Model Runtime (#1858)

Co-authored-by: StyleZhang <jasonapring2015@outlook.com>
Co-authored-by: Garfield Dai <dai.hai@foxmail.com>
Co-authored-by: chenhe <guchenhe@gmail.com>
Co-authored-by: jyong <jyong@dify.ai>
Co-authored-by: Joel <iamjoel007@gmail.com>
Co-authored-by: Yeuoly <admin@srmxy.cn>
This commit is contained in:
takatost 2024-01-02 23:42:00 +08:00 committed by GitHub
parent e91dd28a76
commit d069c668f8
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
807 changed files with 171310 additions and 23806 deletions

View File

@ -0,0 +1,58 @@
name: Run Pytest
on:
pull_request:
branches:
- main
push:
branches:
- deploy/dev
- feat/model-runtime
jobs:
test:
runs-on: ubuntu-latest
env:
OPENAI_API_KEY: sk-IamNotARealKeyJustForMockTestKawaiiiiiiiiii
AZURE_OPENAI_API_BASE: https://difyai-openai.openai.azure.com
AZURE_OPENAI_API_KEY: xxxxb1707exxxxxxxxxxaaxxxxxf94
ANTHROPIC_API_KEY: sk-ant-api11-IamNotARealKeyJustForMockTestKawaiiiiiiiiii-NotBaka-ASkksz
CHATGLM_API_BASE: http://a.abc.com:11451
XINFERENCE_SERVER_URL: http://a.abc.com:11451
XINFERENCE_GENERATION_MODEL_UID: generate
XINFERENCE_CHAT_MODEL_UID: chat
XINFERENCE_EMBEDDINGS_MODEL_UID: embedding
XINFERENCE_RERANK_MODEL_UID: rerank
GOOGLE_API_KEY: abcdefghijklmnopqrstuvwxyz
HUGGINGFACE_API_KEY: hf-awuwuwuwuwuwuwuwuwuwuwuwuwuwuwuwuwu
HUGGINGFACE_TEXT_GEN_ENDPOINT_URL: a
HUGGINGFACE_TEXT2TEXT_GEN_ENDPOINT_URL: b
HUGGINGFACE_EMBEDDINGS_ENDPOINT_URL: c
MOCK_SWITCH: true
steps:
- name: Checkout code
uses: actions/checkout@v2
- name: Set up Python
uses: actions/setup-python@v2
with:
python-version: '3.10'
- name: Cache pip dependencies
uses: actions/cache@v2
with:
path: ~/.cache/pip
key: ${{ runner.os }}-pip-${{ hashFiles('api/requirements.txt') }}
restore-keys: ${{ runner.os }}-pip-
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install pytest
pip install -r api/requirements.txt
- name: Run pytest
run: pytest api/tests/integration_tests/model_runtime/anthropic api/tests/integration_tests/model_runtime/azure_openai api/tests/integration_tests/model_runtime/openai api/tests/integration_tests/model_runtime/chatglm api/tests/integration_tests/model_runtime/google api/tests/integration_tests/model_runtime/xinference api/tests/integration_tests/model_runtime/huggingface_hub/test_llm.py

View File

@ -1,38 +0,0 @@
name: Run Pytest
on:
pull_request:
branches:
- main
push:
branches:
- deploy/dev
jobs:
test:
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v2
- name: Set up Python
uses: actions/setup-python@v2
with:
python-version: '3.10'
- name: Cache pip dependencies
uses: actions/cache@v2
with:
path: ~/.cache/pip
key: ${{ runner.os }}-pip-${{ hashFiles('api/requirements.txt') }}
restore-keys: ${{ runner.os }}-pip-
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install pytest
pip install -r api/requirements.txt
- name: Run pytest
run: pytest api/tests/unit_tests

View File

@ -55,6 +55,11 @@ Did you have an issue, like a merge conflict, or don't know how to open a pull r
Stuck somewhere? Have any questions? Join the [Discord Community Server](https://discord.gg/j3XRWSPBf7). We are here to help!
### Provider Integrations
If you see a model provider not yet supported by Dify that you'd like to use, follow these [steps](api/core/model_runtime/README.md) to submit a PR.
### i18n (Internationalization) Support
We are looking for contributors to help with translations in other languages. If you are interested in helping, please join the [Discord Community Server](https://discord.gg/AhzKf7dNgk) and let us know.

View File

@ -4,6 +4,21 @@
// For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387
"version": "0.2.0",
"configurations": [
{
"name": "Python: Celery",
"type": "python",
"request": "launch",
"module": "celery",
"justMyCode": true,
"args": ["-A", "app.celery", "worker", "-P", "gevent", "-c", "1", "--loglevel", "info", "-Q", "dataset,generation,mail"],
"envFile": "${workspaceFolder}/.env",
"env": {
"FLASK_APP": "app.py",
"FLASK_DEBUG": "1",
"GEVENT_SUPPORT": "True"
},
"console": "integratedTerminal"
},
{
"name": "Python: Flask",
"type": "python",

View File

@ -34,9 +34,6 @@ RUN apt-get update \
COPY --from=base /pkg /usr/local
COPY . /app/api/
RUN python -c "from transformers import GPT2TokenizerFast; GPT2TokenizerFast.from_pretrained('gpt2')"
ENV TRANSFORMERS_OFFLINE true
COPY docker/entrypoint.sh /entrypoint.sh
RUN chmod +x /entrypoint.sh

View File

@ -6,9 +6,12 @@ from werkzeug.exceptions import Unauthorized
if not os.environ.get("DEBUG") or os.environ.get("DEBUG").lower() != 'true':
from gevent import monkey
monkey.patch_all()
if os.environ.get("VECTOR_STORE") == 'milvus':
import grpc.experimental.gevent
grpc.experimental.gevent.init_gevent()
# if os.environ.get("VECTOR_STORE") == 'milvus':
import grpc.experimental.gevent
grpc.experimental.gevent.init_gevent()
import langchain
langchain.verbose = True
import time
import logging
@ -18,9 +21,8 @@ import threading
from flask import Flask, request, Response
from flask_cors import CORS
from core.model_providers.providers import hosted
from extensions import ext_celery, ext_sentry, ext_redis, ext_login, ext_migrate, \
ext_database, ext_storage, ext_mail, ext_code_based_extension
ext_database, ext_storage, ext_mail, ext_code_based_extension, ext_hosting_provider
from extensions.ext_database import db
from extensions.ext_login import login_manager
@ -79,8 +81,6 @@ def create_app(test_config=None) -> Flask:
register_blueprints(app)
register_commands(app)
hosted.init_app(app)
return app
@ -95,6 +95,7 @@ def initialize_extensions(app):
ext_celery.init_app(app)
ext_login.init_app(app)
ext_mail.init_app(app)
ext_hosting_provider.init_app(app)
ext_sentry.init_app(app)
@ -105,13 +106,18 @@ def load_user_from_request(request_from_flask_login):
if request.blueprint == 'console':
# Check if the user_id contains a dot, indicating the old format
auth_header = request.headers.get('Authorization', '')
if ' ' not in auth_header:
raise Unauthorized('Invalid Authorization header format. Expected \'Bearer <api-key>\' format.')
auth_scheme, auth_token = auth_header.split(None, 1)
auth_scheme = auth_scheme.lower()
if auth_scheme != 'bearer':
raise Unauthorized('Invalid Authorization header format. Expected \'Bearer <api-key>\' format.')
if not auth_header:
auth_token = request.args.get('_token')
if not auth_token:
raise Unauthorized('Invalid Authorization token.')
else:
if ' ' not in auth_header:
raise Unauthorized('Invalid Authorization header format. Expected \'Bearer <api-key>\' format.')
auth_scheme, auth_token = auth_header.split(None, 1)
auth_scheme = auth_scheme.lower()
if auth_scheme != 'bearer':
raise Unauthorized('Invalid Authorization header format. Expected \'Bearer <api-key>\' format.')
decoded = PassportService().verify(auth_token)
user_id = decoded.get('user_id')

View File

@ -12,16 +12,12 @@ import qdrant_client
from qdrant_client.http.models import TextIndexParams, TextIndexType, TokenizerType
from tqdm import tqdm
from flask import current_app, Flask
from langchain.embeddings import OpenAIEmbeddings
from werkzeug.exceptions import NotFound
from core.embedding.cached_embedding import CacheEmbedding
from core.index.index import IndexBuilder
from core.model_providers.model_factory import ModelFactory
from core.model_providers.models.embedding.openai_embedding import OpenAIEmbedding
from core.model_providers.models.entity.model_params import ModelType
from core.model_providers.providers.hosted import hosted_model_providers
from core.model_providers.providers.openai_provider import OpenAIProvider
from core.model_manager import ModelManager
from core.model_runtime.entities.model_entities import ModelType
from libs.password import password_pattern, valid_password, hash_password
from libs.helper import email as email_validate
from extensions.ext_database import db
@ -327,6 +323,8 @@ def create_qdrant_indexes():
except NotFound:
break
model_manager = ModelManager()
page += 1
for dataset in datasets:
if dataset.index_struct_dict:
@ -334,19 +332,23 @@ def create_qdrant_indexes():
try:
click.echo('Create dataset qdrant index: {}'.format(dataset.id))
try:
embedding_model = ModelFactory.get_embedding_model(
embedding_model = model_manager.get_model_instance(
tenant_id=dataset.tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
provider=dataset.embedding_model_provider,
model_type=ModelType.TEXT_EMBEDDING,
model=dataset.embedding_model
)
except Exception:
try:
embedding_model = ModelFactory.get_embedding_model(
tenant_id=dataset.tenant_id
embedding_model = model_manager.get_default_model_instance(
tenant_id=dataset.tenant_id,
model_type=ModelType.TEXT_EMBEDDING,
)
dataset.embedding_model = embedding_model.name
dataset.embedding_model_provider = embedding_model.model_provider.provider_name
dataset.embedding_model = embedding_model.model
dataset.embedding_model_provider = embedding_model.provider
except Exception:
provider = Provider(
id='provider_id',
tenant_id=dataset.tenant_id,

View File

@ -87,7 +87,7 @@ class Config:
# ------------------------
# General Configurations.
# ------------------------
self.CURRENT_VERSION = "0.3.34"
self.CURRENT_VERSION = "0.4.0"
self.COMMIT_SHA = get_env('COMMIT_SHA')
self.EDITION = "SELF_HOSTED"
self.DEPLOY_ENV = get_env('DEPLOY_ENV')

View File

@ -18,7 +18,7 @@ from .auth import login, oauth, data_source_oauth, activate
from .datasets import datasets, datasets_document, datasets_segments, file, hit_testing, data_source
# Import workspace controllers
from .workspace import workspace, members, providers, model_providers, account, tool_providers, models
from .workspace import workspace, members, model_providers, account, tool_providers, models
# Import explore controllers
from .explore import installed_app, recommended_app, completion, conversation, message, parameter, saved_message, audio

View File

@ -4,6 +4,10 @@ import logging
from datetime import datetime
from flask_login import current_user
from core.model_manager import ModelManager
from core.model_runtime.entities.model_entities import ModelType
from core.provider_manager import ProviderManager
from libs.login import login_required
from flask_restful import Resource, reqparse, marshal_with, abort, inputs
from werkzeug.exceptions import Forbidden
@ -13,9 +17,7 @@ from controllers.console import api
from controllers.console.app.error import AppNotFoundError, ProviderNotInitializeError
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required, cloud_edition_billing_resource_check
from core.model_providers.error import ProviderTokenNotInitError, LLMBadRequestError
from core.model_providers.model_factory import ModelFactory
from core.model_providers.model_provider_factory import ModelProviderFactory
from core.errors.error import ProviderTokenNotInitError, LLMBadRequestError
from events.app_event import app_was_created, app_was_deleted
from fields.app_fields import app_pagination_fields, app_detail_fields, template_list_fields, \
app_detail_fields_with_site
@ -73,39 +75,41 @@ class AppListApi(Resource):
raise Forbidden()
try:
default_model = ModelFactory.get_text_generation_model(
tenant_id=current_user.current_tenant_id
provider_manager = ProviderManager()
default_model_entity = provider_manager.get_default_model(
tenant_id=current_user.current_tenant_id,
model_type=ModelType.LLM
)
except (ProviderTokenNotInitError, LLMBadRequestError):
default_model = None
default_model_entity = None
except Exception as e:
logging.exception(e)
default_model = None
default_model_entity = None
if args['model_config'] is not None:
# validate config
model_config_dict = args['model_config']
# get model provider
model_provider = ModelProviderFactory.get_preferred_model_provider(
current_user.current_tenant_id,
model_config_dict["model"]["provider"]
model_manager = ModelManager()
model_instance = model_manager.get_default_model_instance(
tenant_id=current_user.current_tenant_id,
model_type=ModelType.LLM
)
if not model_provider:
if not default_model:
raise ProviderNotInitializeError(
f"No Default System Reasoning Model available. Please configure "
f"in the Settings -> Model Provider.")
else:
model_config_dict["model"]["provider"] = default_model.model_provider.provider_name
model_config_dict["model"]["name"] = default_model.name
if not model_instance:
raise ProviderNotInitializeError(
f"No Default System Reasoning Model available. Please configure "
f"in the Settings -> Model Provider.")
else:
model_config_dict["model"]["provider"] = model_instance.provider
model_config_dict["model"]["name"] = model_instance.model
model_configuration = AppModelConfigService.validate_configuration(
tenant_id=current_user.current_tenant_id,
account=current_user,
config=model_config_dict,
mode=args['mode']
app_mode=args['mode']
)
app = App(
@ -129,21 +133,27 @@ class AppListApi(Resource):
app_model_config = AppModelConfig(**model_config_template['model_config'])
# get model provider
model_provider = ModelProviderFactory.get_preferred_model_provider(
current_user.current_tenant_id,
app_model_config.model_dict["provider"]
)
model_manager = ModelManager()
if not model_provider:
if not default_model:
raise ProviderNotInitializeError(
f"No Default System Reasoning Model available. Please configure "
f"in the Settings -> Model Provider.")
else:
model_dict = app_model_config.model_dict
model_dict['provider'] = default_model.model_provider.provider_name
model_dict['name'] = default_model.name
app_model_config.model = json.dumps(model_dict)
try:
model_instance = model_manager.get_default_model_instance(
tenant_id=current_user.current_tenant_id,
model_type=ModelType.LLM
)
except ProviderTokenNotInitError:
raise ProviderNotInitializeError(
f"No Default System Reasoning Model available. Please configure "
f"in the Settings -> Model Provider.")
if not model_instance:
raise ProviderNotInitializeError(
f"No Default System Reasoning Model available. Please configure "
f"in the Settings -> Model Provider.")
else:
model_dict = app_model_config.model_dict
model_dict['provider'] = model_instance.provider
model_dict['name'] = model_instance.model
app_model_config.model = json.dumps(model_dict)
app.name = args['name']
app.mode = args['mode']

View File

@ -2,6 +2,8 @@
import logging
from flask import request
from core.model_runtime.errors.invoke import InvokeError
from libs.login import login_required
from werkzeug.exceptions import InternalServerError
@ -14,8 +16,7 @@ from controllers.console.app.error import AppUnavailableError, \
UnsupportedAudioTypeError, ProviderNotSupportSpeechToTextError
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from core.model_providers.error import LLMBadRequestError, LLMAPIUnavailableError, LLMAuthorizationError, LLMAPIConnectionError, \
LLMRateLimitError, ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError
from core.errors.error import ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError
from flask_restful import Resource
from services.audio_service import AudioService
from services.errors.audio import NoAudioUploadedServiceError, AudioTooLargeServiceError, \
@ -56,8 +57,7 @@ class ChatMessageAudioApi(Resource):
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except (LLMBadRequestError, LLMAPIConnectionError, LLMAPIUnavailableError,
LLMRateLimitError, LLMAuthorizationError) as e:
except InvokeError as e:
raise CompletionRequestError(str(e))
except ValueError as e:
raise e

View File

@ -5,6 +5,10 @@ from typing import Generator, Union
import flask_login
from flask import Response, stream_with_context
from core.application_queue_manager import ApplicationQueueManager
from core.entities.application_entities import InvokeFrom
from core.model_runtime.errors.invoke import InvokeError
from libs.login import login_required
from werkzeug.exceptions import InternalServerError, NotFound
@ -16,9 +20,7 @@ from controllers.console.app.error import ConversationCompletedError, AppUnavail
ProviderModelCurrentlyNotSupportError
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from core.conversation_message_task import PubHandler
from core.model_providers.error import LLMBadRequestError, LLMAPIUnavailableError, LLMAuthorizationError, LLMAPIConnectionError, \
LLMRateLimitError, ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError
from core.errors.error import ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError
from libs.helper import uuid_value
from flask_restful import Resource, reqparse
@ -56,7 +58,7 @@ class CompletionMessageApi(Resource):
app_model=app_model,
user=account,
args=args,
from_source='console',
invoke_from=InvokeFrom.DEBUGGER,
streaming=streaming,
is_model_config_override=True
)
@ -75,8 +77,7 @@ class CompletionMessageApi(Resource):
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except (LLMBadRequestError, LLMAPIConnectionError, LLMAPIUnavailableError,
LLMRateLimitError, LLMAuthorizationError) as e:
except InvokeError as e:
raise CompletionRequestError(str(e))
except ValueError as e:
raise e
@ -97,7 +98,7 @@ class CompletionMessageStopApi(Resource):
account = flask_login.current_user
PubHandler.stop(account, task_id)
ApplicationQueueManager.set_stop_flag(task_id, InvokeFrom.DEBUGGER, account.id)
return {'result': 'success'}, 200
@ -132,7 +133,7 @@ class ChatMessageApi(Resource):
app_model=app_model,
user=account,
args=args,
from_source='console',
invoke_from=InvokeFrom.DEBUGGER,
streaming=streaming,
is_model_config_override=True
)
@ -151,8 +152,7 @@ class ChatMessageApi(Resource):
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except (LLMBadRequestError, LLMAPIConnectionError, LLMAPIUnavailableError,
LLMRateLimitError, LLMAuthorizationError) as e:
except InvokeError as e:
raise CompletionRequestError(str(e))
except ValueError as e:
raise e
@ -182,9 +182,8 @@ def compact_response(response: Union[dict, Generator]) -> Response:
yield "data: " + json.dumps(api.handle_error(ProviderQuotaExceededError()).get_json()) + "\n\n"
except ModelCurrentlyNotSupportError:
yield "data: " + json.dumps(api.handle_error(ProviderModelCurrentlyNotSupportError()).get_json()) + "\n\n"
except (LLMBadRequestError, LLMAPIConnectionError, LLMAPIUnavailableError,
LLMRateLimitError, LLMAuthorizationError) as e:
yield "data: " + json.dumps(api.handle_error(CompletionRequestError(str(e))).get_json()) + "\n\n"
except InvokeError as e:
yield "data: " + json.dumps(api.handle_error(CompletionRequestError(e.description)).get_json()) + "\n\n"
except ValueError as e:
yield "data: " + json.dumps(api.handle_error(e).get_json()) + "\n\n"
except Exception:
@ -207,7 +206,7 @@ class ChatMessageStopApi(Resource):
account = flask_login.current_user
PubHandler.stop(account, task_id)
ApplicationQueueManager.set_stop_flag(task_id, InvokeFrom.DEBUGGER, account.id)
return {'result': 'success'}, 200

View File

@ -1,4 +1,6 @@
from flask_login import current_user
from core.model_runtime.errors.invoke import InvokeError
from libs.login import login_required
from flask_restful import Resource, reqparse
@ -8,8 +10,7 @@ from controllers.console.app.error import ProviderNotInitializeError, ProviderQu
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from core.generator.llm_generator import LLMGenerator
from core.model_providers.error import ProviderTokenNotInitError, QuotaExceededError, LLMBadRequestError, LLMAPIConnectionError, \
LLMAPIUnavailableError, LLMRateLimitError, LLMAuthorizationError, ModelCurrentlyNotSupportError
from core.errors.error import ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError
class RuleGenerateApi(Resource):
@ -36,8 +37,7 @@ class RuleGenerateApi(Resource):
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except (LLMBadRequestError, LLMAPIConnectionError, LLMAPIUnavailableError,
LLMRateLimitError, LLMAuthorizationError) as e:
except InvokeError as e:
raise CompletionRequestError(str(e))
return rules

View File

@ -14,8 +14,9 @@ from controllers.console.app.error import CompletionRequestError, ProviderNotIni
AppMoreLikeThisDisabledError, ProviderQuotaExceededError, ProviderModelCurrentlyNotSupportError
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required, cloud_edition_billing_resource_check
from core.model_providers.error import LLMRateLimitError, LLMBadRequestError, LLMAuthorizationError, LLMAPIConnectionError, \
ProviderTokenNotInitError, LLMAPIUnavailableError, QuotaExceededError, ModelCurrentlyNotSupportError
from core.entities.application_entities import InvokeFrom
from core.errors.error import ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError
from core.model_runtime.errors.invoke import InvokeError
from libs.login import login_required
from fields.conversation_fields import message_detail_fields, annotation_fields
from libs.helper import uuid_value
@ -208,7 +209,13 @@ class MessageMoreLikeThisApi(Resource):
app_model = _get_app(app_id, 'completion')
try:
response = CompletionService.generate_more_like_this(app_model, current_user, message_id, streaming)
response = CompletionService.generate_more_like_this(
app_model=app_model,
user=current_user,
message_id=message_id,
invoke_from=InvokeFrom.DEBUGGER,
streaming=streaming
)
return compact_response(response)
except MessageNotExistsError:
raise NotFound("Message Not Exists.")
@ -220,8 +227,7 @@ class MessageMoreLikeThisApi(Resource):
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except (LLMBadRequestError, LLMAPIConnectionError, LLMAPIUnavailableError,
LLMRateLimitError, LLMAuthorizationError) as e:
except InvokeError as e:
raise CompletionRequestError(str(e))
except ValueError as e:
raise e
@ -249,8 +255,7 @@ def compact_response(response: Union[dict, Generator]) -> Response:
except ModelCurrentlyNotSupportError:
yield "data: " + json.dumps(
api.handle_error(ProviderModelCurrentlyNotSupportError()).get_json()) + "\n\n"
except (LLMBadRequestError, LLMAPIConnectionError, LLMAPIUnavailableError,
LLMRateLimitError, LLMAuthorizationError) as e:
except InvokeError as e:
yield "data: " + json.dumps(api.handle_error(CompletionRequestError(str(e))).get_json()) + "\n\n"
except ValueError as e:
yield "data: " + json.dumps(api.handle_error(e).get_json()) + "\n\n"
@ -290,8 +295,7 @@ class MessageSuggestedQuestionApi(Resource):
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except (LLMBadRequestError, LLMAPIConnectionError, LLMAPIUnavailableError,
LLMRateLimitError, LLMAuthorizationError) as e:
except InvokeError as e:
raise CompletionRequestError(str(e))
except Exception:
logging.exception("internal server error.")

