in ("glm-4v", "glm-4v-plus"):
|
||||
if model not in {"glm-4v", "glm-4v-plus"}:
|
||||
# not support list message
|
||||
continue
|
||||
# get image and
|
||||
|
@ -209,10 +209,7 @@ class ZhipuAILargeLanguageModel(_CommonZhipuaiAI, LargeLanguageModel):
|
|||
):
|
||||
new_prompt_messages[-1].content += "\n\n" + copy_prompt_message.content
|
||||
else:
|
||||
if (
|
||||
copy_prompt_message.role == PromptMessageRole.USER
|
||||
or copy_prompt_message.role == PromptMessageRole.TOOL
|
||||
):
|
||||
if copy_prompt_message.role in {PromptMessageRole.USER, PromptMessageRole.TOOL}:
|
||||
new_prompt_messages.append(copy_prompt_message)
|
||||
elif copy_prompt_message.role == PromptMessageRole.SYSTEM:
|
||||
new_prompt_message = SystemPromptMessage(content=copy_prompt_message.content)
|
||||
|
@ -226,7 +223,7 @@ class ZhipuAILargeLanguageModel(_CommonZhipuaiAI, LargeLanguageModel):
|
|||
else:
|
||||
new_prompt_messages.append(copy_prompt_message)
|
||||
|
||||
if model == "glm-4v" or model == "glm-4v-plus":
|
||||
if model in {"glm-4v", "glm-4v-plus"}:
|
||||
params = self._construct_glm_4v_parameter(model, new_prompt_messages, model_parameters)
|
||||
else:
|
||||
params = {"model": model, "messages": [], **model_parameters}
|
||||
|
@ -270,11 +267,11 @@ class ZhipuAILargeLanguageModel(_CommonZhipuaiAI, LargeLanguageModel):
|
|||
# chatglm model
|
||||
for prompt_message in new_prompt_messages:
|
||||
# merge system message to user message
|
||||
if (
|
||||
prompt_message.role == PromptMessageRole.SYSTEM
|
||||
or prompt_message.role == PromptMessageRole.TOOL
|
||||
or prompt_message.role == PromptMessageRole.USER
|
||||
):
|
||||
if prompt_message.role in {
|
||||
PromptMessageRole.SYSTEM,
|
||||
PromptMessageRole.TOOL,
|
||||
PromptMessageRole.USER,
|
||||
}:
|
||||
if len(params["messages"]) > 0 and params["messages"][-1]["role"] == "user":
|
||||
params["messages"][-1]["content"] += "\n\n" + prompt_message.content
|
||||
else:
|
||||
|
|
|
@ -127,8 +127,7 @@ class SSELineParser:
|
|||
|
||||
field, _p, value = line.partition(":")
|
||||
|
||||
if value.startswith(" "):
|
||||
value = value[1:]
|
||||
value = value.removeprefix(" ")
|
||||
if field == "data":
|
||||
self._data.append(value)
|
||||
elif field == "event":
|
||||
|
|
|
@ -1,5 +1,4 @@
|
|||
from __future__ import annotations
|
||||
|
||||
from .fine_tuning_job import FineTuningJob as FineTuningJob
|
||||
from .fine_tuning_job import ListOfFineTuningJob as ListOfFineTuningJob
|
||||
from .fine_tuning_job_event import FineTuningJobEvent as FineTuningJobEvent
|
||||
from .fine_tuning_job import FineTuningJob, ListOfFineTuningJob
|
||||
from .fine_tuning_job_event import FineTuningJobEvent
|
||||
|
|
|
@ -75,7 +75,7 @@ class CommonValidator:
|
|||
if not isinstance(value, str):
|
||||
raise ValueError(f"Variable {credential_form_schema.variable} should be string")
|
||||
|
||||
if credential_form_schema.type in [FormType.SELECT, FormType.RADIO]:
|
||||
if credential_form_schema.type in {FormType.SELECT, FormType.RADIO}:
|
||||
# If the value is in options, no validation is performed
|
||||
if credential_form_schema.options:
|
||||
if value not in [option.value for option in credential_form_schema.options]:
|
||||
|
@ -83,7 +83,7 @@ class CommonValidator:
|
|||
|
||||
if credential_form_schema.type == FormType.SWITCH:
|
||||
# If the value is not in ['true', 'false'], an exception is thrown
|
||||
if value.lower() not in ["true", "false"]:
|
||||
if value.lower() not in {"true", "false"}:
|
||||
raise ValueError(f"Variable {credential_form_schema.variable} should be true or false")
|
||||
|
||||
value = True if value.lower() == "true" else False
|
||||
|
|
|
@ -51,7 +51,7 @@ class ElasticSearchVector(BaseVector):
|
|||
def _init_client(self, config: ElasticSearchConfig) -> Elasticsearch:
|
||||
try:
|
||||
parsed_url = urlparse(config.host)
|
||||
if parsed_url.scheme in ["http", "https"]:
|
||||
if parsed_url.scheme in {"http", "https"}:
|
||||
hosts = f"{config.host}:{config.port}"
|
||||
else:
|
||||
hosts = f"http://{config.host}:{config.port}"
|
||||
|
@ -94,7 +94,7 @@ class ElasticSearchVector(BaseVector):
|
|||
return uuids
|
||||
|
||||
def text_exists(self, id: str) -> bool:
|
||||
return self._client.exists(index=self._collection_name, id=id).__bool__()
|
||||
return bool(self._client.exists(index=self._collection_name, id=id))
|
||||
|
||||
def delete_by_ids(self, ids: list[str]) -> None:
|
||||
for id in ids:
|
||||
|
|
|
@ -35,7 +35,7 @@ class MyScaleVector(BaseVector):
|
|||
super().__init__(collection_name)
|
||||
self._config = config
|
||||
self._metric = metric
|
||||
self._vec_order = SortOrder.ASC if metric.upper() in ["COSINE", "L2"] else SortOrder.DESC
|
||||
self._vec_order = SortOrder.ASC if metric.upper() in {"COSINE", "L2"} else SortOrder.DESC
|
||||
self._client = get_client(
|
||||
host=config.host,
|
||||
port=config.port,
|
||||
|
@ -92,7 +92,7 @@ class MyScaleVector(BaseVector):
|
|||
|
||||
@staticmethod
|
||||
def escape_str(value: Any) -> str:
|
||||
return "".join(" " if c in ("\\", "'") else c for c in str(value))
|
||||
return "".join(" " if c in {"\\", "'"} else c for c in str(value))
|
||||
|
||||
def text_exists(self, id: str) -> bool:
|
||||
results = self._client.query(f"SELECT id FROM {self._config.database}.{self._collection_name} WHERE id='{id}'")
|
||||
|
|
|
@ -223,15 +223,7 @@ class OracleVector(BaseVector):
|
|||
words = pseg.cut(query)
|
||||
current_entity = ""
|
||||
for word, pos in words:
|
||||
if (
|
||||
pos == "nr"
|
||||
or pos == "Ng"
|
||||
or pos == "eng"
|
||||
or pos == "nz"
|
||||
or pos == "n"
|
||||
or pos == "ORG"
|
||||
or pos == "v"
|
||||
): # nr: 人名, ns: 地名, nt: 机构名
|
||||
if pos in {"nr", "Ng", "eng", "nz", "n", "ORG", "v"}: # nr: 人名, ns: 地名, nt: 机构名
|
||||
current_entity += word
|
||||
else:
|
||||
if current_entity:
|
||||
|
|
|
@ -98,17 +98,17 @@ class ExtractProcessor:
|
|||
unstructured_api_url = dify_config.UNSTRUCTURED_API_URL
|
||||
unstructured_api_key = dify_config.UNSTRUCTURED_API_KEY
|
||||
if etl_type == "Unstructured":
|
||||
if file_extension == ".xlsx" or file_extension == ".xls":
|
||||
if file_extension in {".xlsx", ".xls"}:
|
||||
extractor = ExcelExtractor(file_path)
|
||||
elif file_extension == ".pdf":
|
||||
extractor = PdfExtractor(file_path)
|
||||
elif file_extension in [".md", ".markdown"]:
|
||||
elif file_extension in {".md", ".markdown"}:
|
||||
extractor = (
|
||||