View File

@ -31,7 +31,7 @@ class ModelConfigResource(Resource):
tenant_id=current_user.current_tenant_id,
account=current_user,
config=request.json,
mode=app.mode
app_mode=app.mode
)
new_app_model_config = AppModelConfig(

View File

@ -4,6 +4,8 @@ from flask import request, current_app
from flask_login import current_user
from controllers.console.apikey import api_key_list, api_key_fields
from core.model_runtime.entities.model_entities import ModelType
from core.provider_manager import ProviderManager
from libs.login import login_required
from flask_restful import Resource, reqparse, marshal, marshal_with
from werkzeug.exceptions import NotFound, Forbidden
@ -14,8 +16,7 @@ from controllers.console.datasets.error import DatasetNameDuplicateError
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from core.indexing_runner import IndexingRunner
from core.model_providers.error import LLMBadRequestError, ProviderTokenNotInitError
from core.model_providers.models.entity.model_params import ModelType
from core.errors.error import LLMBadRequestError, ProviderTokenNotInitError
from fields.app_fields import related_app_list
from fields.dataset_fields import dataset_detail_fields, dataset_query_detail_fields
from fields.document_fields import document_status_fields
@ -23,7 +24,6 @@ from extensions.ext_database import db
from models.dataset import DocumentSegment, Document
from models.model import UploadFile, ApiToken
from services.dataset_service import DatasetService, DocumentService
from services.provider_service import ProviderService
def _validate_name(name):
@ -55,16 +55,20 @@ class DatasetListApi(Resource):
current_user.current_tenant_id, current_user)
# check embedding setting
provider_service = ProviderService()
valid_model_list = provider_service.get_valid_model_list(current_user.current_tenant_id,
ModelType.EMBEDDINGS.value)
# if len(valid_model_list) == 0:
# raise ProviderNotInitializeError(
# f"No Embedding Model available. Please configure a valid provider "
# f"in the Settings -> Model Provider.")
provider_manager = ProviderManager()
configurations = provider_manager.get_configurations(
tenant_id=current_user.current_tenant_id
)
embedding_models = configurations.get_models(
model_type=ModelType.TEXT_EMBEDDING,
only_active=True
)
model_names = []
for valid_model in valid_model_list:
model_names.append(f"{valid_model['model_name']}:{valid_model['model_provider']['provider_name']}")
for embedding_model in embedding_models:
model_names.append(f"{embedding_model.model}:{embedding_model.provider.provider}")
data = marshal(datasets, dataset_detail_fields)
for item in data:
if item['indexing_technique'] == 'high_quality':
@ -75,6 +79,7 @@ class DatasetListApi(Resource):
item['embedding_available'] = False
else:
item['embedding_available'] = True
response = {
'data': data,
'has_more': len(datasets) == limit,
@ -130,13 +135,20 @@ class DatasetApi(Resource):
raise Forbidden(str(e))
data = marshal(dataset, dataset_detail_fields)
# check embedding setting
provider_service = ProviderService()
# get valid model list
valid_model_list = provider_service.get_valid_model_list(current_user.current_tenant_id,
ModelType.EMBEDDINGS.value)
provider_manager = ProviderManager()
configurations = provider_manager.get_configurations(
tenant_id=current_user.current_tenant_id
)
embedding_models = configurations.get_models(
model_type=ModelType.TEXT_EMBEDDING,
only_active=True
)
model_names = []
for valid_model in valid_model_list:
model_names.append(f"{valid_model['model_name']}:{valid_model['model_provider']['provider_name']}")
for embedding_model in embedding_models:
model_names.append(f"{embedding_model.model}:{embedding_model.provider.provider}")
if data['indexing_technique'] == 'high_quality':
item_model = f"{data['embedding_model']}:{data['embedding_model_provider']}"
if item_model in model_names:

View File

@ -2,8 +2,12 @@
from datetime import datetime
from typing import List
from flask import request, current_app
from flask import request
from flask_login import current_user
from core.model_manager import ModelManager
from core.model_runtime.entities.model_entities import ModelType
from core.model_runtime.errors.invoke import InvokeAuthorizationError
from libs.login import login_required
from flask_restful import Resource, fields, marshal, marshal_with, reqparse
from sqlalchemy import desc, asc
@ -18,9 +22,8 @@ from controllers.console.datasets.error import DocumentAlreadyFinishedError, Inv
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required, cloud_edition_billing_resource_check
from core.indexing_runner import IndexingRunner
from core.model_providers.error import ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError, \
from core.errors.error import ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError, \
LLMBadRequestError
from core.model_providers.model_factory import ModelFactory
from extensions.ext_redis import redis_client
from fields.document_fields import document_with_segments_fields, document_fields, \
dataset_and_document_fields, document_status_fields
@ -272,10 +275,12 @@ class DatasetInitApi(Resource):
args = parser.parse_args()
if args['indexing_technique'] == 'high_quality':
try:
ModelFactory.get_embedding_model(
tenant_id=current_user.current_tenant_id
model_manager = ModelManager()
model_manager.get_default_model_instance(
tenant_id=current_user.current_tenant_id,
model_type=ModelType.TEXT_EMBEDDING
)
except LLMBadRequestError:
except InvokeAuthorizationError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "
f"in the Settings -> Model Provider.")

View File

@ -12,8 +12,9 @@ from controllers.console.app.error import ProviderNotInitializeError
from controllers.console.datasets.error import InvalidActionError, NoFileUploadedError, TooManyFilesError
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required, cloud_edition_billing_resource_check
from core.model_providers.error import LLMBadRequestError, ProviderTokenNotInitError
from core.model_providers.model_factory import ModelFactory
from core.errors.error import LLMBadRequestError, ProviderTokenNotInitError
from core.model_manager import ModelManager
from core.model_runtime.entities.model_entities import ModelType
from libs.login import login_required
from extensions.ext_database import db
from extensions.ext_redis import redis_client
@ -133,10 +134,12 @@ class DatasetDocumentSegmentApi(Resource):
if dataset.indexing_technique == 'high_quality':
# check embedding model setting
try:
ModelFactory.get_embedding_model(
model_manager = ModelManager()
model_manager.get_model_instance(
tenant_id=current_user.current_tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
provider=dataset.embedding_model_provider,
model_type=ModelType.TEXT_EMBEDDING,
model=dataset.embedding_model
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
@ -219,10 +222,12 @@ class DatasetDocumentSegmentAddApi(Resource):
# check embedding model setting
if dataset.indexing_technique == 'high_quality':
try:
ModelFactory.get_embedding_model(
model_manager = ModelManager()
model_manager.get_model_instance(
tenant_id=current_user.current_tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
provider=dataset.embedding_model_provider,
model_type=ModelType.TEXT_EMBEDDING,
model=dataset.embedding_model
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
@ -269,10 +274,12 @@ class DatasetDocumentSegmentUpdateApi(Resource):
if dataset.indexing_technique == 'high_quality':
# check embedding model setting
try:
ModelFactory.get_embedding_model(
model_manager = ModelManager()
model_manager.get_model_instance(
tenant_id=current_user.current_tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
provider=dataset.embedding_model_provider,
model_type=ModelType.TEXT_EMBEDDING,
model=dataset.embedding_model
)
except LLMBadRequestError:
raise ProviderNotInitializeError(

View File

@ -12,7 +12,7 @@ from controllers.console.app.error import ProviderNotInitializeError, ProviderQu
from controllers.console.datasets.error import HighQualityDatasetOnlyError, DatasetNotInitializedError
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from core.model_providers.error import ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError, \
from core.errors.error import ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError, \
LLMBadRequestError
from fields.hit_testing_fields import hit_testing_record_fields
from services.dataset_service import DatasetService

View File

@ -11,8 +11,8 @@ from controllers.console.app.error import AppUnavailableError, ProviderNotInitia
NoAudioUploadedError, AudioTooLargeError, \
UnsupportedAudioTypeError, ProviderNotSupportSpeechToTextError
from controllers.console.explore.wraps import InstalledAppResource
from core.model_providers.error import LLMBadRequestError, LLMAPIUnavailableError, LLMAuthorizationError, LLMAPIConnectionError, \
LLMRateLimitError, ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError
from core.errors.error import ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError
from core.model_runtime.errors.invoke import InvokeError
from services.audio_service import AudioService
from services.errors.audio import NoAudioUploadedServiceError, AudioTooLargeServiceError, \
UnsupportedAudioTypeServiceError, ProviderNotSupportSpeechToTextServiceError
@ -53,8 +53,7 @@ class ChatAudioApi(InstalledAppResource):
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except (LLMBadRequestError, LLMAPIConnectionError, LLMAPIUnavailableError,
LLMRateLimitError, LLMAuthorizationError) as e:
except InvokeError as e:
raise CompletionRequestError(str(e))
except ValueError as e:
raise e

View File

@ -15,9 +15,10 @@ from controllers.console.app.error import ConversationCompletedError, AppUnavail
ProviderQuotaExceededError, ProviderModelCurrentlyNotSupportError, CompletionRequestError
from controllers.console.explore.error import NotCompletionAppError, NotChatAppError
from controllers.console.explore.wraps import InstalledAppResource
from core.conversation_message_task import PubHandler
from core.model_providers.error import LLMBadRequestError, LLMAPIUnavailableError, LLMAuthorizationError, LLMAPIConnectionError, \
LLMRateLimitError, ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError
from core.application_queue_manager import ApplicationQueueManager
from core.entities.application_entities import InvokeFrom
from core.errors.error import ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError
from core.model_runtime.errors.invoke import InvokeError
from extensions.ext_database import db
from libs.helper import uuid_value
from services.completion_service import CompletionService
@ -50,7 +51,7 @@ class CompletionApi(InstalledAppResource):
app_model=app_model,
user=current_user,
args=args,
from_source='console',
invoke_from=InvokeFrom.EXPLORE,
streaming=streaming
)
@ -68,8 +69,7 @@ class CompletionApi(InstalledAppResource):
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except (LLMBadRequestError, LLMAPIConnectionError, LLMAPIUnavailableError,
LLMRateLimitError, LLMAuthorizationError) as e:
except InvokeError as e:
raise CompletionRequestError(str(e))
except ValueError as e:
raise e
@ -84,7 +84,7 @@ class CompletionStopApi(InstalledAppResource):
if app_model.mode != 'completion':
raise NotCompletionAppError()
PubHandler.stop(current_user, task_id)
ApplicationQueueManager.set_stop_flag(task_id, InvokeFrom.EXPLORE, current_user.id)
return {'result': 'success'}, 200
@ -115,7 +115,7 @@ class ChatApi(InstalledAppResource):
app_model=app_model,
user=current_user,
args=args,
from_source='console',
invoke_from=InvokeFrom.EXPLORE,
streaming=streaming
)
@ -133,8 +133,7 @@ class ChatApi(InstalledAppResource):
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except (LLMBadRequestError, LLMAPIConnectionError, LLMAPIUnavailableError,
LLMRateLimitError, LLMAuthorizationError) as e:
except InvokeError as e:
raise CompletionRequestError(str(e))
except ValueError as e:
raise e
@ -149,7 +148,7 @@ class ChatStopApi(InstalledAppResource):
if app_model.mode != 'chat':
raise NotChatAppError()
PubHandler.stop(current_user, task_id)
ApplicationQueueManager.set_stop_flag(task_id, InvokeFrom.EXPLORE, current_user.id)
return {'result': 'success'}, 200
@ -175,8 +174,7 @@ def compact_response(response: Union[dict, Generator]) -> Response:
yield "data: " + json.dumps(api.handle_error(ProviderQuotaExceededError()).get_json()) + "\n\n"
except ModelCurrentlyNotSupportError:
yield "data: " + json.dumps(api.handle_error(ProviderModelCurrentlyNotSupportError()).get_json()) + "\n\n"
except (LLMBadRequestError, LLMAPIConnectionError, LLMAPIUnavailableError,
LLMRateLimitError, LLMAuthorizationError) as e:
except InvokeError as e:
yield "data: " + json.dumps(api.handle_error(CompletionRequestError(str(e))).get_json()) + "\n\n"
except ValueError as e:
yield "data: " + json.dumps(api.handle_error(e).get_json()) + "\n\n"

View File

@ -5,7 +5,7 @@ from typing import Generator, Union
from flask import stream_with_context, Response
from flask_login import current_user
from flask_restful import reqparse, fields, marshal_with
from flask_restful import reqparse, marshal_with
from flask_restful.inputs import int_range
from werkzeug.exceptions import NotFound, InternalServerError
@ -13,12 +13,14 @@ import services
from controllers.console import api
from controllers.console.app.error import AppMoreLikeThisDisabledError, ProviderNotInitializeError, \
ProviderQuotaExceededError, ProviderModelCurrentlyNotSupportError, CompletionRequestError
from controllers.console.explore.error import NotCompletionAppError, AppSuggestedQuestionsAfterAnswerDisabledError
from controllers.console.explore.error import NotCompletionAppError, AppSuggestedQuestionsAfterAnswerDisabledError, \
NotChatAppError
from controllers.console.explore.wraps import InstalledAppResource
from core.model_providers.error import LLMRateLimitError, LLMBadRequestError, LLMAuthorizationError, LLMAPIConnectionError, \
ProviderTokenNotInitError, LLMAPIUnavailableError, QuotaExceededError, ModelCurrentlyNotSupportError
from core.entities.application_entities import InvokeFrom
from core.errors.error import ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError
from core.model_runtime.errors.invoke import InvokeError
from fields.message_fields import message_infinite_scroll_pagination_fields
from libs.helper import uuid_value, TimestampField
from libs.helper import uuid_value
from services.completion_service import CompletionService
from services.errors.app import MoreLikeThisDisabledError
from services.errors.conversation import ConversationNotExistsError
@ -83,7 +85,13 @@ class MessageMoreLikeThisApi(InstalledAppResource):
streaming = args['response_mode'] == 'streaming'
try:
response = CompletionService.generate_more_like_this(app_model, current_user, message_id, streaming)
response = CompletionService.generate_more_like_this(
app_model=app_model,
user=current_user,
message_id=message_id,
invoke_from=InvokeFrom.EXPLORE,
streaming=streaming
)
return compact_response(response)
except MessageNotExistsError:
raise NotFound("Message Not Exists.")
@ -95,8 +103,7 @@ class MessageMoreLikeThisApi(InstalledAppResource):
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except (LLMBadRequestError, LLMAPIConnectionError, LLMAPIUnavailableError,
LLMRateLimitError, LLMAuthorizationError) as e:
except InvokeError as e:
raise CompletionRequestError(str(e))
except ValueError as e:
raise e
@ -123,8 +130,7 @@ def compact_response(response: Union[dict, Generator]) -> Response:
yield "data: " + json.dumps(api.handle_error(ProviderQuotaExceededError()).get_json()) + "\n\n"
except ModelCurrentlyNotSupportError:
yield "data: " + json.dumps(api.handle_error(ProviderModelCurrentlyNotSupportError()).get_json()) + "\n\n"
except (LLMBadRequestError, LLMAPIConnectionError, LLMAPIUnavailableError,
LLMRateLimitError, LLMAuthorizationError) as e:
except InvokeError as e:
yield "data: " + json.dumps(api.handle_error(CompletionRequestError(str(e))).get_json()) + "\n\n"
except ValueError as e:
yield "data: " + json.dumps(api.handle_error(e).get_json()) + "\n\n"
@ -162,8 +168,7 @@ class MessageSuggestedQuestionApi(InstalledAppResource):
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except (LLMBadRequestError, LLMAPIConnectionError, LLMAPIUnavailableError,
LLMRateLimitError, LLMAuthorizationError) as e:
except InvokeError as e:
raise CompletionRequestError(str(e))
except Exception:
logging.exception("internal server error.")

View File

@ -11,8 +11,8 @@ from controllers.console.app.error import AppUnavailableError, ProviderNotInitia
NoAudioUploadedError, AudioTooLargeError, \
UnsupportedAudioTypeError, ProviderNotSupportSpeechToTextError
from controllers.console.universal_chat.wraps import UniversalChatResource
from core.model_providers.error import LLMBadRequestError, LLMAPIUnavailableError, LLMAuthorizationError, LLMAPIConnectionError, \
LLMRateLimitError, ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError
from core.errors.error import ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError
from core.model_runtime.errors.invoke import InvokeError
from services.audio_service import AudioService
from services.errors.audio import NoAudioUploadedServiceError, AudioTooLargeServiceError, \
UnsupportedAudioTypeServiceError, ProviderNotSupportSpeechToTextServiceError
@ -53,8 +53,7 @@ class UniversalChatAudioApi(UniversalChatResource):
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except (LLMBadRequestError, LLMAPIConnectionError, LLMAPIUnavailableError,
LLMRateLimitError, LLMAuthorizationError) as e:
except InvokeError as e:
raise CompletionRequestError(str(e))
except ValueError as e:
raise e

View File

@ -12,9 +12,10 @@ from controllers.console import api
from controllers.console.app.error import ConversationCompletedError, AppUnavailableError, ProviderNotInitializeError, \
ProviderQuotaExceededError, ProviderModelCurrentlyNotSupportError, CompletionRequestError
from controllers.console.universal_chat.wraps import UniversalChatResource
from core.conversation_message_task import PubHandler
from core.model_providers.error import ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError, \
LLMBadRequestError, LLMAPIConnectionError, LLMAPIUnavailableError, LLMRateLimitError, LLMAuthorizationError
from core.application_queue_manager import ApplicationQueueManager
from core.entities.application_entities import InvokeFrom
from core.errors.error import ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError
from core.model_runtime.errors.invoke import InvokeError
from libs.helper import uuid_value
from services.completion_service import CompletionService
@ -68,7 +69,7 @@ class UniversalChatApi(UniversalChatResource):
app_model=app_model,
user=current_user,
args=args,
from_source='console',
invoke_from=InvokeFrom.EXPLORE,
streaming=True,
is_model_config_override=True,
)
@ -87,8 +88,7 @@ class UniversalChatApi(UniversalChatResource):
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except (LLMBadRequestError, LLMAPIConnectionError, LLMAPIUnavailableError,
LLMRateLimitError, LLMAuthorizationError) as e:
except InvokeError as e:
raise CompletionRequestError(str(e))
except ValueError as e:
raise e
@ -99,7 +99,7 @@ class UniversalChatApi(UniversalChatResource):
class UniversalChatStopApi(UniversalChatResource):
def post(self, universal_app, task_id):
PubHandler.stop(current_user, task_id)
ApplicationQueueManager.set_stop_flag(task_id, InvokeFrom.EXPLORE, current_user.id)
return {'result': 'success'}, 200
@ -125,8 +125,7 @@ def compact_response(response: Union[dict, Generator]) -> Response:
yield "data: " + json.dumps(api.handle_error(ProviderQuotaExceededError()).get_json()) + "\n\n"
except ModelCurrentlyNotSupportError:
yield "data: " + json.dumps(api.handle_error(ProviderModelCurrentlyNotSupportError()).get_json()) + "\n\n"
except (LLMBadRequestError, LLMAPIConnectionError, LLMAPIUnavailableError,
LLMRateLimitError, LLMAuthorizationError) as e:
except InvokeError as e:
yield "data: " + json.dumps(api.handle_error(CompletionRequestError(str(e))).get_json()) + "\n\n"
except ValueError as e:
yield "data: " + json.dumps(api.handle_error(e).get_json()) + "\n\n"

View File

@ -12,8 +12,8 @@ from controllers.console.app.error import ProviderNotInitializeError, \
ProviderQuotaExceededError, ProviderModelCurrentlyNotSupportError, CompletionRequestError
from controllers.console.explore.error import AppSuggestedQuestionsAfterAnswerDisabledError
from controllers.console.universal_chat.wraps import UniversalChatResource
from core.model_providers.error import LLMRateLimitError, LLMBadRequestError, LLMAuthorizationError, LLMAPIConnectionError, \
ProviderTokenNotInitError, LLMAPIUnavailableError, QuotaExceededError, ModelCurrentlyNotSupportError
from core.errors.error import ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError
from core.model_runtime.errors.invoke import InvokeError
from libs.helper import uuid_value, TimestampField
from services.errors.conversation import ConversationNotExistsError
from services.errors.message import MessageNotExistsError, SuggestedQuestionsAfterAnswerDisabledError
@ -132,8 +132,7 @@ class UniversalChatMessageSuggestedQuestionApi(UniversalChatResource):
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except (LLMBadRequestError, LLMAPIConnectionError, LLMAPIUnavailableError,
LLMRateLimitError, LLMAuthorizationError) as e:
except InvokeError as e:
raise CompletionRequestError(str(e))
except Exception:
logging.exception("internal server error.")

View File

@ -1,16 +1,19 @@
import io
from flask import send_file
from flask_login import current_user
from libs.login import login_required
from flask_restful import Resource, reqparse
from werkzeug.exceptions import Forbidden
from controllers.console import api
from controllers.console.app.error import ProviderNotInitializeError
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from core.model_providers.error import LLMBadRequestError
from core.model_providers.providers.base import CredentialsValidateFailedError
from services.provider_service import ProviderService
from core.model_runtime.entities.model_entities import ModelType
from core.model_runtime.errors.validate import CredentialsValidateFailedError
from core.model_runtime.utils.encoders import jsonable_encoder
from libs.login import login_required
from services.billing_service import BillingService
from services.model_provider_service import ModelProviderService
class ModelProviderListApi(Resource):
@ -22,13 +25,36 @@ class ModelProviderListApi(Resource):
tenant_id = current_user.current_tenant_id
parser = reqparse.RequestParser()
parser.add_argument('model_type', type=str, required=False, nullable=True, location='args')
parser.add_argument('model_type', type=str, required=False, nullable=True,
choices=[mt.value for mt in ModelType], location='args')
args = parser.parse_args()
provider_service = ProviderService()
provider_list = provider_service.get_provider_list(tenant_id=tenant_id, model_type=args.get('model_type'))
model_provider_service = ModelProviderService()
provider_list = model_provider_service.get_provider_list(
tenant_id=tenant_id,
model_type=args.get('model_type')
)
return provider_list
return jsonable_encoder({"data": provider_list})
class ModelProviderCredentialApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self, provider: str):
tenant_id = current_user.current_tenant_id
model_provider_service = ModelProviderService()
credentials = model_provider_service.get_provider_credentials(
tenant_id=tenant_id,
provider=provider
)
return {
"credentials": credentials
}
class ModelProviderValidateApi(Resource):
@ -36,21 +62,24 @@ class ModelProviderValidateApi(Resource):
@setup_required
@login_required
@account_initialization_required
def post(self, provider_name: str):
def post(self, provider: str):
parser = reqparse.RequestParser()
parser.add_argument('config', type=dict, required=True, nullable=False, location='json')
parser.add_argument('credentials', type=dict, required=True, nullable=False, location='json')
args = parser.parse_args()
provider_service = ProviderService()
tenant_id = current_user.current_tenant_id
model_provider_service = ModelProviderService()
result = True
error = None
try:
provider_service.custom_provider_config_validate(
provider_name=provider_name,
config=args['config']
model_provider_service.provider_credentials_validate(
tenant_id=tenant_id,
provider=provider,
credentials=args['credentials']
)
except CredentialsValidateFailedError as ex:
result = False
@ -64,26 +93,26 @@ class ModelProviderValidateApi(Resource):
return response
class ModelProviderUpdateApi(Resource):
class ModelProviderApi(Resource):
@setup_required
@login_required
@account_initialization_required
def post(self, provider_name: str):
def post(self, provider: str):
if current_user.current_tenant.current_role not in ['admin', 'owner']:
raise Forbidden()
parser = reqparse.RequestParser()
parser.add_argument('config', type=dict, required=True, nullable=False, location='json')
parser.add_argument('credentials', type=dict, required=True, nullable=False, location='json')
args = parser.parse_args()
provider_service = ProviderService()
model_provider_service = ModelProviderService()
try:
provider_service.save_custom_provider_config(
model_provider_service.save_provider_credentials(
tenant_id=current_user.current_tenant_id,
provider_name=provider_name,
config=args['config']
provider=provider,
credentials=args['credentials']
)
except CredentialsValidateFailedError as ex:
raise ValueError(str(ex))
@ -93,109 +122,36 @@ class ModelProviderUpdateApi(Resource):
@setup_required
@login_required
@account_initialization_required
def delete(self, provider_name: str):
def delete(self, provider: str):
if current_user.current_tenant.current_role not in ['admin', 'owner']:
raise Forbidden()
provider_service = ProviderService()
provider_service.delete_custom_provider(
model_provider_service = ModelProviderService()
model_provider_service.remove_provider_credentials(
tenant_id=current_user.current_tenant_id,
provider_name=provider_name
provider=provider
)
return {'result': 'success'}, 204
class ModelProviderModelValidateApi(Resource):
class ModelProviderIconApi(Resource):
"""
Get model provider icon
"""
@setup_required
@login_required
@account_initialization_required
def post(self, provider_name: str):
parser = reqparse.RequestParser()
parser.add_argument('model_name', type=str, required=True, nullable=False, location='json')
parser.add_argument('model_type', type=str, required=True, nullable=False,
choices=['text-generation', 'embeddings', 'speech2text', 'reranking'], location='json')
parser.add_argument('config', type=dict, required=True, nullable=False, location='json')
args = parser.parse_args()
provider_service = ProviderService()
result = True
error = None
try:
provider_service.custom_provider_model_config_validate(
provider_name=provider_name,
model_name=args['model_name'],
model_type=args['model_type'],
config=args['config']
)
except CredentialsValidateFailedError as ex:
result = False
error = str(ex)
response = {'result': 'success' if result else 'error'}
if not result:
response['error'] = error
return response
class ModelProviderModelUpdateApi(Resource):
@setup_required
@login_required
@account_initialization_required
def post(self, provider_name: str):
if current_user.current_tenant.current_role not in ['admin', 'owner']:
raise Forbidden()
parser = reqparse.RequestParser()
parser.add_argument('model_name', type=str, required=True, nullable=False, location='json')
parser.add_argument('model_type', type=str, required=True, nullable=False,
choices=['text-generation', 'embeddings', 'speech2text', 'reranking'], location='json')
parser.add_argument('config', type=dict, required=True, nullable=False, location='json')
args = parser.parse_args()
provider_service = ProviderService()
try:
provider_service.add_or_save_custom_provider_model_config(
tenant_id=current_user.current_tenant_id,
provider_name=provider_name,
model_name=args['model_name'],
model_type=args['model_type'],
config=args['config']
)
except CredentialsValidateFailedError as ex:
raise ValueError(str(ex))
return {'result': 'success'}, 200
@setup_required
@login_required
@account_initialization_required
def delete(self, provider_name: str):
if current_user.current_tenant.current_role not in ['admin', 'owner']:
raise Forbidden()
parser = reqparse.RequestParser()
parser.add_argument('model_name', type=str, required=True, nullable=False, location='args')
parser.add_argument('model_type', type=str, required=True, nullable=False,
choices=['text-generation', 'embeddings', 'speech2text', 'reranking'], location='args')
args = parser.parse_args()
provider_service = ProviderService()
provider_service.delete_custom_provider_model(
tenant_id=current_user.current_tenant_id,
provider_name=provider_name,
model_name=args['model_name'],
model_type=args['model_type']
def get(self, provider: str, icon_type: str, lang: str):
model_provider_service = ModelProviderService()
icon, mimetype = model_provider_service.get_model_provider_icon(
provider=provider,
icon_type=icon_type,
lang=lang
)
return {'result': 'success'}, 204
return send_file(io.BytesIO(icon), mimetype=mimetype)
class PreferredProviderTypeUpdateApi(Resource):
@ -203,71 +159,36 @@ class PreferredProviderTypeUpdateApi(Resource):
@setup_required
@login_required
@account_initialization_required
def post(self, provider_name: str):
def post(self, provider: str):
if current_user.current_tenant.current_role not in ['admin', 'owner']:
raise Forbidden()
tenant_id = current_user.current_tenant_id
parser = reqparse.RequestParser()
parser.add_argument('preferred_provider_type', type=str, required=True, nullable=False,
choices=['system', 'custom'], location='json')
args = parser.parse_args()
provider_service = ProviderService()
provider_service.switch_preferred_provider(
tenant_id=current_user.current_tenant_id,
provider_name=provider_name,
model_provider_service = ModelProviderService()
model_provider_service.switch_preferred_provider(
tenant_id=tenant_id,
provider=provider,
preferred_provider_type=args['preferred_provider_type']
)
return {'result': 'success'}
class ModelProviderModelParameterRuleApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self, provider_name: str):
parser = reqparse.RequestParser()
parser.add_argument('model_name', type=str, required=True, nullable=False, location='args')
args = parser.parse_args()
provider_service = ProviderService()
try:
parameter_rules = provider_service.get_model_parameter_rules(
tenant_id=current_user.current_tenant_id,
model_provider_name=provider_name,
model_name=args['model_name'],
model_type='text-generation'
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"Current Text Generation Model is invalid. Please switch to the available model.")
rules = {
k: {
'enabled': v.enabled,
'min': v.min,
'max': v.max,
'default': v.default,
'precision': v.precision
}
for k, v in vars(parameter_rules).items()
}
return rules
class ModelProviderPaymentCheckoutUrlApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self, provider_name: str):
if provider_name != 'anthropic':
raise ValueError(f'provider name {provider_name} is invalid')
def get(self, provider: str):
if provider != 'anthropic':
raise ValueError(f'provider name {provider} is invalid')
data = BillingService.get_model_provider_payment_link(provider_name=provider_name,
data = BillingService.get_model_provider_payment_link(provider_name=provider,
tenant_id=current_user.current_tenant_id,
account_id=current_user.id)
return data
@ -277,11 +198,11 @@ class ModelProviderFreeQuotaSubmitApi(Resource):
@setup_required
@login_required
@account_initialization_required
def post(self, provider_name: str):
provider_service = ProviderService()
result = provider_service.free_quota_submit(
def post(self, provider: str):
model_provider_service = ModelProviderService()
result = model_provider_service.free_quota_submit(
tenant_id=current_user.current_tenant_id,
provider_name=provider_name
provider=provider
)
return result
@ -291,15 +212,15 @@ class ModelProviderFreeQuotaQualificationVerifyApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self, provider_name: str):
def get(self, provider: str):
parser = reqparse.RequestParser()
parser.add_argument('token', type=str, required=False, nullable=True, location='args')
args = parser.parse_args()
provider_service = ProviderService()
result = provider_service.free_quota_qualification_verify(
model_provider_service = ModelProviderService()
result = model_provider_service.free_quota_qualification_verify(
tenant_id=current_user.current_tenant_id,
provider_name=provider_name,
provider=provider,
token=args['token']
)
@ -307,19 +228,18 @@ class ModelProviderFreeQuotaQualificationVerifyApi(Resource):
api.add_resource(ModelProviderListApi, '/workspaces/current/model-providers')
api.add_resource(ModelProviderValidateApi, '/workspaces/current/model-providers/<string:provider_name>/validate')
api.add_resource(ModelProviderUpdateApi, '/workspaces/current/model-providers/<string:provider_name>')
api.add_resource(ModelProviderModelValidateApi,
'/workspaces/current/model-providers/<string:provider_name>/models/validate')
api.add_resource(ModelProviderModelUpdateApi,
'/workspaces/current/model-providers/<string:provider_name>/models')
api.add_resource(ModelProviderCredentialApi, '/workspaces/current/model-providers/<string:provider>/credentials')
api.add_resource(ModelProviderValidateApi, '/workspaces/current/model-providers/<string:provider>/credentials/validate')
api.add_resource(ModelProviderApi, '/workspaces/current/model-providers/<string:provider>')
api.add_resource(ModelProviderIconApi, '/workspaces/current/model-providers/<string:provider>/'
'<string:icon_type>/<string:lang>')
api.add_resource(PreferredProviderTypeUpdateApi,
'/workspaces/current/model-providers/<string:provider_name>/preferred-provider-type')
api.add_resource(ModelProviderModelParameterRuleApi,
'/workspaces/current/model-providers/<string:provider_name>/models/parameter-rules')
'/workspaces/current/model-providers/<string:provider>/preferred-provider-type')
api.add_resource(ModelProviderPaymentCheckoutUrlApi,
'/workspaces/current/model-providers/<string:provider_name>/checkout-url')
'/workspaces/current/model-providers/<string:provider>/checkout-url')
api.add_resource(ModelProviderFreeQuotaSubmitApi,
'/workspaces/current/model-providers/<string:provider_name>/free-quota-submit')
'/workspaces/current/model-providers/<string:provider>/free-quota-submit')
api.add_resource(ModelProviderFreeQuotaQualificationVerifyApi,
'/workspaces/current/model-providers/<string:provider_name>/free-quota-qualification-verify')
'/workspaces/current/model-providers/<string:provider>/free-quota-qualification-verify')

View File

@ -1,16 +1,17 @@
import logging
from flask_login import current_user
from libs.login import login_required
from flask_restful import Resource, reqparse
from flask_restful import reqparse, Resource
from werkzeug.exceptions import Forbidden
from controllers.console import api
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from core.model_providers.model_provider_factory import ModelProviderFactory
from core.model_providers.models.entity.model_params import ModelType
from models.provider import ProviderType
from services.provider_service import ProviderService
from core.model_runtime.entities.model_entities import ModelType
from core.model_runtime.errors.validate import CredentialsValidateFailedError
from core.model_runtime.utils.encoders import jsonable_encoder
from libs.login import login_required
from services.model_provider_service import ModelProviderService
class DefaultModelApi(Resource):
@ -21,52 +22,20 @@ class DefaultModelApi(Resource):
def get(self):
parser = reqparse.RequestParser()
parser.add_argument('model_type', type=str, required=True, nullable=False,
choices=['text-generation', 'embeddings', 'speech2text', 'reranking'], location='args')
choices=[mt.value for mt in ModelType], location='args')
args = parser.parse_args()
tenant_id = current_user.current_tenant_id
provider_service = ProviderService()
default_model = provider_service.get_default_model_of_model_type(
model_provider_service = ModelProviderService()
default_model_entity = model_provider_service.get_default_model_of_model_type(
tenant_id=tenant_id,
model_type=args['model_type']
)
if not default_model:
return None
model_provider = ModelProviderFactory.get_preferred_model_provider(
tenant_id,
default_model.provider_name
)
if not model_provider:
return {
'model_name': default_model.model_name,
'model_type': default_model.model_type,
'model_provider': {
'provider_name': default_model.provider_name
}
}
provider = model_provider.provider
rst = {
'model_name': default_model.model_name,
'model_type': default_model.model_type,
'model_provider': {
'provider_name': provider.provider_name,
'provider_type': provider.provider_type
}
}
model_provider_rules = ModelProviderFactory.get_provider_rule(default_model.provider_name)
if provider.provider_type == ProviderType.SYSTEM.value:
rst['model_provider']['quota_type'] = provider.quota_type
rst['model_provider']['quota_unit'] = model_provider_rules['system_config']['quota_unit']
rst['model_provider']['quota_limit'] = provider.quota_limit
rst['model_provider']['quota_used'] = provider.quota_used
return rst
return jsonable_encoder({
"data": default_model_entity
})
@setup_required
@login_required
@ -76,15 +45,26 @@ class DefaultModelApi(Resource):
parser.add_argument('model_settings', type=list, required=True, nullable=False, location='json')
args = parser.parse_args()
provider_service = ProviderService()
tenant_id = current_user.current_tenant_id
model_provider_service = ModelProviderService()
model_settings = args['model_settings']
for model_setting in model_settings:
if 'model_type' not in model_setting or model_setting['model_type'] not in [mt.value for mt in ModelType]:
raise ValueError('invalid model type')
if 'provider' not in model_setting:
continue
if 'model' not in model_setting:
raise ValueError('invalid model')
try:
provider_service.update_default_model_of_model_type(
tenant_id=current_user.current_tenant_id,
model_provider_service.update_default_model_of_model_type(
tenant_id=tenant_id,
model_type=model_setting['model_type'],
provider_name=model_setting['provider_name'],
model_name=model_setting['model_name']
provider=model_setting['provider'],
model=model_setting['model']
)
except Exception:
logging.warning(f"{model_setting['model_type']} save error")
@ -92,22 +72,198 @@ class DefaultModelApi(Resource):
return {'result': 'success'}
class ValidModelApi(Resource):
class ModelProviderModelApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self, provider):
tenant_id = current_user.current_tenant_id
model_provider_service = ModelProviderService()
models = model_provider_service.get_models_by_provider(
tenant_id=tenant_id,
provider=provider
)
return jsonable_encoder({
"data": models
})
@setup_required
@login_required
@account_initialization_required
def post(self, provider: str):
if current_user.current_tenant.current_role not in ['admin', 'owner']:
raise Forbidden()
tenant_id = current_user.current_tenant_id
parser = reqparse.RequestParser()
parser.add_argument('model', type=str, required=True, nullable=False, location='json')
parser.add_argument('model_type', type=str, required=True, nullable=False,
choices=[mt.value for mt in ModelType], location='json')
parser.add_argument('credentials', type=dict, required=True, nullable=False, location='json')
args = parser.parse_args()
model_provider_service = ModelProviderService()
try:
model_provider_service.save_model_credentials(
tenant_id=tenant_id,
provider=provider,
model=args['model'],
model_type=args['model_type'],
credentials=args['credentials']
)
except CredentialsValidateFailedError as ex:
raise ValueError(str(ex))
return {'result': 'success'}, 200
@setup_required
@login_required
@account_initialization_required
def delete(self, provider: str):
if current_user.current_tenant.current_role not in ['admin', 'owner']:
raise Forbidden()
tenant_id = current_user.current_tenant_id
parser = reqparse.RequestParser()
parser.add_argument('model', type=str, required=True, nullable=False, location='json')
parser.add_argument('model_type', type=str, required=True, nullable=False,
choices=[mt.value for mt in ModelType], location='json')
args = parser.parse_args()
model_provider_service = ModelProviderService()
model_provider_service.remove_model_credentials(
tenant_id=tenant_id,
provider=provider,
model=args['model'],
model_type=args['model_type']
)
return {'result': 'success'}, 204
class ModelProviderModelCredentialApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self, provider: str):
tenant_id = current_user.current_tenant_id
parser = reqparse.RequestParser()
parser.add_argument('model', type=str, required=True, nullable=False, location='args')
parser.add_argument('model_type', type=str, required=True, nullable=False,
choices=[mt.value for mt in ModelType], location='args')
args = parser.parse_args()
model_provider_service = ModelProviderService()
credentials = model_provider_service.get_model_credentials(
tenant_id=tenant_id,
provider=provider,
model_type=args['model_type'],
model=args['model']
)
return {
"credentials": credentials
}
class ModelProviderModelValidateApi(Resource):
@setup_required
@login_required
@account_initialization_required
def post(self, provider: str):
tenant_id = current_user.current_tenant_id
parser = reqparse.RequestParser()
parser.add_argument('model', type=str, required=True, nullable=False, location='json')
parser.add_argument('model_type', type=str, required=True, nullable=False,
choices=[mt.value for mt in ModelType], location='json')
parser.add_argument('credentials', type=dict, required=True, nullable=False, location='json')
args = parser.parse_args()
model_provider_service = ModelProviderService()
result = True
error = None
try:
model_provider_service.model_credentials_validate(
tenant_id=tenant_id,
provider=provider,
model=args['model'],
model_type=args['model_type'],
credentials=args['credentials']
)
except CredentialsValidateFailedError as ex:
result = False
error = str(ex)
response = {'result': 'success' if result else 'error'}
if not result:
response['error'] = error
return response
class ModelProviderModelParameterRuleApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self, provider: str):
parser = reqparse.RequestParser()
parser.add_argument('model', type=str, required=True, nullable=False, location='args')
args = parser.parse_args()
tenant_id = current_user.current_tenant_id
model_provider_service = ModelProviderService()
parameter_rules = model_provider_service.get_model_parameter_rules(
tenant_id=tenant_id,
provider=provider,
model=args['model']
)
return jsonable_encoder({
"data": parameter_rules
})
class ModelProviderAvailableModelApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self, model_type):
ModelType.value_of(model_type)
tenant_id = current_user.current_tenant_id
provider_service = ProviderService()
valid_models = provider_service.get_valid_model_list(
tenant_id=current_user.current_tenant_id,
model_provider_service = ModelProviderService()
models = model_provider_service.get_models_by_model_type(
tenant_id=tenant_id,
model_type=model_type
)
return valid_models
return jsonable_encoder({
"data": models
})
api.add_resource(ModelProviderModelApi, '/workspaces/current/model-providers/<string:provider>/models')
api.add_resource(ModelProviderModelCredentialApi,
'/workspaces/current/model-providers/<string:provider>/models/credentials')
api.add_resource(ModelProviderModelValidateApi,
'/workspaces/current/model-providers/<string:provider>/models/credentials/validate')
api.add_resource(ModelProviderModelParameterRuleApi,
'/workspaces/current/model-providers/<string:provider>/models/parameter-rules')
api.add_resource(ModelProviderAvailableModelApi, '/workspaces/current/models/model-types/<string:model_type>')
api.add_resource(DefaultModelApi, '/workspaces/current/default-model')
api.add_resource(ValidModelApi, '/workspaces/current/models/model-type/<string:model_type>')

View File

@ -1,131 +0,0 @@
# -*- coding:utf-8 -*-
from flask_login import current_user
from libs.login import login_required
from flask_restful import Resource, reqparse
from werkzeug.exceptions import Forbidden
from controllers.console import api
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from core.model_providers.providers.base import CredentialsValidateFailedError
from models.provider import ProviderType
from services.provider_service import ProviderService
class ProviderListApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self):
tenant_id = current_user.current_tenant_id
"""
If the type is AZURE_OPENAI, decode and return the four fields of azure_api_type, azure_api_version:,
azure_api_base, azure_api_key as an object, where azure_api_key displays the first 6 bits in plaintext, and the
rest is replaced by * and the last two bits are displayed in plaintext
If the type is other, decode and return the Token field directly, the field displays the first 6 bits in
plaintext, the rest is replaced by * and the last two bits are displayed in plaintext
"""
provider_service = ProviderService()
provider_info_list = provider_service.get_provider_list(tenant_id)
provider_list = [
{
'provider_name': p['provider_name'],
'provider_type': p['provider_type'],
'is_valid': p['is_valid'],
'last_used': p['last_used'],
'is_enabled': p['is_valid'],
**({
'quota_type': p['quota_type'],
'quota_limit': p['quota_limit'],
'quota_used': p['quota_used']
} if p['provider_type'] == ProviderType.SYSTEM.value else {}),
'token': (p['config'] if p['provider_name'] != 'openai' else p['config']['openai_api_key'])
if p['config'] else None
}
for name, provider_info in provider_info_list.items()
for p in provider_info['providers']
]
return provider_list
class ProviderTokenApi(Resource):
@setup_required
@login_required
@account_initialization_required
def post(self, provider):
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
raise Forbidden()
parser = reqparse.RequestParser()
parser.add_argument('token', required=True, nullable=False, location='json')
args = parser.parse_args()
if provider == 'openai':
args['token'] = {
'openai_api_key': args['token']
}
provider_service = ProviderService()
try:
provider_service.save_custom_provider_config(
tenant_id=current_user.current_tenant_id,
provider_name=provider,
config=args['token']
)
except CredentialsValidateFailedError as ex:
raise ValueError(str(ex))
return {'result': 'success'}, 201
class ProviderTokenValidateApi(Resource):
@setup_required
@login_required
@account_initialization_required
def post(self, provider):
parser = reqparse.RequestParser()
parser.add_argument('token', required=True, nullable=False, location='json')
args = parser.parse_args()
provider_service = ProviderService()
if provider == 'openai':
args['token'] = {
'openai_api_key': args['token']
}
result = True
error = None
try:
provider_service.custom_provider_config_validate(
provider_name=provider,
config=args['token']
)
except CredentialsValidateFailedError as ex:
result = False
error = str(ex)
response = {'result': 'success' if result else 'error'}
if not result:
response['error'] = error
return response
api.add_resource(ProviderTokenApi, '/workspaces/current/providers/<provider>/token',
endpoint='workspaces_current_providers_token') # PUT for updating provider token
api.add_resource(ProviderTokenValidateApi, '/workspaces/current/providers/<provider>/token-validate',
endpoint='workspaces_current_providers_token_validate') # POST for validating provider token
api.add_resource(ProviderListApi, '/workspaces/current/providers') # GET for getting providers list

View File

@ -34,7 +34,6 @@ tenant_fields = {
'status': fields.String,
'created_at': TimestampField,
'role': fields.String,
'providers': fields.List(fields.Nested(provider_fields)),
'in_trial': fields.Boolean,
'trial_end_reason': fields.String,
'custom_config': fields.Raw(attribute='custom_config'),

View File

@ -9,8 +9,8 @@ from controllers.service_api.app.error import AppUnavailableError, ProviderNotIn
ProviderModelCurrentlyNotSupportError, NoAudioUploadedError, AudioTooLargeError, UnsupportedAudioTypeError, \
ProviderNotSupportSpeechToTextError
from controllers.service_api.wraps import AppApiResource
from core.model_providers.error import LLMBadRequestError, LLMAuthorizationError, LLMAPIUnavailableError, LLMAPIConnectionError, \
LLMRateLimitError, ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError
from core.errors.error import ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError
from core.model_runtime.errors.invoke import InvokeError
from models.model import App, AppModelConfig
from services.audio_service import AudioService
from services.errors.audio import NoAudioUploadedServiceError, AudioTooLargeServiceError, \
@ -49,8 +49,7 @@ class AudioApi(AppApiResource):
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except (LLMBadRequestError, LLMAPIConnectionError, LLMAPIUnavailableError,
LLMRateLimitError, LLMAuthorizationError) as e:
except InvokeError as e:
raise CompletionRequestError(str(e))
except ValueError as e:
raise e