UnstructuredMarkdownExtractor(file_path, unstructured_api_url)
|
||||
if is_automatic
|
||||
else MarkdownExtractor(file_path, autodetect_encoding=True)
|
||||
)
|
||||
elif file_extension in [".htm", ".html"]:
|
||||
elif file_extension in {".htm", ".html"}:
|
||||
extractor = HtmlExtractor(file_path)
|
||||
elif file_extension == ".docx":
|
||||
extractor = WordExtractor(file_path, upload_file.tenant_id, upload_file.created_by)
|
||||
|
@ -134,13 +134,13 @@ class ExtractProcessor:
|
|||
else TextExtractor(file_path, autodetect_encoding=True)
|
||||
)
|
||||
else:
|
||||
if file_extension == ".xlsx" or file_extension == ".xls":
|
||||
if file_extension in {".xlsx", ".xls"}:
|
||||
extractor = ExcelExtractor(file_path)
|
||||
elif file_extension == ".pdf":
|
||||
extractor = PdfExtractor(file_path)
|
||||
elif file_extension in [".md", ".markdown"]:
|
||||
elif file_extension in {".md", ".markdown"}:
|
||||
extractor = MarkdownExtractor(file_path, autodetect_encoding=True)
|
||||
elif file_extension in [".htm", ".html"]:
|
||||
elif file_extension in {".htm", ".html"}:
|
||||
extractor = HtmlExtractor(file_path)
|
||||
elif file_extension == ".docx":
|
||||
extractor = WordExtractor(file_path, upload_file.tenant_id, upload_file.created_by)
|
||||
|
|
|
@ -32,7 +32,7 @@ class FirecrawlApp:
|
|||
else:
|
||||
raise Exception(f'Failed to scrape URL. Error: {response["error"]}')
|
||||
|
||||
elif response.status_code in [402, 409, 500]:
|
||||
elif response.status_code in {402, 409, 500}:
|
||||
error_message = response.json().get("error", "Unknown error occurred")
|
||||
raise Exception(f"Failed to scrape URL. Status code: {response.status_code}. Error: {error_message}")
|
||||
else:
|
||||
|
|
|
@ -103,12 +103,12 @@ class NotionExtractor(BaseExtractor):
|
|||
multi_select_list = property_value[type]
|
||||
for multi_select in multi_select_list:
|
||||
value.append(multi_select["name"])
|
||||
elif type == "rich_text" or type == "title":
|
||||
elif type in {"rich_text", "title"}:
|
||||
if len(property_value[type]) > 0:
|
||||
value = property_value[type][0]["plain_text"]
|
||||
else:
|
||||
value = ""
|
||||
elif type == "select" or type == "status":
|
||||
elif type in {"select", "status"}:
|
||||
if property_value[type]:
|
||||
value = property_value[type]["name"]
|
||||
else:
|
||||
|
|
|
@ -115,7 +115,7 @@ class DatasetRetrieval:
|
|||
|
||||
available_datasets.append(dataset)
|
||||
all_documents = []
|
||||
user_from = "account" if invoke_from in [InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER] else "end_user"
|
||||
user_from = "account" if invoke_from in {InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER} else "end_user"
|
||||
if retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.SINGLE:
|
||||
all_documents = self.single_retrieve(
|
||||
app_id,
|
||||
|
@ -426,7 +426,7 @@ class DatasetRetrieval:
|
|||
retrieval_method=retrieval_model["search_method"],
|
||||
dataset_id=dataset.id,
|
||||
query=query,
|
||||
top_k=top_k,
|
||||
top_k=retrieval_model.get("top_k") or 2,
|
||||
score_threshold=retrieval_model.get("score_threshold", 0.0)
|
||||
if retrieval_model["score_threshold_enabled"]
|
||||
else 0.0,
|
||||
|
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user