View File

@ -13,9 +13,10 @@ from controllers.service_api.app.error import AppUnavailableError, ProviderNotIn
ConversationCompletedError, CompletionRequestError, ProviderQuotaExceededError, \
ProviderModelCurrentlyNotSupportError
from controllers.service_api.wraps import AppApiResource
from core.conversation_message_task import PubHandler
from core.model_providers.error import LLMBadRequestError, LLMAuthorizationError, LLMAPIUnavailableError, LLMAPIConnectionError, \
LLMRateLimitError, ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError
from core.application_queue_manager import ApplicationQueueManager
from core.entities.application_entities import InvokeFrom
from core.errors.error import ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError
from core.model_runtime.errors.invoke import InvokeError
from libs.helper import uuid_value
from services.completion_service import CompletionService
@ -47,7 +48,7 @@ class CompletionApi(AppApiResource):
app_model=app_model,
user=end_user,
args=args,
from_source='api',
invoke_from=InvokeFrom.SERVICE_API,
streaming=streaming,
)
@ -65,8 +66,7 @@ class CompletionApi(AppApiResource):
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except (LLMBadRequestError, LLMAPIConnectionError, LLMAPIUnavailableError,
LLMRateLimitError, LLMAuthorizationError) as e:
except InvokeError as e:
raise CompletionRequestError(str(e))
except ValueError as e:
raise e
@ -80,7 +80,7 @@ class CompletionStopApi(AppApiResource):
if app_model.mode != 'completion':
raise AppUnavailableError()
PubHandler.stop(end_user, task_id)
ApplicationQueueManager.set_stop_flag(task_id, InvokeFrom.SERVICE_API, end_user.id)
return {'result': 'success'}, 200
@ -112,7 +112,7 @@ class ChatApi(AppApiResource):
app_model=app_model,
user=end_user,
args=args,
from_source='api',
invoke_from=InvokeFrom.SERVICE_API,
streaming=streaming
)
@ -130,8 +130,7 @@ class ChatApi(AppApiResource):
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except (LLMBadRequestError, LLMAPIConnectionError, LLMAPIUnavailableError,
LLMRateLimitError, LLMAuthorizationError) as e:
except InvokeError as e:
raise CompletionRequestError(str(e))
except ValueError as e:
raise e
@ -145,7 +144,7 @@ class ChatStopApi(AppApiResource):
if app_model.mode != 'chat':
raise NotChatAppError()
PubHandler.stop(end_user, task_id)
ApplicationQueueManager.set_stop_flag(task_id, InvokeFrom.SERVICE_API, end_user.id)
return {'result': 'success'}, 200
@ -171,8 +170,7 @@ def compact_response(response: Union[dict, Generator]) -> Response:
yield "data: " + json.dumps(api.handle_error(ProviderQuotaExceededError()).get_json()) + "\n\n"
except ModelCurrentlyNotSupportError:
yield "data: " + json.dumps(api.handle_error(ProviderModelCurrentlyNotSupportError()).get_json()) + "\n\n"
except (LLMBadRequestError, LLMAPIConnectionError, LLMAPIUnavailableError,
LLMRateLimitError, LLMAuthorizationError) as e:
except InvokeError as e:
yield "data: " + json.dumps(api.handle_error(CompletionRequestError(str(e))).get_json()) + "\n\n"
except ValueError as e:
yield "data: " + json.dumps(api.handle_error(e).get_json()) + "\n\n"

View File

@ -4,11 +4,11 @@ import services.dataset_service
from controllers.service_api import api
from controllers.service_api.dataset.error import DatasetNameDuplicateError
from controllers.service_api.wraps import DatasetApiResource
from core.model_runtime.entities.model_entities import ModelType
from core.provider_manager import ProviderManager
from libs.login import current_user
from core.model_providers.models.entity.model_params import ModelType
from fields.dataset_fields import dataset_detail_fields
from services.dataset_service import DatasetService
from services.provider_service import ProviderService
def _validate_name(name):
@ -27,12 +27,20 @@ class DatasetApi(DatasetApiResource):
datasets, total = DatasetService.get_datasets(page, limit, provider,
tenant_id, current_user)
# check embedding setting
provider_service = ProviderService()
valid_model_list = provider_service.get_valid_model_list(current_user.current_tenant_id,
ModelType.EMBEDDINGS.value)
provider_manager = ProviderManager()
configurations = provider_manager.get_configurations(
tenant_id=current_user.current_tenant_id
)
embedding_models = configurations.get_models(
model_type=ModelType.TEXT_EMBEDDING,
only_active=True
)
model_names = []
for valid_model in valid_model_list:
model_names.append(f"{valid_model['model_name']}:{valid_model['model_provider']['provider_name']}")
for embedding_model in embedding_models:
model_names.append(f"{embedding_model.model}:{embedding_model.provider.provider}")
data = marshal(datasets, dataset_detail_fields)
for item in data:
if item['indexing_technique'] == 'high_quality':

View File

@ -13,7 +13,7 @@ from controllers.service_api.dataset.error import ArchivedDocumentImmutableError
NoFileUploadedError, TooManyFilesError
from controllers.service_api.wraps import DatasetApiResource, cloud_edition_billing_resource_check
from libs.login import current_user
from core.model_providers.error import ProviderTokenNotInitError
from core.errors.error import ProviderTokenNotInitError
from extensions.ext_database import db
from fields.document_fields import document_fields, document_status_fields
from models.dataset import Dataset, Document, DocumentSegment

View File

@ -4,8 +4,9 @@ from werkzeug.exceptions import NotFound
from controllers.service_api import api
from controllers.service_api.app.error import ProviderNotInitializeError
from controllers.service_api.wraps import DatasetApiResource, cloud_edition_billing_resource_check
from core.model_providers.error import ProviderTokenNotInitError, LLMBadRequestError
from core.model_providers.model_factory import ModelFactory
from core.errors.error import ProviderTokenNotInitError, LLMBadRequestError
from core.model_manager import ModelManager
from core.model_runtime.entities.model_entities import ModelType
from extensions.ext_database import db
from fields.segment_fields import segment_fields
from models.dataset import Dataset, DocumentSegment
@ -35,10 +36,12 @@ class SegmentApi(DatasetApiResource):
# check embedding model setting
if dataset.indexing_technique == 'high_quality':
try:
ModelFactory.get_embedding_model(
model_manager = ModelManager()
model_manager.get_model_instance(
tenant_id=current_user.current_tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
provider=dataset.embedding_model_provider,
model_type=ModelType.TEXT_EMBEDDING,
model=dataset.embedding_model
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
@ -77,10 +80,12 @@ class SegmentApi(DatasetApiResource):
# check embedding model setting
if dataset.indexing_technique == 'high_quality':
try:
ModelFactory.get_embedding_model(
model_manager = ModelManager()
model_manager.get_model_instance(
tenant_id=current_user.current_tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
provider=dataset.embedding_model_provider,
model_type=ModelType.TEXT_EMBEDDING,
model=dataset.embedding_model
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
@ -167,10 +172,12 @@ class DatasetSegmentApi(DatasetApiResource):
if dataset.indexing_technique == 'high_quality':
# check embedding model setting
try:
ModelFactory.get_embedding_model(
model_manager = ModelManager()
model_manager.get_model_instance(
tenant_id=current_user.current_tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
provider=dataset.embedding_model_provider,
model_type=ModelType.TEXT_EMBEDDING,
model=dataset.embedding_model
)
except LLMBadRequestError:
raise ProviderNotInitializeError(

View File

@ -10,8 +10,8 @@ from controllers.web.error import AppUnavailableError, ProviderNotInitializeErro
ProviderQuotaExceededError, ProviderModelCurrentlyNotSupportError, NoAudioUploadedError, AudioTooLargeError, \
UnsupportedAudioTypeError, ProviderNotSupportSpeechToTextError
from controllers.web.wraps import WebApiResource
from core.model_providers.error import LLMBadRequestError, LLMAPIUnavailableError, LLMAuthorizationError, LLMAPIConnectionError, \
LLMRateLimitError, ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError
from core.errors.error import ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError
from core.model_runtime.errors.invoke import InvokeError
from services.audio_service import AudioService
from services.errors.audio import NoAudioUploadedServiceError, AudioTooLargeServiceError, \
UnsupportedAudioTypeServiceError, ProviderNotSupportSpeechToTextServiceError
@ -51,8 +51,7 @@ class AudioApi(WebApiResource):
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except (LLMBadRequestError, LLMAPIConnectionError, LLMAPIUnavailableError,
LLMRateLimitError, LLMAuthorizationError) as e:
except InvokeError as e:
raise CompletionRequestError(str(e))
except ValueError as e:
raise e

View File

@ -13,9 +13,10 @@ from controllers.web.error import AppUnavailableError, ConversationCompletedErro
ProviderNotInitializeError, NotChatAppError, NotCompletionAppError, CompletionRequestError, \
ProviderQuotaExceededError, ProviderModelCurrentlyNotSupportError
from controllers.web.wraps import WebApiResource
from core.conversation_message_task import PubHandler
from core.model_providers.error import LLMBadRequestError, LLMAPIUnavailableError, LLMAuthorizationError, LLMAPIConnectionError, \
LLMRateLimitError, ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError
from core.application_queue_manager import ApplicationQueueManager
from core.entities.application_entities import InvokeFrom
from core.errors.error import ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError
from core.model_runtime.errors.invoke import InvokeError
from libs.helper import uuid_value
from services.completion_service import CompletionService
@ -44,7 +45,7 @@ class CompletionApi(WebApiResource):
app_model=app_model,
user=end_user,
args=args,
from_source='api',
invoke_from=InvokeFrom.WEB_APP,
streaming=streaming
)
@ -62,8 +63,7 @@ class CompletionApi(WebApiResource):
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except (LLMBadRequestError, LLMAPIConnectionError, LLMAPIUnavailableError,
LLMRateLimitError, LLMAuthorizationError) as e:
except InvokeError as e:
raise CompletionRequestError(str(e))
except ValueError as e:
raise e
@ -77,7 +77,7 @@ class CompletionStopApi(WebApiResource):
if app_model.mode != 'completion':
raise NotCompletionAppError()
PubHandler.stop(end_user, task_id)
ApplicationQueueManager.set_stop_flag(task_id, InvokeFrom.WEB_APP, end_user.id)
return {'result': 'success'}, 200
@ -105,7 +105,7 @@ class ChatApi(WebApiResource):
app_model=app_model,
user=end_user,
args=args,
from_source='api',
invoke_from=InvokeFrom.WEB_APP,
streaming=streaming
)
@ -123,8 +123,7 @@ class ChatApi(WebApiResource):
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except (LLMBadRequestError, LLMAPIConnectionError, LLMAPIUnavailableError,
LLMRateLimitError, LLMAuthorizationError) as e:
except InvokeError as e:
raise CompletionRequestError(str(e))
except ValueError as e:
raise e
@ -138,7 +137,7 @@ class ChatStopApi(WebApiResource):
if app_model.mode != 'chat':
raise NotChatAppError()
PubHandler.stop(end_user, task_id)
ApplicationQueueManager.set_stop_flag(task_id, InvokeFrom.WEB_APP, end_user.id)
return {'result': 'success'}, 200
@ -164,8 +163,7 @@ def compact_response(response: Union[dict, Generator]) -> Response:
yield "data: " + json.dumps(api.handle_error(ProviderQuotaExceededError()).get_json()) + "\n\n"
except ModelCurrentlyNotSupportError:
yield "data: " + json.dumps(api.handle_error(ProviderModelCurrentlyNotSupportError()).get_json()) + "\n\n"
except (LLMBadRequestError, LLMAPIConnectionError, LLMAPIUnavailableError,
LLMRateLimitError, LLMAuthorizationError) as e:
except InvokeError as e:
yield "data: " + json.dumps(api.handle_error(CompletionRequestError(str(e))).get_json()) + "\n\n"
except ValueError as e:
yield "data: " + json.dumps(api.handle_error(e).get_json()) + "\n\n"

View File

@ -14,8 +14,9 @@ from controllers.web.error import NotChatAppError, CompletionRequestError, Provi
AppMoreLikeThisDisabledError, NotCompletionAppError, AppSuggestedQuestionsAfterAnswerDisabledError, \
ProviderQuotaExceededError, ProviderModelCurrentlyNotSupportError
from controllers.web.wraps import WebApiResource
from core.model_providers.error import LLMRateLimitError, LLMBadRequestError, LLMAuthorizationError, LLMAPIConnectionError, \
ProviderTokenNotInitError, LLMAPIUnavailableError, QuotaExceededError, ModelCurrentlyNotSupportError
from core.entities.application_entities import InvokeFrom
from core.errors.error import ProviderTokenNotInitError, QuotaExceededError, ModelCurrentlyNotSupportError
from core.model_runtime.errors.invoke import InvokeError
from libs.helper import uuid_value, TimestampField
from services.completion_service import CompletionService
from services.errors.app import MoreLikeThisDisabledError
@ -117,7 +118,14 @@ class MessageMoreLikeThisApi(WebApiResource):
streaming = args['response_mode'] == 'streaming'
try:
response = CompletionService.generate_more_like_this(app_model, end_user, message_id, streaming, 'web_app')
response = CompletionService.generate_more_like_this(
app_model=app_model,
user=end_user,
message_id=message_id,
invoke_from=InvokeFrom.WEB_APP,
streaming=streaming
)
return compact_response(response)
except MessageNotExistsError:
raise NotFound("Message Not Exists.")
@ -129,8 +137,7 @@ class MessageMoreLikeThisApi(WebApiResource):
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except (LLMBadRequestError, LLMAPIConnectionError, LLMAPIUnavailableError,
LLMRateLimitError, LLMAuthorizationError) as e:
except InvokeError as e:
raise CompletionRequestError(str(e))
except ValueError as e:
raise e
@ -157,8 +164,7 @@ def compact_response(response: Union[dict, Generator]) -> Response:
yield "data: " + json.dumps(api.handle_error(ProviderQuotaExceededError()).get_json()) + "\n\n"
except ModelCurrentlyNotSupportError:
yield "data: " + json.dumps(api.handle_error(ProviderModelCurrentlyNotSupportError()).get_json()) + "\n\n"
except (LLMBadRequestError, LLMAPIConnectionError, LLMAPIUnavailableError,
LLMRateLimitError, LLMAuthorizationError) as e:
except InvokeError as e:
yield "data: " + json.dumps(api.handle_error(CompletionRequestError(str(e))).get_json()) + "\n\n"
except ValueError as e:
yield "data: " + json.dumps(api.handle_error(e).get_json()) + "\n\n"
@ -195,8 +201,7 @@ class MessageSuggestedQuestionApi(WebApiResource):
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except (LLMBadRequestError, LLMAPIConnectionError, LLMAPIUnavailableError,
LLMRateLimitError, LLMAuthorizationError) as e:
except InvokeError as e:
raise CompletionRequestError(str(e))
except Exception:
logging.exception("internal server error.")

View File

@ -0,0 +1,101 @@
import logging
from typing import Optional, List
from core.callback_handler.agent_loop_gather_callback_handler import AgentLoopGatherCallbackHandler
from core.model_runtime.callbacks.base_callback import Callback
from core.model_runtime.entities.llm_entities import LLMResultChunk, LLMResult
from core.model_runtime.entities.message_entities import PromptMessageTool, PromptMessage
from core.model_runtime.model_providers.__base.ai_model import AIModel
logger = logging.getLogger(__name__)
class AgentLLMCallback(Callback):
def __init__(self, agent_callback: AgentLoopGatherCallbackHandler) -> None:
self.agent_callback = agent_callback
def on_before_invoke(self, llm_instance: AIModel, model: str, credentials: dict,
prompt_messages: list[PromptMessage], model_parameters: dict,
tools: Optional[list[PromptMessageTool]] = None, stop: Optional[List[str]] = None,
stream: bool = True, user: Optional[str] = None) -> None:
"""
Before invoke callback
:param llm_instance: LLM instance
:param model: model name
:param credentials: model credentials
:param prompt_messages: prompt messages
:param model_parameters: model parameters
:param tools: tools for tool calling
:param stop: stop words
:param stream: is stream response
:param user: unique user id
"""
self.agent_callback.on_llm_before_invoke(
prompt_messages=prompt_messages
)
def on_new_chunk(self, llm_instance: AIModel, chunk: LLMResultChunk, model: str, credentials: dict,
prompt_messages: list[PromptMessage], model_parameters: dict,
tools: Optional[list[PromptMessageTool]] = None, stop: Optional[List[str]] = None,
stream: bool = True, user: Optional[str] = None):
"""
On new chunk callback
:param llm_instance: LLM instance
:param chunk: chunk
:param model: model name
:param credentials: model credentials
:param prompt_messages: prompt messages
:param model_parameters: model parameters
:param tools: tools for tool calling
:param stop: stop words
:param stream: is stream response
:param user: unique user id
"""
pass
def on_after_invoke(self, llm_instance: AIModel, result: LLMResult, model: str, credentials: dict,
prompt_messages: list[PromptMessage], model_parameters: dict,
tools: Optional[list[PromptMessageTool]] = None, stop: Optional[List[str]] = None,
stream: bool = True, user: Optional[str] = None) -> None:
"""
After invoke callback
:param llm_instance: LLM instance
:param result: result
:param model: model name
:param credentials: model credentials
:param prompt_messages: prompt messages
:param model_parameters: model parameters
:param tools: tools for tool calling
:param stop: stop words
:param stream: is stream response
:param user: unique user id
"""
self.agent_callback.on_llm_after_invoke(
result=result
)
def on_invoke_error(self, llm_instance: AIModel, ex: Exception, model: str, credentials: dict,
prompt_messages: list[PromptMessage], model_parameters: dict,
tools: Optional[list[PromptMessageTool]] = None, stop: Optional[List[str]] = None,
stream: bool = True, user: Optional[str] = None) -> None:
"""
Invoke error callback
:param llm_instance: LLM instance
:param ex: exception
:param model: model name
:param credentials: model credentials
:param prompt_messages: prompt messages
:param model_parameters: model parameters
:param tools: tools for tool calling
:param stop: stop words
:param stream: is stream response
:param user: unique user id
"""
self.agent_callback.on_llm_error(
error=ex
)

View File

@ -1,28 +1,49 @@
from typing import List
from typing import List, cast
from langchain.schema import BaseMessage
from core.model_providers.models.entity.message import to_prompt_messages
from core.model_providers.models.llm.base import BaseLLM
from core.entities.application_entities import ModelConfigEntity
from core.entities.message_entities import lc_messages_to_prompt_messages
from core.model_runtime.entities.message_entities import PromptMessage
from core.model_runtime.entities.model_entities import ModelPropertyKey
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
class CalcTokenMixin:
def get_num_tokens_from_messages(self, model_instance: BaseLLM, messages: List[BaseMessage], **kwargs) -> int:
return model_instance.get_num_tokens(to_prompt_messages(messages))
def get_message_rest_tokens(self, model_instance: BaseLLM, messages: List[BaseMessage], **kwargs) -> int:
def get_message_rest_tokens(self, model_config: ModelConfigEntity, messages: List[PromptMessage], **kwargs) -> int:
"""
Got the rest tokens available for the model after excluding messages tokens and completion max tokens
:param llm:
:param model_config:
:param messages:
:return:
"""
llm_max_tokens = model_instance.model_rules.max_tokens.max
completion_max_tokens = model_instance.model_kwargs.max_tokens
used_tokens = self.get_num_tokens_from_messages(model_instance, messages, **kwargs)
rest_tokens = llm_max_tokens - completion_max_tokens - used_tokens
model_type_instance = model_config.provider_model_bundle.model_type_instance
model_type_instance = cast(LargeLanguageModel, model_type_instance)
model_context_tokens = model_config.model_schema.model_properties.get(ModelPropertyKey.CONTEXT_SIZE)
max_tokens = 0
for parameter_rule in model_config.model_schema.parameter_rules:
if (parameter_rule.name == 'max_tokens'
or (parameter_rule.use_template and parameter_rule.use_template == 'max_tokens')):
max_tokens = (model_config.parameters.get(parameter_rule.name)
or model_config.parameters.get(parameter_rule.use_template)) or 0
if model_context_tokens is None:
return 0
if max_tokens is None:
max_tokens = 0
prompt_tokens = model_type_instance.get_num_tokens(
model_config.model,
model_config.credentials,
messages
)
rest_tokens = model_context_tokens - max_tokens - prompt_tokens
return rest_tokens

View File

@ -1,4 +1,3 @@
import json
from typing import Tuple, List, Any, Union, Sequence, Optional, cast
from langchain.agents import OpenAIFunctionsAgent, BaseSingleActionAgent
@ -6,13 +5,14 @@ from langchain.agents.openai_functions_agent.base import _format_intermediate_st
from langchain.callbacks.base import BaseCallbackManager
from langchain.callbacks.manager import Callbacks
from langchain.prompts.chat import BaseMessagePromptTemplate
from langchain.schema import AgentAction, AgentFinish, SystemMessage, Generation, LLMResult, AIMessage
from langchain.schema.language_model import BaseLanguageModel
from langchain.schema import AgentAction, AgentFinish, SystemMessage, AIMessage
from langchain.tools import BaseTool
from pydantic import root_validator
from core.model_providers.models.entity.message import to_prompt_messages
from core.model_providers.models.llm.base import BaseLLM
from core.entities.application_entities import ModelConfigEntity
from core.model_manager import ModelInstance
from core.entities.message_entities import lc_messages_to_prompt_messages
from core.model_runtime.entities.message_entities import PromptMessageTool
from core.third_party.langchain.llms.fake import FakeLLM
@ -20,7 +20,7 @@ class MultiDatasetRouterAgent(OpenAIFunctionsAgent):
"""
An Multi Dataset Retrieve Agent driven by Router.
"""
model_instance: BaseLLM
model_config: ModelConfigEntity
class Config:
"""Configuration for this pydantic object."""
@ -81,8 +81,7 @@ class MultiDatasetRouterAgent(OpenAIFunctionsAgent):
agent_decision.return_values['output'] = ''
return agent_decision
except Exception as e:
new_exception = self.model_instance.handle_exceptions(e)
raise new_exception
raise e
def real_plan(
self,
@ -106,16 +105,39 @@ class MultiDatasetRouterAgent(OpenAIFunctionsAgent):
full_inputs = dict(**selected_inputs, agent_scratchpad=agent_scratchpad)
prompt = self.prompt.format_prompt(**full_inputs)
messages = prompt.to_messages()
prompt_messages = to_prompt_messages(messages)
result = self.model_instance.run(
messages=prompt_messages,
functions=self.functions,
prompt_messages = lc_messages_to_prompt_messages(messages)
model_instance = ModelInstance(
provider_model_bundle=self.model_config.provider_model_bundle,
model=self.model_config.model,
)
tools = []
for function in self.functions:
tool = PromptMessageTool(
**function
)
tools.append(tool)
result = model_instance.invoke_llm(
prompt_messages=prompt_messages,
tools=tools,
stream=False,
model_parameters={
'temperature': 0.2,
'top_p': 0.3,
'max_tokens': 1500
}
)
ai_message = AIMessage(
content=result.content,
content=result.message.content or "",
additional_kwargs={
'function_call': result.function_call
'function_call': {
'id': result.message.tool_calls[0].id,
**result.message.tool_calls[0].function.dict()
} if result.message.tool_calls else None
}
)
@ -133,7 +155,7 @@ class MultiDatasetRouterAgent(OpenAIFunctionsAgent):
@classmethod
def from_llm_and_tools(
cls,
model_instance: BaseLLM,
model_config: ModelConfigEntity,
tools: Sequence[BaseTool],
callback_manager: Optional[BaseCallbackManager] = None,
extra_prompt_messages: Optional[List[BaseMessagePromptTemplate]] = None,
@ -147,7 +169,7 @@ class MultiDatasetRouterAgent(OpenAIFunctionsAgent):
system_message=system_message,
)
return cls(
model_instance=model_instance,
model_config=model_config,
llm=FakeLLM(response=''),
prompt=prompt,
tools=tools,

View File

@ -1,4 +1,4 @@
from typing import List, Tuple, Any, Union, Sequence, Optional
from typing import List, Tuple, Any, Union, Sequence, Optional, cast
from langchain.agents import OpenAIFunctionsAgent, BaseSingleActionAgent
from langchain.agents.openai_functions_agent.base import _parse_ai_message, \
@ -13,18 +13,23 @@ from langchain.schema import AgentAction, AgentFinish, SystemMessage, AIMessage,
from langchain.tools import BaseTool
from pydantic import root_validator
from core.agent.agent.agent_llm_callback import AgentLLMCallback
from core.agent.agent.calc_token_mixin import ExceededLLMTokensLimitError, CalcTokenMixin
from core.chain.llm_chain import LLMChain
from core.model_providers.models.entity.message import to_prompt_messages
from core.model_providers.models.llm.base import BaseLLM
from core.entities.application_entities import ModelConfigEntity
from core.model_manager import ModelInstance
from core.entities.message_entities import lc_messages_to_prompt_messages
from core.model_runtime.entities.message_entities import PromptMessageTool, PromptMessage
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
from core.third_party.langchain.llms.fake import FakeLLM
class AutoSummarizingOpenAIFunctionCallAgent(OpenAIFunctionsAgent, CalcTokenMixin):
moving_summary_buffer: str = ""
moving_summary_index: int = 0
summary_model_instance: BaseLLM = None
model_instance: BaseLLM
summary_model_config: ModelConfigEntity = None
model_config: ModelConfigEntity
agent_llm_callback: Optional[AgentLLMCallback] = None
class Config:
"""Configuration for this pydantic object."""
@ -38,13 +43,14 @@ class AutoSummarizingOpenAIFunctionCallAgent(OpenAIFunctionsAgent, CalcTokenMixi
@classmethod
def from_llm_and_tools(
cls,
model_instance: BaseLLM,
model_config: ModelConfigEntity,
tools: Sequence[BaseTool],
callback_manager: Optional[BaseCallbackManager] = None,
extra_prompt_messages: Optional[List[BaseMessagePromptTemplate]] = None,
system_message: Optional[SystemMessage] = SystemMessage(
content="You are a helpful AI assistant."
),
agent_llm_callback: Optional[AgentLLMCallback] = None,
**kwargs: Any,
) -> BaseSingleActionAgent:
prompt = cls.create_prompt(
@ -52,11 +58,12 @@ class AutoSummarizingOpenAIFunctionCallAgent(OpenAIFunctionsAgent, CalcTokenMixi
system_message=system_message,
)
return cls(
model_instance=model_instance,
model_config=model_config,
llm=FakeLLM(response=''),
prompt=prompt,
tools=tools,
callback_manager=callback_manager,
agent_llm_callback=agent_llm_callback,
**kwargs,
)
@ -67,28 +74,49 @@ class AutoSummarizingOpenAIFunctionCallAgent(OpenAIFunctionsAgent, CalcTokenMixi
:param query:
:return:
"""
original_max_tokens = self.model_instance.model_kwargs.max_tokens
self.model_instance.model_kwargs.max_tokens = 40
original_max_tokens = 0
for parameter_rule in self.model_config.model_schema.parameter_rules:
if (parameter_rule.name == 'max_tokens'
or (parameter_rule.use_template and parameter_rule.use_template == 'max_tokens')):
original_max_tokens = (self.model_config.parameters.get(parameter_rule.name)
or self.model_config.parameters.get(parameter_rule.use_template)) or 0
self.model_config.parameters['max_tokens'] = 40
prompt = self.prompt.format_prompt(input=query, agent_scratchpad=[])
messages = prompt.to_messages()
try:
prompt_messages = to_prompt_messages(messages)
result = self.model_instance.run(
messages=prompt_messages,
functions=self.functions,
callbacks=None
prompt_messages = lc_messages_to_prompt_messages(messages)
model_instance = ModelInstance(
provider_model_bundle=self.model_config.provider_model_bundle,
model=self.model_config.model,
)
tools = []
for function in self.functions:
tool = PromptMessageTool(
**function
)
tools.append(tool)
result = model_instance.invoke_llm(
prompt_messages=prompt_messages,
tools=tools,
stream=False,
model_parameters={
'temperature': 0.2,
'top_p': 0.3,
'max_tokens': 1500
}
)
except Exception as e:
new_exception = self.model_instance.handle_exceptions(e)
raise new_exception
raise e
function_call = result.function_call
self.model_config.parameters['max_tokens'] = original_max_tokens
self.model_instance.model_kwargs.max_tokens = original_max_tokens
return True if function_call else False
return True if result.message.tool_calls else False
def plan(
self,
@ -113,22 +141,46 @@ class AutoSummarizingOpenAIFunctionCallAgent(OpenAIFunctionsAgent, CalcTokenMixi
prompt = self.prompt.format_prompt(**full_inputs)
messages = prompt.to_messages()
prompt_messages = lc_messages_to_prompt_messages(messages)
# summarize messages if rest_tokens < 0
try:
messages = self.summarize_messages_if_needed(messages, functions=self.functions)
prompt_messages = self.summarize_messages_if_needed(prompt_messages, functions=self.functions)
except ExceededLLMTokensLimitError as e:
return AgentFinish(return_values={"output": str(e)}, log=str(e))
prompt_messages = to_prompt_messages(messages)
result = self.model_instance.run(
messages=prompt_messages,
functions=self.functions,
model_instance = ModelInstance(
provider_model_bundle=self.model_config.provider_model_bundle,
model=self.model_config.model,
)
tools = []
for function in self.functions:
tool = PromptMessageTool(
**function
)
tools.append(tool)
result = model_instance.invoke_llm(
prompt_messages=prompt_messages,
tools=tools,
stream=False,
callbacks=[self.agent_llm_callback] if self.agent_llm_callback else [],
model_parameters={
'temperature': 0.2,
'top_p': 0.3,
'max_tokens': 1500
}
)
ai_message = AIMessage(
content=result.content,
content=result.message.content or "",
additional_kwargs={
'function_call': result.function_call
'function_call': {
'id': result.message.tool_calls[0].id,
**result.message.tool_calls[0].function.dict()
} if result.message.tool_calls else None
}
)
agent_decision = _parse_ai_message(ai_message)
@ -158,9 +210,14 @@ class AutoSummarizingOpenAIFunctionCallAgent(OpenAIFunctionsAgent, CalcTokenMixi
except ValueError:
return AgentFinish({"output": "I'm sorry, I don't know how to respond to that."}, "")
def summarize_messages_if_needed(self, messages: List[BaseMessage], **kwargs) -> List[BaseMessage]:
def summarize_messages_if_needed(self, messages: List[PromptMessage], **kwargs) -> List[PromptMessage]:
# calculate rest tokens and summarize previous function observation messages if rest_tokens < 0
rest_tokens = self.get_message_rest_tokens(self.model_instance, messages, **kwargs)
rest_tokens = self.get_message_rest_tokens(
self.model_config,
messages,
**kwargs
)
rest_tokens = rest_tokens - 20 # to deal with the inaccuracy of rest_tokens
if rest_tokens >= 0:
return messages
@ -210,19 +267,19 @@ class AutoSummarizingOpenAIFunctionCallAgent(OpenAIFunctionsAgent, CalcTokenMixi
ai_prefix="AI",
)
chain = LLMChain(model_instance=self.summary_model_instance, prompt=SUMMARY_PROMPT)
chain = LLMChain(model_config=self.summary_model_config, prompt=SUMMARY_PROMPT)
return chain.predict(summary=existing_summary, new_lines=new_lines)
def get_num_tokens_from_messages(self, model_instance: BaseLLM, messages: List[BaseMessage], **kwargs) -> int:
def get_num_tokens_from_messages(self, model_config: ModelConfigEntity, messages: List[BaseMessage], **kwargs) -> int:
"""Calculate num tokens for gpt-3.5-turbo and gpt-4 with tiktoken package.
Official documentation: https://github.com/openai/openai-cookbook/blob/
main/examples/How_to_format_inputs_to_ChatGPT_models.ipynb"""
if model_instance.model_provider.provider_name == 'azure_openai':
model = model_instance.base_model_name
if model_config.provider == 'azure_openai':
model = model_config.model
model = model.replace("gpt-35", "gpt-3.5")
else:
model = model_instance.base_model_name
model = model_config.credentials.get("base_model_name")
tiktoken_ = _import_tiktoken()
try:

View File

@ -1,158 +0,0 @@
import json
from typing import Tuple, List, Any, Union, Sequence, Optional, cast
from langchain.agents import OpenAIFunctionsAgent, BaseSingleActionAgent
from langchain.agents.openai_functions_agent.base import _format_intermediate_steps, _parse_ai_message
from langchain.callbacks.base import BaseCallbackManager
from langchain.callbacks.manager import Callbacks
from langchain.prompts.chat import BaseMessagePromptTemplate
from langchain.schema import AgentAction, AgentFinish, SystemMessage, Generation, LLMResult, AIMessage
from langchain.schema.language_model import BaseLanguageModel
from langchain.tools import BaseTool
from pydantic import root_validator
from core.model_providers.models.entity.message import to_prompt_messages
from core.model_providers.models.llm.base import BaseLLM
from core.third_party.langchain.llms.fake import FakeLLM
from core.tool.dataset_retriever_tool import DatasetRetrieverTool
class MultiDatasetRouterAgent(OpenAIFunctionsAgent):
"""
An Multi Dataset Retrieve Agent driven by Router.
"""
model_instance: BaseLLM
class Config:
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
@root_validator
def validate_llm(cls, values: dict) -> dict:
return values
def should_use_agent(self, query: str):
"""
return should use agent
:param query:
:return:
"""
return True
def plan(
self,
intermediate_steps: List[Tuple[AgentAction, str]],
callbacks: Callbacks = None,
**kwargs: Any,
) -> Union[AgentAction, AgentFinish]:
"""Given input, decided what to do.
Args:
intermediate_steps: Steps the LLM has taken to date, along with observations
**kwargs: User inputs.
Returns:
Action specifying what tool to use.
"""
if len(self.tools) == 0:
return AgentFinish(return_values={"output": ''}, log='')
elif len(self.tools) == 1:
tool = next(iter(self.tools))
tool = cast(DatasetRetrieverTool, tool)
rst = tool.run(tool_input={'query': kwargs['input']})
# output = ''
# rst_json = json.loads(rst)
# for item in rst_json:
# output += f'{item["content"]}\n'
return AgentFinish(return_values={"output": rst}, log=rst)
if intermediate_steps:
_, observation = intermediate_steps[-1]
return AgentFinish(return_values={"output": observation}, log=observation)
try:
agent_decision = self.real_plan(intermediate_steps, callbacks, **kwargs)
if isinstance(agent_decision, AgentAction):
tool_inputs = agent_decision.tool_input
if isinstance(tool_inputs, dict) and 'query' in tool_inputs and 'chat_history' not in kwargs:
tool_inputs['query'] = kwargs['input']
agent_decision.tool_input = tool_inputs
else:
agent_decision.return_values['output'] = ''
return agent_decision
except Exception as e:
new_exception = self.model_instance.handle_exceptions(e)
raise new_exception
def real_plan(
self,
intermediate_steps: List[Tuple[AgentAction, str]],
callbacks: Callbacks = None,
**kwargs: Any,
) -> Union[AgentAction, AgentFinish]:
"""Given input, decided what to do.
Args:
intermediate_steps: Steps the LLM has taken to date, along with observations
**kwargs: User inputs.
Returns:
Action specifying what tool to use.
"""
agent_scratchpad = _format_intermediate_steps(intermediate_steps)
selected_inputs = {
k: kwargs[k] for k in self.prompt.input_variables if k != "agent_scratchpad"
}
full_inputs = dict(**selected_inputs, agent_scratchpad=agent_scratchpad)
prompt = self.prompt.format_prompt(**full_inputs)
messages = prompt.to_messages()
prompt_messages = to_prompt_messages(messages)
result = self.model_instance.run(
messages=prompt_messages,
functions=self.functions,
)
ai_message = AIMessage(
content=result.content,
additional_kwargs={
'function_call': result.function_call
}
)
agent_decision = _parse_ai_message(ai_message)
return agent_decision
async def aplan(
self,
intermediate_steps: List[Tuple[AgentAction, str]],
callbacks: Callbacks = None,
**kwargs: Any,
) -> Union[AgentAction, AgentFinish]:
raise NotImplementedError()
@classmethod
def from_llm_and_tools(
cls,
model_instance: BaseLLM,
tools: Sequence[BaseTool],
callback_manager: Optional[BaseCallbackManager] = None,
extra_prompt_messages: Optional[List[BaseMessagePromptTemplate]] = None,
system_message: Optional[SystemMessage] = SystemMessage(
content="You are a helpful AI assistant."
),
**kwargs: Any,
) -> BaseSingleActionAgent:
prompt = cls.create_prompt(
extra_prompt_messages=extra_prompt_messages,
system_message=system_message,
)
return cls(
model_instance=model_instance,
llm=FakeLLM(response=''),
prompt=prompt,
tools=tools,
callback_manager=callback_manager,
**kwargs,
)

View File

@ -12,9 +12,7 @@ from langchain.tools import BaseTool
from langchain.agents.structured_chat.prompt import PREFIX, SUFFIX
from core.chain.llm_chain import LLMChain
from core.model_providers.models.entity.model_params import ModelMode
from core.model_providers.models.llm.base import BaseLLM
from core.tool.dataset_retriever_tool import DatasetRetrieverTool
from core.entities.application_entities import ModelConfigEntity
FORMAT_INSTRUCTIONS = """Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).
The nouns in the format of "Thought", "Action", "Action Input", "Final Answer" must be expressed in English.
@ -69,10 +67,10 @@ class StructuredMultiDatasetRouterAgent(StructuredChatAgent):
return True
def plan(
self,
intermediate_steps: List[Tuple[AgentAction, str]],
callbacks: Callbacks = None,
**kwargs: Any,
self,
intermediate_steps: List[Tuple[AgentAction, str]],
callbacks: Callbacks = None,
**kwargs: Any,
) -> Union[AgentAction, AgentFinish]:
"""Given input, decided what to do.
@ -101,8 +99,7 @@ class StructuredMultiDatasetRouterAgent(StructuredChatAgent):
try:
full_output = self.llm_chain.predict(callbacks=callbacks, **full_inputs)
except Exception as e:
new_exception = self.llm_chain.model_instance.handle_exceptions(e)
raise new_exception
raise e
try:
agent_decision = self.output_parser.parse(full_output)
@ -119,6 +116,7 @@ class StructuredMultiDatasetRouterAgent(StructuredChatAgent):
except OutputParserException:
return AgentFinish({"output": "I'm sorry, the answer of model is invalid, "
"I don't know how to respond to that."}, "")
@classmethod
def create_prompt(
cls,
@ -182,7 +180,7 @@ Thought: {agent_scratchpad}
return PromptTemplate(template=template, input_variables=input_variables)
def _construct_scratchpad(
self, intermediate_steps: List[Tuple[AgentAction, str]]
self, intermediate_steps: List[Tuple[AgentAction, str]]
) -> str:
agent_scratchpad = ""
for action, observation in intermediate_steps:
@ -193,7 +191,7 @@ Thought: {agent_scratchpad}
raise ValueError("agent_scratchpad should be of type string.")
if agent_scratchpad:
llm_chain = cast(LLMChain, self.llm_chain)
if llm_chain.model_instance.model_mode == ModelMode.CHAT:
if llm_chain.model_config.mode == "chat":
return (
f"This was your previous work "
f"(but I haven't seen any of it! I only see what "
@ -207,7 +205,7 @@ Thought: {agent_scratchpad}
@classmethod
def from_llm_and_tools(
cls,
model_instance: BaseLLM,
model_config: ModelConfigEntity,
tools: Sequence[BaseTool],
callback_manager: Optional[BaseCallbackManager] = None,
output_parser: Optional[AgentOutputParser] = None,
@ -221,7 +219,7 @@ Thought: {agent_scratchpad}
) -> Agent:
"""Construct an agent from an LLM and tools."""
cls._validate_tools(tools)
if model_instance.model_mode == ModelMode.CHAT:
if model_config.mode == "chat":
prompt = cls.create_prompt(
tools,
prefix=prefix,
@ -238,10 +236,16 @@ Thought: {agent_scratchpad}
format_instructions=format_instructions,
input_variables=input_variables
)
llm_chain = LLMChain(
model_instance=model_instance,
model_config=model_config,
prompt=prompt,
callback_manager=callback_manager,
parameters={
'temperature': 0.2,
'top_p': 0.3,
'max_tokens': 1500
}
)
tool_names = [tool.name for tool in tools]
_output_parser = output_parser

View File

@ -13,10 +13,11 @@ from langchain.schema import AgentAction, AgentFinish, AIMessage, HumanMessage,
from langchain.tools import BaseTool
from langchain.agents.structured_chat.prompt import PREFIX, SUFFIX
from core.agent.agent.agent_llm_callback import AgentLLMCallback
from core.agent.agent.calc_token_mixin import CalcTokenMixin, ExceededLLMTokensLimitError
from core.chain.llm_chain import LLMChain
from core.model_providers.models.entity.model_params import ModelMode
from core.model_providers.models.llm.base import BaseLLM
from core.entities.application_entities import ModelConfigEntity
from core.entities.message_entities import lc_messages_to_prompt_messages
FORMAT_INSTRUCTIONS = """Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).
The nouns in the format of "Thought", "Action", "Action Input", "Final Answer" must be expressed in English.
@ -54,7 +55,7 @@ Action:
class AutoSummarizingStructuredChatAgent(StructuredChatAgent, CalcTokenMixin):
moving_summary_buffer: str = ""
moving_summary_index: int = 0
summary_model_instance: BaseLLM = None
summary_model_config: ModelConfigEntity = None
class Config:
"""Configuration for this pydantic object."""
@ -82,7 +83,7 @@ class AutoSummarizingStructuredChatAgent(StructuredChatAgent, CalcTokenMixin):
Args:
intermediate_steps: Steps the LLM has taken to date,
along with observations
along with observatons
callbacks: Callbacks to run.
**kwargs: User inputs.
@ -96,15 +97,16 @@ class AutoSummarizingStructuredChatAgent(StructuredChatAgent, CalcTokenMixin):
if prompts:
messages = prompts[0].to_messages()
rest_tokens = self.get_message_rest_tokens(self.llm_chain.model_instance, messages)
prompt_messages = lc_messages_to_prompt_messages(messages)
rest_tokens = self.get_message_rest_tokens(self.llm_chain.model_config, prompt_messages)
if rest_tokens < 0:
full_inputs = self.summarize_messages(intermediate_steps, **kwargs)
try:
full_output = self.llm_chain.predict(callbacks=callbacks, **full_inputs)
except Exception as e:
new_exception = self.llm_chain.model_instance.handle_exceptions(e)
raise new_exception
raise e
try:
agent_decision = self.output_parser.parse(full_output)
@ -119,7 +121,7 @@ class AutoSummarizingStructuredChatAgent(StructuredChatAgent, CalcTokenMixin):
"I don't know how to respond to that."}, "")
def summarize_messages(self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs):
if len(intermediate_steps) >= 2 and self.summary_model_instance:
if len(intermediate_steps) >= 2 and self.summary_model_config:
should_summary_intermediate_steps = intermediate_steps[self.moving_summary_index:-1]
should_summary_messages = [AIMessage(content=observation)
for _, observation in should_summary_intermediate_steps]
@ -153,7 +155,7 @@ class AutoSummarizingStructuredChatAgent(StructuredChatAgent, CalcTokenMixin):
ai_prefix="AI",
)
chain = LLMChain(model_instance=self.summary_model_instance, prompt=SUMMARY_PROMPT)
chain = LLMChain(model_config=self.summary_model_config, prompt=SUMMARY_PROMPT)
return chain.predict(summary=existing_summary, new_lines=new_lines)
@classmethod
@ -229,7 +231,7 @@ Thought: {agent_scratchpad}
raise ValueError("agent_scratchpad should be of type string.")
if agent_scratchpad:
llm_chain = cast(LLMChain, self.llm_chain)
if llm_chain.model_instance.model_mode == ModelMode.CHAT:
if llm_chain.model_config.mode == "chat":
return (
f"This was your previous work "
f"(but I haven't seen any of it! I only see what "
@ -243,7 +245,7 @@ Thought: {agent_scratchpad}
@classmethod
def from_llm_and_tools(
cls,
model_instance: BaseLLM,
model_config: ModelConfigEntity,
tools: Sequence[BaseTool],
callback_manager: Optional[BaseCallbackManager] = None,
output_parser: Optional[AgentOutputParser] = None,
@ -253,11 +255,12 @@ Thought: {agent_scratchpad}
format_instructions: str = FORMAT_INSTRUCTIONS,
input_variables: Optional[List[str]] = None,
memory_prompts: Optional[List[BasePromptTemplate]] = None,
agent_llm_callback: Optional[AgentLLMCallback] = None,
**kwargs: Any,
) -> Agent:
"""Construct an agent from an LLM and tools."""
cls._validate_tools(tools)
if model_instance.model_mode == ModelMode.CHAT:
if model_config.mode == "chat":
prompt = cls.create_prompt(
tools,
prefix=prefix,
@ -275,9 +278,15 @@ Thought: {agent_scratchpad}
input_variables=input_variables,
)
llm_chain = LLMChain(
model_instance=model_instance,
model_config=model_config,
prompt=prompt,
callback_manager=callback_manager,
agent_llm_callback=agent_llm_callback,
parameters={
'temperature': 0.2,
'top_p': 0.3,
'max_tokens': 1500
}
)
tool_names = [tool.name for tool in tools]
_output_parser = output_parser

View File

@ -4,10 +4,10 @@ from typing import Union, Optional
from langchain.agents import BaseSingleActionAgent, BaseMultiActionAgent
from langchain.callbacks.manager import Callbacks
from langchain.memory.chat_memory import BaseChatMemory
from langchain.tools import BaseTool
from pydantic import BaseModel, Extra
from core.agent.agent.agent_llm_callback import AgentLLMCallback
from core.agent.agent.multi_dataset_router_agent import MultiDatasetRouterAgent
from core.agent.agent.openai_function_call import AutoSummarizingOpenAIFunctionCallAgent
from core.agent.agent.output_parser.structured_chat import StructuredChatOutputParser
@ -15,9 +15,11 @@ from core.agent.agent.structed_multi_dataset_router_agent import StructuredMulti
from core.agent.agent.structured_chat import AutoSummarizingStructuredChatAgent
from langchain.agents import AgentExecutor as LCAgentExecutor
from core.entities.application_entities import ModelConfigEntity
from core.entities.message_entities import prompt_messages_to_lc_messages
from core.helper import moderation
from core.model_providers.error import LLMError
from core.model_providers.models.llm.base import BaseLLM
from core.memory.token_buffer_memory import TokenBufferMemory
from core.model_runtime.errors.invoke import InvokeError
from core.tool.dataset_multi_retriever_tool import DatasetMultiRetrieverTool
from core.tool.dataset_retriever_tool import DatasetRetrieverTool
@ -31,14 +33,15 @@ class PlanningStrategy(str, enum.Enum):
class AgentConfiguration(BaseModel):
strategy: PlanningStrategy
model_instance: BaseLLM
model_config: ModelConfigEntity
tools: list[BaseTool]
summary_model_instance: BaseLLM = None
memory: Optional[BaseChatMemory] = None
summary_model_config: Optional[ModelConfigEntity] = None
memory: Optional[TokenBufferMemory] = None
callbacks: Callbacks = None
max_iterations: int = 6
max_execution_time: Optional[float] = None
early_stopping_method: str = "generate"
agent_llm_callback: Optional[AgentLLMCallback] = None
# `generate` will continue to complete the last inference after reaching the iteration limit or request time limit
class Config:
@ -62,34 +65,42 @@ class AgentExecutor:
def _init_agent(self) -> Union[BaseSingleActionAgent, BaseMultiActionAgent]:
if self.configuration.strategy == PlanningStrategy.REACT:
agent = AutoSummarizingStructuredChatAgent.from_llm_and_tools(
model_instance=self.configuration.model_instance,
model_config=self.configuration.model_config,
tools=self.configuration.tools,
output_parser=StructuredChatOutputParser(),
summary_model_instance=self.configuration.summary_model_instance
if self.configuration.summary_model_instance else None,
summary_model_config=self.configuration.summary_model_config
if self.configuration.summary_model_config else None,
agent_llm_callback=self.configuration.agent_llm_callback,
verbose=True
)
elif self.configuration.strategy == PlanningStrategy.FUNCTION_CALL:
agent = AutoSummarizingOpenAIFunctionCallAgent.from_llm_and_tools(
model_instance=self.configuration.model_instance,
model_config=self.configuration.model_config,
tools=self.configuration.tools,
extra_prompt_messages=self.configuration.memory.buffer if self.configuration.memory else None, # used for read chat histories memory
summary_model_instance=self.configuration.summary_model_instance
if self.configuration.summary_model_instance else None,
extra_prompt_messages=prompt_messages_to_lc_messages(self.configuration.memory.get_history_prompt_messages())
if self.configuration.memory else None, # used for read chat histories memory
summary_model_config=self.configuration.summary_model_config
if self.configuration.summary_model_config else None,
agent_llm_callback=self.configuration.agent_llm_callback,
verbose=True
)
elif self.configuration.strategy == PlanningStrategy.ROUTER:
self.configuration.tools = [t for t in self.configuration.tools if isinstance(t, DatasetRetrieverTool) or isinstance(t, DatasetMultiRetrieverTool)]
self.configuration.tools = [t for t in self.configuration.tools
if isinstance(t, DatasetRetrieverTool)
or isinstance(t, DatasetMultiRetrieverTool)]
agent = MultiDatasetRouterAgent.from_llm_and_tools(
model_instance=self.configuration.model_instance,
model_config=self.configuration.model_config,
tools=self.configuration.tools,
extra_prompt_messages=self.configuration.memory.buffer if self.configuration.memory else None,
extra_prompt_messages=prompt_messages_to_lc_messages(self.configuration.memory.get_history_prompt_messages())
if self.configuration.memory else None,
verbose=True
)
elif self.configuration.strategy == PlanningStrategy.REACT_ROUTER:
self.configuration.tools = [t for t in self.configuration.tools if isinstance(t, DatasetRetrieverTool) or isinstance(t, DatasetMultiRetrieverTool)]
self.configuration.tools = [t for t in self.configuration.tools
if isinstance(t, DatasetRetrieverTool)
or isinstance(t, DatasetMultiRetrieverTool)]
agent = StructuredMultiDatasetRouterAgent.from_llm_and_tools(
model_instance=self.configuration.model_instance,
model_config=self.configuration.model_config,
tools=self.configuration.tools,
output_parser=StructuredChatOutputParser(),
verbose=True
@ -104,11 +115,11 @@ class AgentExecutor:
def run(self, query: str) -> AgentExecuteResult:
moderation_result = moderation.check_moderation(
self.configuration.model_instance.model_provider,
self.configuration.model_config,
query
)
if not moderation_result:
if moderation_result:
return AgentExecuteResult(
output="I apologize for any confusion, but I'm an AI assistant to be helpful, harmless, and honest.",
strategy=self.configuration.strategy,
@ -118,7 +129,6 @@ class AgentExecutor:
agent_executor = LCAgentExecutor.from_agent_and_tools(
agent=self.agent,
tools=self.configuration.tools,
memory=self.configuration.memory,
max_iterations=self.configuration.max_iterations,
max_execution_time=self.configuration.max_execution_time,
early_stopping_method=self.configuration.early_stopping_method,
@ -126,8 +136,8 @@ class AgentExecutor:
)
try:
output = agent_executor.run(query)
except LLMError as ex:
output = agent_executor.run(input=query)
except InvokeError as ex:
raise ex
except Exception as ex:
logging.exception("agent_executor run failed")

View File

@ -0,0 +1,251 @@
import json
import logging
from typing import cast
from core.agent.agent.agent_llm_callback import AgentLLMCallback
from core.app_runner.app_runner import AppRunner
from core.callback_handler.agent_loop_gather_callback_handler import AgentLoopGatherCallbackHandler
from core.entities.application_entities import ApplicationGenerateEntity, PromptTemplateEntity, ModelConfigEntity
from core.application_queue_manager import ApplicationQueueManager
from core.features.agent_runner import AgentRunnerFeature
from core.memory.token_buffer_memory import TokenBufferMemory
from core.model_manager import ModelInstance
from core.model_runtime.entities.llm_entities import LLMUsage
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
from extensions.ext_database import db
from models.model import Conversation, Message, App, MessageChain, MessageAgentThought
logger = logging.getLogger(__name__)
class AgentApplicationRunner(AppRunner):
"""
Agent Application Runner
"""
def run(self, application_generate_entity: ApplicationGenerateEntity,
queue_manager: ApplicationQueueManager,
conversation: Conversation,
message: Message) -> None:
"""
Run agent application
:param application_generate_entity: application generate entity
:param queue_manager: application queue manager
:param conversation: conversation
:param message: message
:return:
"""
app_record = db.session.query(App).filter(App.id == application_generate_entity.app_id).first()
if not app_record:
raise ValueError(f"App not found")
app_orchestration_config = application_generate_entity.app_orchestration_config_entity
inputs = application_generate_entity.inputs
query = application_generate_entity.query
files = application_generate_entity.files
# Pre-calculate the number of tokens of the prompt messages,
# and return the rest number of tokens by model context token size limit and max token size limit.
# If the rest number of tokens is not enough, raise exception.
# Include: prompt template, inputs, query(optional), files(optional)
# Not Include: memory, external data, dataset context
self.get_pre_calculate_rest_tokens(
app_record=app_record,
model_config=app_orchestration_config.model_config,
prompt_template_entity=app_orchestration_config.prompt_template,
inputs=inputs,
files=files,
query=query
)
memory = None
if application_generate_entity.conversation_id:
# get memory of conversation (read-only)
model_instance = ModelInstance(
provider_model_bundle=app_orchestration_config.model_config.provider_model_bundle,
model=app_orchestration_config.model_config.model
)
memory = TokenBufferMemory(
conversation=conversation,
model_instance=model_instance
)
# reorganize all inputs and template to prompt messages
# Include: prompt template, inputs, query(optional), files(optional)
# memory(optional)
prompt_messages, stop = self.originze_prompt_messages(
app_record=app_record,
model_config=app_orchestration_config.model_config,
prompt_template_entity=app_orchestration_config.prompt_template,
inputs=inputs,
files=files,
query=query,
context=None,
memory=memory
)
# Create MessageChain
message_chain = self._init_message_chain(
message=message,
query=query
)
# add agent callback to record agent thoughts
agent_callback = AgentLoopGatherCallbackHandler(
model_config=app_orchestration_config.model_config,
message=message,
queue_manager=queue_manager,
message_chain=message_chain
)
# init LLM Callback
agent_llm_callback = AgentLLMCallback(
agent_callback=agent_callback
)
agent_runner = AgentRunnerFeature(
tenant_id=application_generate_entity.tenant_id,
app_orchestration_config=app_orchestration_config,
model_config=app_orchestration_config.model_config,
config=app_orchestration_config.agent,
queue_manager=queue_manager,
message=message,
user_id=application_generate_entity.user_id,
agent_llm_callback=agent_llm_callback,
callback=agent_callback,
memory=memory
)
# agent run
result = agent_runner.run(
query=query,
invoke_from=application_generate_entity.invoke_from
)
if result:
self._save_message_chain(
message_chain=message_chain,
output_text=result
)
if (result
and app_orchestration_config.prompt_template.prompt_type == PromptTemplateEntity.PromptType.SIMPLE
and app_orchestration_config.prompt_template.simple_prompt_template
):
# Direct output if agent result exists and has pre prompt
self.direct_output(
queue_manager=queue_manager,
app_orchestration_config=app_orchestration_config,
prompt_messages=prompt_messages,
stream=application_generate_entity.stream,
text=result,
usage=self._get_usage_of_all_agent_thoughts(
model_config=app_orchestration_config.model_config,
message=message
)
)
else:
# As normal LLM run, agent result as context
context = result
# reorganize all inputs and template to prompt messages
# Include: prompt template, inputs, query(optional), files(optional)
# memory(optional), external data, dataset context(optional)
prompt_messages, stop = self.originze_prompt_messages(
app_record=app_record,
model_config=app_orchestration_config.model_config,
prompt_template_entity=app_orchestration_config.prompt_template,
inputs=inputs,
files=files,
query=query,
context=context,
memory=memory
)
# Re-calculate the max tokens if sum(prompt_token + max_tokens) over model token limit
self.recale_llm_max_tokens(
model_config=app_orchestration_config.model_config,
prompt_messages=prompt_messages
)
# Invoke model
model_instance = ModelInstance(
provider_model_bundle=app_orchestration_config.model_config.provider_model_bundle,
model=app_orchestration_config.model_config.model
)
invoke_result = model_instance.invoke_llm(
prompt_messages=prompt_messages,
model_parameters=app_orchestration_config.model_config.parameters,
stop=stop,
stream=application_generate_entity.stream,
user=application_generate_entity.user_id,
)
# handle invoke result
self._handle_invoke_result(
invoke_result=invoke_result,
queue_manager=queue_manager,
stream=application_generate_entity.stream
)
def _init_message_chain(self, message: Message, query: str) -> MessageChain:
"""
Init MessageChain
:param message: message
:param query: query
:return:
"""
message_chain = MessageChain(
message_id=message.id,
type="AgentExecutor",
input=json.dumps({
"input": query
})
)
db.session.add(message_chain)
db.session.commit()
return message_chain
def _save_message_chain(self, message_chain: MessageChain, output_text: str) -> None:
"""
Save MessageChain
:param message_chain: message chain
:param output_text: output text
:return:
"""
message_chain.output = json.dumps({
"output": output_text
})
db.session.commit()
def _get_usage_of_all_agent_thoughts(self, model_config: ModelConfigEntity,
message: Message) -> LLMUsage:
"""
Get usage of all agent thoughts
:param model_config: model config
:param message: message
:return:
"""
agent_thoughts = (db.session.query(MessageAgentThought)
.filter(MessageAgentThought.message_id == message.id).all())
all_message_tokens = 0
all_answer_tokens = 0
for agent_thought in agent_thoughts:
all_message_tokens += agent_thought.message_tokens
all_answer_tokens += agent_thought.answer_tokens
model_type_instance = model_config.provider_model_bundle.model_type_instance
model_type_instance = cast(LargeLanguageModel, model_type_instance)
return model_type_instance._calc_response_usage(
model_config.model,
model_config.credentials,
all_message_tokens,
all_answer_tokens
)

View File

@ -0,0 +1,267 @@
import time
from typing import cast, Optional, List, Tuple, Generator, Union
from core.application_queue_manager import ApplicationQueueManager
from core.entities.application_entities import ModelConfigEntity, PromptTemplateEntity, AppOrchestrationConfigEntity
from core.file.file_obj import FileObj
from core.memory.token_buffer_memory import TokenBufferMemory
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
from core.model_runtime.entities.message_entities import PromptMessage, AssistantPromptMessage
from core.model_runtime.entities.model_entities import ModelPropertyKey
from core.model_runtime.errors.invoke import InvokeBadRequestError
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
from core.prompt.prompt_transform import PromptTransform
from models.model import App
class AppRunner:
def get_pre_calculate_rest_tokens(self, app_record: App,
model_config: ModelConfigEntity,
prompt_template_entity: PromptTemplateEntity,
inputs: dict[str, str],
files: list[FileObj],
query: Optional[str] = None) -> int:
"""
Get pre calculate rest tokens
:param app_record: app record
:param model_config: model config entity
:param prompt_template_entity: prompt template entity
:param inputs: inputs
:param files: files
:param query: query
:return:
"""
model_type_instance = model_config.provider_model_bundle.model_type_instance
model_type_instance = cast(LargeLanguageModel, model_type_instance)
model_context_tokens = model_config.model_schema.model_properties.get(ModelPropertyKey.CONTEXT_SIZE)
max_tokens = 0
for parameter_rule in model_config.model_schema.parameter_rules:
if (parameter_rule.name == 'max_tokens'
or (parameter_rule.use_template and parameter_rule.use_template == 'max_tokens')):
max_tokens = (model_config.parameters.get(parameter_rule.name)
or model_config.parameters.get(parameter_rule.use_template)) or 0
if model_context_tokens is None:
return -1
if max_tokens is None:
max_tokens = 0
# get prompt messages without memory and context
prompt_messages, stop = self.originze_prompt_messages(
app_record=app_record,
model_config=model_config,
prompt_template_entity=prompt_template_entity,
inputs=inputs,
files=files,
query=query
)
prompt_tokens = model_type_instance.get_num_tokens(
model_config.model,
model_config.credentials,
prompt_messages
)
rest_tokens = model_context_tokens - max_tokens - prompt_tokens
if rest_tokens < 0:
raise InvokeBadRequestError("Query or prefix prompt is too long, you can reduce the prefix prompt, "
"or shrink the max token, or switch to a llm with a larger token limit size.")
return rest_tokens
def recale_llm_max_tokens(self, model_config: ModelConfigEntity,
prompt_messages: List[PromptMessage]):
# recalc max_tokens if sum(prompt_token + max_tokens) over model token limit
model_type_instance = model_config.provider_model_bundle.model_type_instance
model_type_instance = cast(LargeLanguageModel, model_type_instance)
model_context_tokens = model_config.model_schema.model_properties.get(ModelPropertyKey.CONTEXT_SIZE)
max_tokens = 0
for parameter_rule in model_config.model_schema.parameter_rules:
if (parameter_rule.name == 'max_tokens'
or (parameter_rule.use_template and parameter_rule.use_template == 'max_tokens')):
max_tokens = (model_config.parameters.get(parameter_rule.name)
or model_config.parameters.get(parameter_rule.use_template)) or 0
if model_context_tokens is None:
return -1
if max_tokens is None:
max_tokens = 0
prompt_tokens = model_type_instance.get_num_tokens(
model_config.model,
model_config.credentials,
prompt_messages
)
if prompt_tokens + max_tokens > model_context_tokens:
max_tokens = max(model_context_tokens - prompt_tokens, 16)
for parameter_rule in model_config.model_schema.parameter_rules:
if (parameter_rule.name == 'max_tokens'
or (parameter_rule.use_template and parameter_rule.use_template == 'max_tokens')):
model_config.parameters[parameter_rule.name] = max_tokens
def originze_prompt_messages(self, app_record: App,
model_config: ModelConfigEntity,
prompt_template_entity: PromptTemplateEntity,
inputs: dict[str, str],
files: list[FileObj],
query: Optional[str] = None,
context: Optional[str] = None,
memory: Optional[TokenBufferMemory] = None) \
-> Tuple[List[PromptMessage], Optional[List[str]]]:
"""
Organize prompt messages
:param context:
:param app_record: app record
:param model_config: model config entity
:param prompt_template_entity: prompt template entity
:param inputs: inputs
:param files: files
:param query: query
:param memory: memory
:return:
"""
prompt_transform = PromptTransform()
# get prompt without memory and context
if prompt_template_entity.prompt_type == PromptTemplateEntity.PromptType.SIMPLE:
prompt_messages, stop = prompt_transform.get_prompt(
app_mode=app_record.mode,
prompt_template_entity=prompt_template_entity,
inputs=inputs,
query=query if query else '',
files=files,
context=context,
memory=memory,
model_config=model_config
)
else:
prompt_messages = prompt_transform.get_advanced_prompt(
app_mode=app_record.mode,
prompt_template_entity=prompt_template_entity,
inputs=inputs,
query=query,
files=files,
context=context,
memory=memory,
model_config=model_config
)
stop = model_config.stop
return prompt_messages, stop
def direct_output(self, queue_manager: ApplicationQueueManager,
app_orchestration_config: AppOrchestrationConfigEntity,
prompt_messages: list,
text: str,
stream: bool,
usage: Optional[LLMUsage] = None) -> None:
"""
Direct output
:param queue_manager: application queue manager
:param app_orchestration_config: app orchestration config
:param prompt_messages: prompt messages
:param text: text
:param stream: stream
:param usage: usage
:return:
"""
if stream:
index = 0
for token in text:
queue_manager.publish_chunk_message(LLMResultChunk(
model=app_orchestration_config.model_config.model,
prompt_messages=prompt_messages,
delta=LLMResultChunkDelta(
index=index,
message=AssistantPromptMessage(content=token)
)
))
index += 1
time.sleep(0.01)
queue_manager.publish_message_end(
llm_result=LLMResult(
model=app_orchestration_config.model_config.model,
prompt_messages=prompt_messages,
message=AssistantPromptMessage(content=text),
usage=usage if usage else LLMUsage.empty_usage()
)
)
def _handle_invoke_result(self, invoke_result: Union[LLMResult, Generator],
queue_manager: ApplicationQueueManager,
stream: bool) -> None:
"""
Handle invoke result
:param invoke_result: invoke result
:param queue_manager: application queue manager
:param stream: stream
:return:
"""
if not stream:
self._handle_invoke_result_direct(
invoke_result=invoke_result,
queue_manager=queue_manager
)
else:
self._handle_invoke_result_stream(
invoke_result=invoke_result,
queue_manager=queue_manager
)
def _handle_invoke_result_direct(self, invoke_result: LLMResult,
queue_manager: ApplicationQueueManager) -> None:
"""
Handle invoke result direct
:param invoke_result: invoke result
:param queue_manager: application queue manager
:return:
"""
queue_manager.publish_message_end(
llm_result=invoke_result
)
def _handle_invoke_result_stream(self, invoke_result: Generator,
queue_manager: ApplicationQueueManager) -> None:
"""
Handle invoke result
:param invoke_result: invoke result
:param queue_manager: application queue manager
:return:
"""
model = None
prompt_messages = []
text = ''
usage = None
for result in invoke_result:
queue_manager.publish_chunk_message(result)
text += result.delta.message.content
if not model:
model = result.model
if not prompt_messages:
prompt_messages = result.prompt_messages
if not usage and result.delta.usage:
usage = result.delta.usage
llm_result = LLMResult(
model=model,
prompt_messages=prompt_messages,
message=AssistantPromptMessage(content=text),
usage=usage
)
queue_manager.publish_message_end(
llm_result=llm_result
)

View File

@ -0,0 +1,363 @@
import logging
from typing import Tuple, Optional
from core.app_runner.app_runner import AppRunner
from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
from core.entities.application_entities import ApplicationGenerateEntity, ModelConfigEntity, \
AppOrchestrationConfigEntity, InvokeFrom, ExternalDataVariableEntity, DatasetEntity
from core.application_queue_manager import ApplicationQueueManager
from core.features.annotation_reply import AnnotationReplyFeature
from core.features.dataset_retrieval import DatasetRetrievalFeature
from core.features.external_data_fetch import ExternalDataFetchFeature
from core.features.hosting_moderation import HostingModerationFeature
from core.features.moderation import ModerationFeature
from core.memory.token_buffer_memory import TokenBufferMemory
from core.model_manager import ModelInstance
from core.model_runtime.entities.message_entities import PromptMessage
from core.moderation.base import ModerationException
from core.prompt.prompt_transform import AppMode
from extensions.ext_database import db
from models.model import Conversation, Message, App, MessageAnnotation
logger = logging.getLogger(__name__)
class BasicApplicationRunner(AppRunner):
"""
Basic Application Runner
"""
def run(self, application_generate_entity: ApplicationGenerateEntity,
queue_manager: ApplicationQueueManager,
conversation: Conversation,
message: Message) -> None:
"""
Run application
:param application_generate_entity: application generate entity
:param queue_manager: application queue manager
:param conversation: conversation
:param message: message
:return:
"""
app_record = db.session.query(App).filter(App.id == application_generate_entity.app_id).first()
if not app_record:
raise ValueError(f"App not found")
app_orchestration_config = application_generate_entity.app_orchestration_config_entity
inputs = application_generate_entity.inputs
query = application_generate_entity.query
files = application_generate_entity.files
# Pre-calculate the number of tokens of the prompt messages,
# and return the rest number of tokens by model context token size limit and max token size limit.
# If the rest number of tokens is not enough, raise exception.
# Include: prompt template, inputs, query(optional), files(optional)
# Not Include: memory, external data, dataset context
self.get_pre_calculate_rest_tokens(
app_record=app_record,
model_config=app_orchestration_config.model_config,
prompt_template_entity=app_orchestration_config.prompt_template,
inputs=inputs,
files=files,
query=query
)
memory = None
if application_generate_entity.conversation_id:
# get memory of conversation (read-only)
model_instance = ModelInstance(
provider_model_bundle=app_orchestration_config.model_config.provider_model_bundle,
model=app_orchestration_config.model_config.model
)
memory = TokenBufferMemory(
conversation=conversation,
model_instance=model_instance
)
# organize all inputs and template to prompt messages
# Include: prompt template, inputs, query(optional), files(optional)
# memory(optional)
prompt_messages, stop = self.originze_prompt_messages(
app_record=app_record,
model_config=app_orchestration_config.model_config,
prompt_template_entity=app_orchestration_config.prompt_template,
inputs=inputs,
files=files,
query=query,
memory=memory
)
# moderation
try:
# process sensitive_word_avoidance
_, inputs, query = self.moderation_for_inputs(
app_id=app_record.id,
tenant_id=application_generate_entity.tenant_id,
app_orchestration_config_entity=app_orchestration_config,
inputs=inputs,
query=query,
)
except ModerationException as e:
self.direct_output(
queue_manager=queue_manager,
app_orchestration_config=app_orchestration_config,
prompt_messages=prompt_messages,
text=str(e),
stream=application_generate_entity.stream
)
return
if query:
# annotation reply
annotation_reply = self.query_app_annotations_to_reply(
app_record=app_record,
message=message,
query=query,
user_id=application_generate_entity.user_id,
invoke_from=application_generate_entity.invoke_from
)
if annotation_reply:
queue_manager.publish_annotation_reply(
message_annotation_id=annotation_reply.id
)
self.direct_output(
queue_manager=queue_manager,
app_orchestration_config=app_orchestration_config,
prompt_messages=prompt_messages,
text=annotation_reply.content,
stream=application_generate_entity.stream
)
return
# fill in variable inputs from external data tools if exists
external_data_tools = app_orchestration_config.external_data_variables
if external_data_tools:
inputs = self.fill_in_inputs_from_external_data_tools(
tenant_id=app_record.tenant_id,
app_id=app_record.id,
external_data_tools=external_data_tools,
inputs=inputs,
query=query
)
# get context from datasets
context = None
if app_orchestration_config.dataset:
context = self.retrieve_dataset_context(
tenant_id=app_record.tenant_id,
app_record=app_record,
queue_manager=queue_manager,
model_config=app_orchestration_config.model_config,
show_retrieve_source=app_orchestration_config.show_retrieve_source,
dataset_config=app_orchestration_config.dataset,
message=message,
inputs=inputs,
query=query,
user_id=application_generate_entity.user_id,
invoke_from=application_generate_entity.invoke_from,
memory=memory
)
# reorganize all inputs and template to prompt messages
# Include: prompt template, inputs, query(optional), files(optional)
# memory(optional), external data, dataset context(optional)
prompt_messages, stop = self.originze_prompt_messages(
app_record=app_record,
model_config=app_orchestration_config.model_config,
prompt_template_entity=app_orchestration_config.prompt_template,
inputs=inputs,
files=files,
query=query,
context=context,
memory=memory
)
# check hosting moderation
hosting_moderation_result = self.check_hosting_moderation(
application_generate_entity=application_generate_entity,
queue_manager=queue_manager,
prompt_messages=prompt_messages
)
if hosting_moderation_result:
return
# Re-calculate the max tokens if sum(prompt_token + max_tokens) over model token limit
self.recale_llm_max_tokens(
model_config=app_orchestration_config.model_config,
prompt_messages=prompt_messages
)
# Invoke model
model_instance = ModelInstance(
provider_model_bundle=app_orchestration_config.model_config.provider_model_bundle,
model=app_orchestration_config.model_config.model
)
invoke_result = model_instance.invoke_llm(
prompt_messages=prompt_messages,
model_parameters=app_orchestration_config.model_config.parameters,
stop=stop,
stream=application_generate_entity.stream,
user=application_generate_entity.user_id,
)
# handle invoke result
self._handle_invoke_result(
invoke_result=invoke_result,
queue_manager=queue_manager,
stream=application_generate_entity.stream
)
def moderation_for_inputs(self, app_id: str,
tenant_id: str,
app_orchestration_config_entity: AppOrchestrationConfigEntity,
inputs: dict,
query: str) -> Tuple[bool, dict, str]:
"""
Process sensitive_word_avoidance.
:param app_id: app id
:param tenant_id: tenant id
:param app_orchestration_config_entity: app orchestration config entity
:param inputs: inputs
:param query: query
:return:
"""
moderation_feature = ModerationFeature()
return moderation_feature.check(
app_id=app_id,
tenant_id=tenant_id,
app_orchestration_config_entity=app_orchestration_config_entity,
inputs=inputs,
query=query,
)
def query_app_annotations_to_reply(self, app_record: App,
message: Message,
query: str,
user_id: str,
invoke_from: InvokeFrom) -> Optional[MessageAnnotation]:
"""
Query app annotations to reply
:param app_record: app record
:param message: message
:param query: query
:param user_id: user id
:param invoke_from: invoke from
:return:
"""
annotation_reply_feature = AnnotationReplyFeature()
return annotation_reply_feature.query(
app_record=app_record,
message=message,
query=query,
user_id=user_id,
invoke_from=invoke_from
)
def fill_in_inputs_from_external_data_tools(self, tenant_id: str,
app_id: str,
external_data_tools: list[ExternalDataVariableEntity],
inputs: dict,
query: str) -> dict:
"""
Fill in variable inputs from external data tools if exists.
:param tenant_id: workspace id
:param app_id: app id
:param external_data_tools: external data tools configs
:param inputs: the inputs
:param query: the query
:return: the filled inputs
"""
external_data_fetch_feature = ExternalDataFetchFeature()
return external_data_fetch_feature.fetch(
tenant_id=tenant_id,
app_id=app_id,
external_data_tools=external_data_tools,
inputs=inputs,
query=query
)
def retrieve_dataset_context(self, tenant_id: str,
app_record: App,
queue_manager: ApplicationQueueManager,
model_config: ModelConfigEntity,
dataset_config: DatasetEntity,
show_retrieve_source: bool,
message: Message,
inputs: dict,
query: str,
user_id: str,
invoke_from: InvokeFrom,
memory: Optional[TokenBufferMemory] = None) -> Optional[str]:
"""
Retrieve dataset context
:param tenant_id: tenant id
:param app_record: app record
:param queue_manager: queue manager
:param model_config: model config
:param dataset_config: dataset config
:param show_retrieve_source: show retrieve source
:param message: message
:param inputs: inputs
:param query: query
:param user_id: user id
:param invoke_from: invoke from
:param memory: memory
:return:
"""
hit_callback = DatasetIndexToolCallbackHandler(
queue_manager,
app_record.id,
message.id,
user_id,
invoke_from
)
if (app_record.mode == AppMode.COMPLETION.value and dataset_config
and dataset_config.retrieve_config.query_variable):
query = inputs.get(dataset_config.retrieve_config.query_variable, "")
dataset_retrieval = DatasetRetrievalFeature()
return dataset_retrieval.retrieve(
tenant_id=tenant_id,
model_config=model_config,
config=dataset_config,
query=query,
invoke_from=invoke_from,
show_retrieve_source=show_retrieve_source,
hit_callback=hit_callback,
memory=memory
)
def check_hosting_moderation(self, application_generate_entity: ApplicationGenerateEntity,
queue_manager: ApplicationQueueManager,
prompt_messages: list[PromptMessage]) -> bool:
"""
Check hosting moderation
:param application_generate_entity: application generate entity
:param queue_manager: queue manager
:param prompt_messages: prompt messages
:return:
"""
hosting_moderation_feature = HostingModerationFeature()
moderation_result = hosting_moderation_feature.check(
application_generate_entity=application_generate_entity,
prompt_messages=prompt_messages
)
if moderation_result:
self.direct_output(
queue_manager=queue_manager,
app_orchestration_config=application_generate_entity.app_orchestration_config_entity,
prompt_messages=prompt_messages,
text="I apologize for any confusion, " \
"but I'm an AI assistant to be helpful, harmless, and honest.",
stream=application_generate_entity.stream
)
return moderation_result

View File

@ -0,0 +1,483 @@
import json
import logging
import time
from typing import Union, Generator, cast, Optional
from pydantic import BaseModel
from core.app_runner.moderation_handler import OutputModerationHandler, ModerationRule
from core.entities.application_entities import ApplicationGenerateEntity
from core.application_queue_manager import ApplicationQueueManager
from core.entities.queue_entities import QueueErrorEvent, QueueStopEvent, QueueMessageEndEvent, \
QueueRetrieverResourcesEvent, QueueAgentThoughtEvent, QueuePingEvent, QueueMessageEvent, QueueMessageReplaceEvent, \
AnnotationReplyEvent
from core.model_runtime.entities.llm_entities import LLMResult, LLMUsage, LLMResultChunk, LLMResultChunkDelta
from core.model_runtime.entities.message_entities import AssistantPromptMessage, PromptMessageRole, \
TextPromptMessageContent, PromptMessageContentType, ImagePromptMessageContent, PromptMessage
from core.model_runtime.errors.invoke import InvokeError, InvokeAuthorizationError
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
from core.prompt.prompt_template import PromptTemplateParser
from events.message_event import message_was_created
from extensions.ext_database import db
from models.model import Message, Conversation, MessageAgentThought
from services.annotation_service import AppAnnotationService
logger = logging.getLogger(__name__)
class TaskState(BaseModel):
"""
TaskState entity
"""
llm_result: LLMResult
metadata: dict = {}
class GenerateTaskPipeline:
"""
GenerateTaskPipeline is a class that generate stream output and state management for Application.
"""
def __init__(self, application_generate_entity: ApplicationGenerateEntity,
queue_manager: ApplicationQueueManager,
conversation: Conversation,
message: Message) -> None:
"""
Initialize GenerateTaskPipeline.
:param application_generate_entity: application generate entity
:param queue_manager: queue manager
:param conversation: conversation
:param message: message
"""
self._application_generate_entity = application_generate_entity
self._queue_manager = queue_manager
self._conversation = conversation
self._message = message
self._task_state = TaskState(
llm_result=LLMResult(
model=self._application_generate_entity.app_orchestration_config_entity.model_config.model,
prompt_messages=[],
message=AssistantPromptMessage(content=""),
usage=LLMUsage.empty_usage()
)
)
self._start_at = time.perf_counter()
self._output_moderation_handler = self._init_output_moderation()
def process(self, stream: bool) -> Union[dict, Generator]:
"""
Process generate task pipeline.
:return:
"""
if stream:
return self._process_stream_response()
else:
return self._process_blocking_response()
def _process_blocking_response(self) -> dict:
"""
Process blocking response.
:return:
"""
for queue_message in self._queue_manager.listen():
event = queue_message.event
if isinstance(event, QueueErrorEvent):
raise self._handle_error(event)
elif isinstance(event, QueueRetrieverResourcesEvent):
self._task_state.metadata['retriever_resources'] = event.retriever_resources
elif isinstance(event, AnnotationReplyEvent):
annotation = AppAnnotationService.get_annotation_by_id(event.message_annotation_id)
if annotation:
account = annotation.account
self._task_state.metadata['annotation_reply'] = {
'id': annotation.id,
'account': {
'id': annotation.account_id,
'name': account.name if account else 'Dify user'
}
}
self._task_state.llm_result.message.content = annotation.content
elif isinstance(event, (QueueStopEvent, QueueMessageEndEvent)):
if isinstance(event, QueueMessageEndEvent):
self._task_state.llm_result = event.llm_result
else:
model_config = self._application_generate_entity.app_orchestration_config_entity.model_config
model = model_config.model
model_type_instance = model_config.provider_model_bundle.model_type_instance
model_type_instance = cast(LargeLanguageModel, model_type_instance)
# calculate num tokens
prompt_tokens = 0
if event.stopped_by != QueueStopEvent.StopBy.ANNOTATION_REPLY:
prompt_tokens = model_type_instance.get_num_tokens(
model,
model_config.credentials,
self._task_state.llm_result.prompt_messages
)
completion_tokens = 0
if event.stopped_by == QueueStopEvent.StopBy.USER_MANUAL:
completion_tokens = model_type_instance.get_num_tokens(
model,
model_config.credentials,
[self._task_state.llm_result.message]
)
credentials = model_config.credentials
# transform usage
self._task_state.llm_result.usage = model_type_instance._calc_response_usage(
model,
credentials,
prompt_tokens,
completion_tokens
)
# response moderation
if self._output_moderation_handler:
self._output_moderation_handler.stop_thread()
self._task_state.llm_result.message.content = self._output_moderation_handler.moderation_completion(
completion=self._task_state.llm_result.message.content,
public_event=False
)
# Save message
self._save_message(event.llm_result)
response = {
'event': 'message',
'task_id': self._application_generate_entity.task_id,
'id': self._message.id,
'mode': self._conversation.mode,
'answer': event.llm_result.message.content,
'metadata': {},
'created_at': int(self._message.created_at.timestamp())
}
if self._conversation.mode == 'chat':
response['conversation_id'] = self._conversation.id
if self._task_state.metadata:
response['metadata'] = self._task_state.metadata
return response
else:
continue
def _process_stream_response(self) -> Generator:
"""
Process stream response.
:return:
"""
for message in self._queue_manager.listen():
event = message.event
if isinstance(event, QueueErrorEvent):
raise self._handle_error(event)
elif isinstance(event, (QueueStopEvent, QueueMessageEndEvent)):
if isinstance(event, QueueMessageEndEvent):
self._task_state.llm_result = event.llm_result
else:
model_config = self._application_generate_entity.app_orchestration_config_entity.model_config
model = model_config.model
model_type_instance = model_config.provider_model_bundle.model_type_instance
model_type_instance = cast(LargeLanguageModel, model_type_instance)
# calculate num tokens
prompt_tokens = 0
if event.stopped_by != QueueStopEvent.StopBy.ANNOTATION_REPLY:
prompt_tokens = model_type_instance.get_num_tokens(
model,
model_config.credentials,
self._task_state.llm_result.prompt_messages
)
completion_tokens = 0
if event.stopped_by == QueueStopEvent.StopBy.USER_MANUAL:
completion_tokens = model_type_instance.get_num_tokens(
model,
model_config.credentials,
[self._task_state.llm_result.message]
)
credentials = model_config.credentials
# transform usage
self._task_state.llm_result.usage = model_type_instance._calc_response_usage(
model,
credentials,
prompt_tokens,
completion_tokens
)
# response moderation
if self._output_moderation_handler:
self._output_moderation_handler.stop_thread()
self._task_state.llm_result.message.content = self._output_moderation_handler.moderation_completion(
completion=self._task_state.llm_result.message.content,
public_event=False
)
self._output_moderation_handler = None
replace_response = {
'event': 'message_replace',
'task_id': self._application_generate_entity.task_id,
'message_id': self._message.id,
'answer': self._task_state.llm_result.message.content,
'created_at': int(self._message.created_at.timestamp())
}
if self._conversation.mode == 'chat':
replace_response['conversation_id'] = self._conversation.id
yield self._yield_response(replace_response)
# Save message
self._save_message(self._task_state.llm_result)
response = {
'event': 'message_end',
'task_id': self._application_generate_entity.task_id,
'id': self._message.id,
}
if self._conversation.mode == 'chat':
response['conversation_id'] = self._conversation.id
if self._task_state.metadata:
response['metadata'] = self._task_state.metadata
yield self._yield_response(response)
elif isinstance(event, QueueRetrieverResourcesEvent):
self._task_state.metadata['retriever_resources'] = event.retriever_resources
elif isinstance(event, AnnotationReplyEvent):
annotation = AppAnnotationService.get_annotation_by_id(event.message_annotation_id)
if annotation:
account = annotation.account
self._task_state.metadata['annotation_reply'] = {
'id': annotation.id,
'account': {
'id': annotation.account_id,
'name': account.name if account else 'Dify user'
}
}
self._task_state.llm_result.message.content = annotation.content
elif isinstance(event, QueueAgentThoughtEvent):
agent_thought = (
db.session.query(MessageAgentThought)
.filter(MessageAgentThought.id == event.agent_thought_id)
.first()
)
if agent_thought:
response = {
'event': 'agent_thought',
'id': agent_thought.id,
'task_id': self._application_generate_entity.task_id,
'message_id': self._message.id,
'position': agent_thought.position,
'thought': agent_thought.thought,
'tool': agent_thought.tool,
'tool_input': agent_thought.tool_input,
'created_at': int(self._message.created_at.timestamp())
}
if self._conversation.mode == 'chat':
response['conversation_id'] = self._conversation.id
yield self._yield_response(response)
elif isinstance(event, QueueMessageEvent):
chunk = event.chunk
delta_text = chunk.delta.message.content
if delta_text is None:
continue
if not self._task_state.llm_result.prompt_messages:
self._task_state.llm_result.prompt_messages = chunk.prompt_messages
if self._output_moderation_handler:
if self._output_moderation_handler.should_direct_output():
# stop subscribe new token when output moderation should direct output
self._task_state.llm_result.message.content = self._output_moderation_handler.get_final_output()
self._queue_manager.publish_chunk_message(LLMResultChunk(
model=self._task_state.llm_result.model,
prompt_messages=self._task_state.llm_result.prompt_messages,
delta=LLMResultChunkDelta(
index=0,
message=AssistantPromptMessage(content=self._task_state.llm_result.message.content)
)
))
self._queue_manager.publish(QueueStopEvent(stopped_by=QueueStopEvent.StopBy.OUTPUT_MODERATION))
continue
else:
self._output_moderation_handler.append_new_token(delta_text)
self._task_state.llm_result.message.content += delta_text
response = self._handle_chunk(delta_text)
yield self._yield_response(response)
elif isinstance(event, QueueMessageReplaceEvent):
response = {
'event': 'message_replace',
'task_id': self._application_generate_entity.task_id,
'message_id': self._message.id,
'answer': event.text,
'created_at': int(self._message.created_at.timestamp())
}
if self._conversation.mode == 'chat':
response['conversation_id'] = self._conversation.id
yield self._yield_response(response)
elif isinstance(event, QueuePingEvent):
yield "event: ping\n\n"
else:
continue
def _save_message(self, llm_result: LLMResult) -> None:
"""
Save message.
:param llm_result: llm result
:return:
"""
usage = llm_result.usage
self._message = db.session.query(Message).filter(Message.id == self._message.id).first()
self._message.message = self._prompt_messages_to_prompt_for_saving(self._task_state.llm_result.prompt_messages)
self._message.message_tokens = usage.prompt_tokens
self._message.message_unit_price = usage.prompt_unit_price
self._message.message_price_unit = usage.prompt_price_unit
self._message.answer = PromptTemplateParser.remove_template_variables(llm_result.message.content.strip()) \
if llm_result.message.content else ''
self._message.answer_tokens = usage.completion_tokens
self._message.answer_unit_price = usage.completion_unit_price
self._message.answer_price_unit = usage.completion_price_unit
self._message.provider_response_latency = time.perf_counter() - self._start_at
self._message.total_price = usage.total_price
db.session.commit()
message_was_created.send(
self._message,
application_generate_entity=self._application_generate_entity,
conversation=self._conversation,
is_first_message=self._application_generate_entity.conversation_id is None,
extras=self._application_generate_entity.extras
)
def _handle_chunk(self, text: str) -> dict:
"""
Handle completed event.
:param text: text
:return:
"""
response = {
'event': 'message',
'id': self._message.id,
'task_id': self._application_generate_entity.task_id,
'message_id': self._message.id,
'answer': text,
'created_at': int(self._message.created_at.timestamp())
}
if self._conversation.mode == 'chat':
response['conversation_id'] = self._conversation.id
return response
def _handle_error(self, event: QueueErrorEvent) -> Exception:
"""
Handle error event.
:param event: event
:return:
"""
logger.debug("error: %s", event.error)
e = event.error
if isinstance(e, InvokeAuthorizationError):
return InvokeAuthorizationError('Incorrect API key provided')
elif isinstance(e, InvokeError) or isinstance(e, ValueError):
return e
else:
return Exception(e.description if getattr(e, 'description', None) is not None else str(e))
def _yield_response(self, response: dict) -> str:
"""
Yield response.
:param response: response
:return:
"""
return "data: " + json.dumps(response) + "\n\n"
def _prompt_messages_to_prompt_for_saving(self, prompt_messages: list[PromptMessage]) -> list[dict]:
"""
Prompt messages to prompt for saving.
:param prompt_messages: prompt messages
:return:
"""
prompts = []
if self._application_generate_entity.app_orchestration_config_entity.model_config.mode == 'chat':
for prompt_message in prompt_messages:
if prompt_message.role == PromptMessageRole.USER:
role = 'user'
elif prompt_message.role == PromptMessageRole.ASSISTANT:
role = 'assistant'
elif prompt_message.role == PromptMessageRole.SYSTEM:
role = 'system'
else:
continue
text = ''
files = []
if isinstance(prompt_message.content, list):
for content in prompt_message.content:
if content.type == PromptMessageContentType.TEXT:
content = cast(TextPromptMessageContent, content)
text += content.data
else:
content = cast(ImagePromptMessageContent, content)
files.append({
"type": 'image',
"data": content.data[:10] + '...[TRUNCATED]...' + content.data[-10:],
"detail": content.detail.value
})
else:
text = prompt_message.content
prompts.append({
"role": role,
"text": text,
"files": files
})
else:
prompts.append({
"role": 'user',
"text": prompt_messages[0].content
})
return prompts
def _init_output_moderation(self) -> Optional[OutputModerationHandler]:
"""
Init output moderation.
:return:
"""
app_orchestration_config_entity = self._application_generate_entity.app_orchestration_config_entity
sensitive_word_avoidance = app_orchestration_config_entity.sensitive_word_avoidance
if sensitive_word_avoidance:
return OutputModerationHandler(
tenant_id=self._application_generate_entity.tenant_id,
app_id=self._application_generate_entity.app_id,
rule=ModerationRule(
type=sensitive_word_avoidance.type,
config=sensitive_word_avoidance.config
),
on_message_replace_func=self._queue_manager.publish_message_replace
)

View File

@ -0,0 +1,138 @@
import logging
import threading
import time
from typing import Any, Optional, Dict
from flask import current_app, Flask
from pydantic import BaseModel
from core.moderation.base import ModerationAction, ModerationOutputsResult
from core.moderation.factory import ModerationFactory
logger = logging.getLogger(__name__)
class ModerationRule(BaseModel):
type: str
config: Dict[str, Any]
class OutputModerationHandler(BaseModel):
DEFAULT_BUFFER_SIZE: int = 300
tenant_id: str
app_id: str
rule: ModerationRule
on_message_replace_func: Any
thread: Optional[threading.Thread] = None
thread_running: bool = True
buffer: str = ''
is_final_chunk: bool = False
final_output: Optional[str] = None
class Config:
arbitrary_types_allowed = True
def should_direct_output(self):
return self.final_output is not None
def get_final_output(self):
return self.final_output
def append_new_token(self, token: str):
self.buffer += token
if not self.thread:
self.thread = self.start_thread()
def moderation_completion(self, completion: str, public_event: bool = False) -> str:
self.buffer = completion
self.is_final_chunk = True
result = self.moderation(
tenant_id=self.tenant_id,
app_id=self.app_id,
moderation_buffer=completion
)
if not result or not result.flagged:
return completion
if result.action == ModerationAction.DIRECT_OUTPUT:
final_output = result.preset_response
else:
final_output = result.text
if public_event:
self.on_message_replace_func(final_output)
return final_output
def start_thread(self) -> threading.Thread:
buffer_size = int(current_app.config.get('MODERATION_BUFFER_SIZE', self.DEFAULT_BUFFER_SIZE))
thread = threading.Thread(target=self.worker, kwargs={
'flask_app': current_app._get_current_object(),
'buffer_size': buffer_size if buffer_size > 0 else self.DEFAULT_BUFFER_SIZE
})
thread.start()
return thread
def stop_thread(self):
if self.thread and self.thread.is_alive():
self.thread_running = False
def worker(self, flask_app: Flask, buffer_size: int):
with flask_app.app_context():
current_length = 0
while self.thread_running:
moderation_buffer = self.buffer
buffer_length = len(moderation_buffer)
if not self.is_final_chunk:
chunk_length = buffer_length - current_length
if 0 <= chunk_length < buffer_size:
time.sleep(1)
continue
current_length = buffer_length
result = self.moderation(
tenant_id=self.tenant_id,
app_id=self.app_id,
moderation_buffer=moderation_buffer
)
if not result or not result.flagged:
continue
if result.action == ModerationAction.DIRECT_OUTPUT:
final_output = result.preset_response
self.final_output = final_output
else:
final_output = result.text + self.buffer[len(moderation_buffer):]
# trigger replace event
if self.thread_running:
self.on_message_replace_func(final_output)
if result.action == ModerationAction.DIRECT_OUTPUT:
break
def moderation(self, tenant_id: str, app_id: str, moderation_buffer: str) -> Optional[ModerationOutputsResult]:
try:
moderation_factory = ModerationFactory(
name=self.rule.type,
app_id=app_id,
tenant_id=tenant_id,
config=self.rule.config
)
result: ModerationOutputsResult = moderation_factory.moderation_for_outputs(moderation_buffer)
return result
except Exception as e:
logger.error("Moderation Output error: %s", e)
return None

View File

@ -0,0 +1,655 @@
import json
import logging
import threading
import uuid
from typing import cast, Optional, Any, Union, Generator, Tuple
from flask import Flask, current_app
from pydantic import ValidationError
from core.app_runner.agent_app_runner import AgentApplicationRunner
from core.app_runner.basic_app_runner import BasicApplicationRunner
from core.app_runner.generate_task_pipeline import GenerateTaskPipeline
from core.entities.application_entities import ApplicationGenerateEntity, AppOrchestrationConfigEntity, \
ModelConfigEntity, PromptTemplateEntity, AdvancedChatPromptTemplateEntity, \
AdvancedCompletionPromptTemplateEntity, ExternalDataVariableEntity, DatasetEntity, DatasetRetrieveConfigEntity, \
AgentEntity, AgentToolEntity, FileUploadEntity, SensitiveWordAvoidanceEntity, InvokeFrom
from core.entities.model_entities import ModelStatus
from core.file.file_obj import FileObj
from core.errors.error import QuotaExceededError, ProviderTokenNotInitError, ModelCurrentlyNotSupportError
from core.model_runtime.entities.message_entities import PromptMessageRole
from core.model_runtime.entities.model_entities import ModelType
from core.model_runtime.errors.invoke import InvokeAuthorizationError, InvokeError
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
from core.prompt.prompt_template import PromptTemplateParser
from core.provider_manager import ProviderManager
from core.application_queue_manager import ApplicationQueueManager, ConversationTaskStoppedException
from extensions.ext_database import db
from models.account import Account
from models.model import EndUser, Conversation, Message, MessageFile, App
logger = logging.getLogger(__name__)
class ApplicationManager:
"""
This class is responsible for managing application
"""
def generate(self, tenant_id: str,
app_id: str,
app_model_config_id: str,
app_model_config_dict: dict,
app_model_config_override: bool,
user: Union[Account, EndUser],
invoke_from: InvokeFrom,
inputs: dict[str, str],
query: Optional[str] = None,
files: Optional[list[FileObj]] = None,
conversation: Optional[Conversation] = None,
stream: bool = False,
extras: Optional[dict[str, Any]] = None) \
-> Union[dict, Generator]:
"""
Generate App response.
:param tenant_id: workspace ID
:param app_id: app ID
:param app_model_config_id: app model config id
:param app_model_config_dict: app model config dict
:param app_model_config_override: app model config override
:param user: account or end user
:param invoke_from: invoke from source
:param inputs: inputs
:param query: query
:param files: file obj list
:param conversation: conversation
:param stream: is stream
:param extras: extras
"""
# init task id
task_id = str(uuid.uuid4())
# init application generate entity
application_generate_entity = ApplicationGenerateEntity(
task_id=task_id,
tenant_id=tenant_id,
app_id=app_id,
app_model_config_id=app_model_config_id,
app_model_config_dict=app_model_config_dict,
app_orchestration_config_entity=self._convert_from_app_model_config_dict(
tenant_id=tenant_id,
app_model_config_dict=app_model_config_dict
),
app_model_config_override=app_model_config_override,
conversation_id=conversation.id if conversation else None,
inputs=conversation.inputs if conversation else inputs,
query=query.replace('\x00', '') if query else None,
files=files if files else [],
user_id=user.id,
stream=stream,
invoke_from=invoke_from,
extras=extras
)
# init generate records
(
conversation,
message
) = self._init_generate_records(application_generate_entity)
# init queue manager
queue_manager = ApplicationQueueManager(
task_id=application_generate_entity.task_id,
user_id=application_generate_entity.user_id,
invoke_from=application_generate_entity.invoke_from,
conversation_id=conversation.id,
app_mode=conversation.mode,
message_id=message.id
)
# new thread
worker_thread = threading.Thread(target=self._generate_worker, kwargs={
'flask_app': current_app._get_current_object(),
'application_generate_entity': application_generate_entity,
'queue_manager': queue_manager,
'conversation_id': conversation.id,
'message_id': message.id,
})
worker_thread.start()
# return response or stream generator
return self._handle_response(
application_generate_entity=application_generate_entity,
queue_manager=queue_manager,
conversation=conversation,
message=message,
stream=stream
)
def _generate_worker(self, flask_app: Flask,
application_generate_entity: ApplicationGenerateEntity,
queue_manager: ApplicationQueueManager,
conversation_id: str,
message_id: str) -> None:
"""
Generate worker in a new thread.
:param flask_app: Flask app
:param application_generate_entity: application generate entity
:param queue_manager: queue manager
:param conversation_id: conversation ID
:param message_id: message ID
:return:
"""
with flask_app.app_context():
try:
# get conversation and message
conversation = self._get_conversation(conversation_id)
message = self._get_message(message_id)
if application_generate_entity.app_orchestration_config_entity.agent:
# agent app
runner = AgentApplicationRunner()
runner.run(
application_generate_entity=application_generate_entity,
queue_manager=queue_manager,
conversation=conversation,
message=message
)
else:
# basic app
runner = BasicApplicationRunner()
runner.run(
application_generate_entity=application_generate_entity,
queue_manager=queue_manager,
conversation=conversation,
message=message
)
except ConversationTaskStoppedException:
pass
except InvokeAuthorizationError:
queue_manager.publish_error(InvokeAuthorizationError('Incorrect API key provided'))
except ValidationError as e:
logger.exception("Validation Error when generating")
queue_manager.publish_error(e)
except (ValueError, InvokeError) as e:
queue_manager.publish_error(e)
except Exception as e:
logger.exception("Unknown Error when generating")
queue_manager.publish_error(e)
finally:
db.session.remove()
def _handle_response(self, application_generate_entity: ApplicationGenerateEntity,
queue_manager: ApplicationQueueManager,
conversation: Conversation,
message: Message,
stream: bool = False) -> Union[dict, Generator]:
"""
Handle response.
:param application_generate_entity: application generate entity
:param queue_manager: queue manager
:param conversation: conversation
:param message: message
:param stream: is stream
:return:
"""
# init generate task pipeline
generate_task_pipeline = GenerateTaskPipeline(
application_generate_entity=application_generate_entity,
queue_manager=queue_manager,
conversation=conversation,
message=message
)
try:
return generate_task_pipeline.process(stream=stream)
except ValueError as e:
if e.args[0] == "I/O operation on closed file.": # ignore this error
raise ConversationTaskStoppedException()
else:
logger.exception(e)
raise e
finally:
db.session.remove()
def _convert_from_app_model_config_dict(self, tenant_id: str, app_model_config_dict: dict) \
-> AppOrchestrationConfigEntity:
"""
Convert app model config dict to entity.
:param tenant_id: tenant ID
:param app_model_config_dict: app model config dict
:raises ProviderTokenNotInitError: provider token not init error
:return: app orchestration config entity
"""
properties = {}
copy_app_model_config_dict = app_model_config_dict.copy()
provider_manager = ProviderManager()
provider_model_bundle = provider_manager.get_provider_model_bundle(
tenant_id=tenant_id,
provider=copy_app_model_config_dict['model']['provider'],
model_type=ModelType.LLM
)
provider_name = provider_model_bundle.configuration.provider.provider
model_name = copy_app_model_config_dict['model']['name']
model_type_instance = provider_model_bundle.model_type_instance
model_type_instance = cast(LargeLanguageModel, model_type_instance)
# check model credentials
model_credentials = provider_model_bundle.configuration.get_current_credentials(
model_type=ModelType.LLM,
model=copy_app_model_config_dict['model']['name']
)
if model_credentials is None:
raise ProviderTokenNotInitError(f"Model {model_name} credentials is not initialized.")
# check model
provider_model = provider_model_bundle.configuration.get_provider_model(
model=copy_app_model_config_dict['model']['name'],
model_type=ModelType.LLM
)
if provider_model is None:
model_name = copy_app_model_config_dict['model']['name']
raise ValueError(f"Model {model_name} not exist.")
if provider_model.status == ModelStatus.NO_CONFIGURE:
raise ProviderTokenNotInitError(f"Model {model_name} credentials is not initialized.")
elif provider_model.status == ModelStatus.NO_PERMISSION:
raise ModelCurrentlyNotSupportError(f"Dify Hosted OpenAI {model_name} currently not support.")
elif provider_model.status == ModelStatus.QUOTA_EXCEEDED:
raise QuotaExceededError(f"Model provider {provider_name} quota exceeded.")
# model config
completion_params = copy_app_model_config_dict['model'].get('completion_params')
stop = []
if 'stop' in completion_params:
stop = completion_params['stop']
del completion_params['stop']
# get model mode
model_mode = copy_app_model_config_dict['model'].get('mode')
if not model_mode:
mode_enum = model_type_instance.get_model_mode(
model=copy_app_model_config_dict['model']['name'],
credentials=model_credentials
)
model_mode = mode_enum.value
model_schema = model_type_instance.get_model_schema(
copy_app_model_config_dict['model']['name'],
model_credentials
)
if not model_schema:
raise ValueError(f"Model {model_name} not exist.")
properties['model_config'] = ModelConfigEntity(
provider=copy_app_model_config_dict['model']['provider'],
model=copy_app_model_config_dict['model']['name'],
model_schema=model_schema,
mode=model_mode,
provider_model_bundle=provider_model_bundle,
credentials=model_credentials,
parameters=completion_params,
stop=stop,
)
# prompt template
prompt_type = PromptTemplateEntity.PromptType.value_of(copy_app_model_config_dict['prompt_type'])
if prompt_type == PromptTemplateEntity.PromptType.SIMPLE:
simple_prompt_template = copy_app_model_config_dict.get("pre_prompt", "")
properties['prompt_template'] = PromptTemplateEntity(
prompt_type=prompt_type,
simple_prompt_template=simple_prompt_template
)
else:
advanced_chat_prompt_template = None
chat_prompt_config = copy_app_model_config_dict.get("chat_prompt_config", {})
if chat_prompt_config:
chat_prompt_messages = []
for message in chat_prompt_config.get("prompt", []):
chat_prompt_messages.append({
"text": message["text"],
"role": PromptMessageRole.value_of(message["role"])
})
advanced_chat_prompt_template = AdvancedChatPromptTemplateEntity(
messages=chat_prompt_messages
)
advanced_completion_prompt_template = None
completion_prompt_config = copy_app_model_config_dict.get("completion_prompt_config", {})
if completion_prompt_config:
completion_prompt_template_params = {
'prompt': completion_prompt_config['prompt']['text'],
}
if 'conversation_histories_role' in completion_prompt_config:
completion_prompt_template_params['role_prefix'] = {
'user': completion_prompt_config['conversation_histories_role']['user_prefix'],
'assistant': completion_prompt_config['conversation_histories_role']['assistant_prefix']
}
advanced_completion_prompt_template = AdvancedCompletionPromptTemplateEntity(
**completion_prompt_template_params
)
properties['prompt_template'] = PromptTemplateEntity(
prompt_type=prompt_type,
advanced_chat_prompt_template=advanced_chat_prompt_template,
advanced_completion_prompt_template=advanced_completion_prompt_template
)
# external data variables
properties['external_data_variables'] = []
external_data_tools = copy_app_model_config_dict.get('external_data_tools', [])
for external_data_tool in external_data_tools:
if 'enabled' not in external_data_tool or not external_data_tool['enabled']:
continue
properties['external_data_variables'].append(
ExternalDataVariableEntity(
variable=external_data_tool['variable'],
type=external_data_tool['type'],
config=external_data_tool['config']
)
)
# show retrieve source
show_retrieve_source = False
retriever_resource_dict = copy_app_model_config_dict.get('retriever_resource')
if retriever_resource_dict:
if 'enabled' in retriever_resource_dict and retriever_resource_dict['enabled']:
show_retrieve_source = True
properties['show_retrieve_source'] = show_retrieve_source
if 'agent_mode' in copy_app_model_config_dict and copy_app_model_config_dict['agent_mode'] \
and 'enabled' in copy_app_model_config_dict['agent_mode'] and copy_app_model_config_dict['agent_mode'][
'enabled']:
agent_dict = copy_app_model_config_dict.get('agent_mode')
if agent_dict['strategy'] in ['router', 'react_router']:
dataset_ids = []
for tool in agent_dict.get('tools', []):
key = list(tool.keys())[0]
if key != 'dataset':
continue
tool_item = tool[key]
if "enabled" not in tool_item or not tool_item["enabled"]:
continue
dataset_id = tool_item['id']
dataset_ids.append(dataset_id)
dataset_configs = copy_app_model_config_dict.get('dataset_configs', {'retrieval_model': 'single'})
query_variable = copy_app_model_config_dict.get('dataset_query_variable')
if dataset_configs['retrieval_model'] == 'single':
properties['dataset'] = DatasetEntity(
dataset_ids=dataset_ids,
retrieve_config=DatasetRetrieveConfigEntity(
query_variable=query_variable,
retrieve_strategy=DatasetRetrieveConfigEntity.RetrieveStrategy.value_of(
dataset_configs['retrieval_model']
),
single_strategy=agent_dict['strategy']
)
)
else:
properties['dataset'] = DatasetEntity(
dataset_ids=dataset_ids,
retrieve_config=DatasetRetrieveConfigEntity(
query_variable=query_variable,
retrieve_strategy=DatasetRetrieveConfigEntity.RetrieveStrategy.value_of(
dataset_configs['retrieval_model']
),
top_k=dataset_configs.get('top_k'),
score_threshold=dataset_configs.get('score_threshold'),
reranking_model=dataset_configs.get('reranking_model')
)
)
else:
if agent_dict['strategy'] == 'react':
strategy = AgentEntity.Strategy.CHAIN_OF_THOUGHT
else:
strategy = AgentEntity.Strategy.FUNCTION_CALLING
agent_tools = []
for tool in agent_dict.get('tools', []):
key = list(tool.keys())[0]
tool_item = tool[key]
agent_tool_properties = {
"tool_id": key
}
if "enabled" not in tool_item or not tool_item["enabled"]:
continue
agent_tool_properties["config"] = tool_item
agent_tools.append(AgentToolEntity(**agent_tool_properties))
properties['agent'] = AgentEntity(
provider=properties['model_config'].provider,
model=properties['model_config'].model,
strategy=strategy,
tools=agent_tools
)
# file upload
file_upload_dict = copy_app_model_config_dict.get('file_upload')
if file_upload_dict:
if 'image' in file_upload_dict and file_upload_dict['image']:
if 'enabled' in file_upload_dict['image'] and file_upload_dict['image']['enabled']:
properties['file_upload'] = FileUploadEntity(
image_config={
'number_limits': file_upload_dict['image']['number_limits'],
'detail': file_upload_dict['image']['detail'],
'transfer_methods': file_upload_dict['image']['transfer_methods']
}
)
# opening statement
properties['opening_statement'] = copy_app_model_config_dict.get('opening_statement')
# suggested questions after answer
suggested_questions_after_answer_dict = copy_app_model_config_dict.get('suggested_questions_after_answer')
if suggested_questions_after_answer_dict:
if 'enabled' in suggested_questions_after_answer_dict and suggested_questions_after_answer_dict['enabled']:
properties['suggested_questions_after_answer'] = True
# more like this
more_like_this_dict = copy_app_model_config_dict.get('more_like_this')
if more_like_this_dict:
if 'enabled' in more_like_this_dict and more_like_this_dict['enabled']:
properties['more_like_this'] = copy_app_model_config_dict.get('opening_statement')
# speech to text
speech_to_text_dict = copy_app_model_config_dict.get('speech_to_text')
if speech_to_text_dict:
if 'enabled' in speech_to_text_dict and speech_to_text_dict['enabled']:
properties['speech_to_text'] = True
# sensitive word avoidance
sensitive_word_avoidance_dict = copy_app_model_config_dict.get('sensitive_word_avoidance')
if sensitive_word_avoidance_dict:
if 'enabled' in sensitive_word_avoidance_dict and sensitive_word_avoidance_dict['enabled']:
properties['sensitive_word_avoidance'] = SensitiveWordAvoidanceEntity(
type=sensitive_word_avoidance_dict.get('type'),
config=sensitive_word_avoidance_dict.get('config'),
)
return AppOrchestrationConfigEntity(**properties)
def _init_generate_records(self, application_generate_entity: ApplicationGenerateEntity) \
-> Tuple[Conversation, Message]:
"""
Initialize generate records
:param application_generate_entity: application generate entity
:return:
"""
app_orchestration_config_entity = application_generate_entity.app_orchestration_config_entity
model_type_instance = app_orchestration_config_entity.model_config.provider_model_bundle.model_type_instance
model_type_instance = cast(LargeLanguageModel, model_type_instance)
model_schema = model_type_instance.get_model_schema(
model=app_orchestration_config_entity.model_config.model,
credentials=app_orchestration_config_entity.model_config.credentials
)
app_record = (db.session.query(App)
.filter(App.id == application_generate_entity.app_id).first())
app_mode = app_record.mode
# get from source
end_user_id = None
account_id = None
if application_generate_entity.invoke_from in [InvokeFrom.WEB_APP, InvokeFrom.SERVICE_API]:
from_source = 'api'
end_user_id = application_generate_entity.user_id
else:
from_source = 'console'
account_id = application_generate_entity.user_id
override_model_configs = None
if application_generate_entity.app_model_config_override:
override_model_configs = application_generate_entity.app_model_config_dict
introduction = ''
if app_mode == 'chat':
# get conversation introduction
introduction = self._get_conversation_introduction(application_generate_entity)
if not application_generate_entity.conversation_id:
conversation = Conversation(
app_id=app_record.id,
app_model_config_id=application_generate_entity.app_model_config_id,
model_provider=app_orchestration_config_entity.model_config.provider,
model_id=app_orchestration_config_entity.model_config.model,
override_model_configs=json.dumps(override_model_configs) if override_model_configs else None,
mode=app_mode,
name='New conversation',
inputs=application_generate_entity.inputs,
introduction=introduction,
system_instruction="",
system_instruction_tokens=0,
status='normal',
from_source=from_source,
from_end_user_id=end_user_id,
from_account_id=account_id,
)
db.session.add(conversation)
db.session.commit()
else:
conversation = (
db.session.query(Conversation)
.filter(
Conversation.id == application_generate_entity.conversation_id,
Conversation.app_id == app_record.id
).first()
)
currency = model_schema.pricing.currency if model_schema.pricing else 'USD'
message = Message(
app_id=app_record.id,
model_provider=app_orchestration_config_entity.model_config.provider,
model_id=app_orchestration_config_entity.model_config.model,
override_model_configs=json.dumps(override_model_configs) if override_model_configs else None,
conversation_id=conversation.id,
inputs=application_generate_entity.inputs,
query=application_generate_entity.query or "",
message="",
message_tokens=0,
message_unit_price=0,
message_price_unit=0,
answer="",
answer_tokens=0,
answer_unit_price=0,
answer_price_unit=0,
provider_response_latency=0,
total_price=0,
currency=currency,
from_source=from_source,
from_end_user_id=end_user_id,
from_account_id=account_id,
agent_based=app_orchestration_config_entity.agent is not None
)
db.session.add(message)
db.session.commit()
for file in application_generate_entity.files:
message_file = MessageFile(
message_id=message.id,
type=file.type.value,
transfer_method=file.transfer_method.value,
url=file.url,
upload_file_id=file.upload_file_id,
created_by_role=('account' if account_id else 'end_user'),
created_by=account_id or end_user_id,
)
db.session.add(message_file)
db.session.commit()
return conversation, message
def _get_conversation_introduction(self, application_generate_entity: ApplicationGenerateEntity) -> str:
"""
Get conversation introduction
:param application_generate_entity: application generate entity
:return: conversation introduction
"""
app_orchestration_config_entity = application_generate_entity.app_orchestration_config_entity
introduction = app_orchestration_config_entity.opening_statement
if introduction:
try:
inputs = application_generate_entity.inputs
prompt_template = PromptTemplateParser(template=introduction)
prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
introduction = prompt_template.format(prompt_inputs)
except KeyError:
pass
return introduction
def _get_conversation(self, conversation_id: str) -> Conversation:
"""
Get conversation by conversation id
:param conversation_id: conversation id
:return: conversation
"""
conversation = (
db.session.query(Conversation)
.filter(Conversation.id == conversation_id)
.first()
)
return conversation
def _get_message(self, message_id: str) -> Message:
"""
Get message by message id
:param message_id: message id
:return: message
"""
message = (
db.session.query(Message)
.filter(Message.id == message_id)
.first()
)
return message

View File

@ -0,0 +1,228 @@
import queue
import time
from typing import Generator, Any
from sqlalchemy.orm import DeclarativeMeta
from core.entities.application_entities import InvokeFrom
from core.entities.queue_entities import QueueStopEvent, AppQueueEvent, QueuePingEvent, QueueErrorEvent, \
QueueAgentThoughtEvent, QueueMessageEndEvent, QueueRetrieverResourcesEvent, QueueMessageReplaceEvent, \
QueueMessageEvent, QueueMessage, AnnotationReplyEvent
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk
from extensions.ext_redis import redis_client
from models.model import MessageAgentThought
class ApplicationQueueManager:
def __init__(self, task_id: str,
user_id: str,
invoke_from: InvokeFrom,
conversation_id: str,
app_mode: str,
message_id: str) -> None:
if not user_id:
raise ValueError("user is required")
self._task_id = task_id
self._user_id = user_id
self._invoke_from = invoke_from
self._conversation_id = str(conversation_id)
self._app_mode = app_mode
self._message_id = str(message_id)
user_prefix = 'account' if self._invoke_from in [InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER] else 'end-user'
redis_client.setex(ApplicationQueueManager._generate_task_belong_cache_key(self._task_id), 1800, f"{user_prefix}-{self._user_id}")
q = queue.Queue()
self._q = q
def listen(self) -> Generator:
"""
Listen to queue
:return:
"""
# wait for 10 minutes to stop listen
listen_timeout = 600
start_time = time.time()
last_ping_time = 0
while True:
try:
message = self._q.get(timeout=1)
if message is None:
break
yield message
except queue.Empty:
continue
finally:
elapsed_time = time.time() - start_time
if elapsed_time >= listen_timeout or self._is_stopped():
# publish two messages to make sure the client can receive the stop signal
# and stop listening after the stop signal processed
self.publish(QueueStopEvent(stopped_by=QueueStopEvent.StopBy.USER_MANUAL))
self.stop_listen()
if elapsed_time // 10 > last_ping_time:
self.publish(QueuePingEvent())
last_ping_time = elapsed_time // 10
def stop_listen(self) -> None:
"""
Stop listen to queue
:return:
"""
self._q.put(None)
def publish_chunk_message(self, chunk: LLMResultChunk) -> None:
"""
Publish chunk message to channel
:param chunk: chunk
:return:
"""
self.publish(QueueMessageEvent(
chunk=chunk
))
def publish_message_replace(self, text: str) -> None:
"""
Publish message replace
:param text: text
:return:
"""
self.publish(QueueMessageReplaceEvent(
text=text
))
def publish_retriever_resources(self, retriever_resources: list[dict]) -> None:
"""
Publish retriever resources
:return:
"""
self.publish(QueueRetrieverResourcesEvent(retriever_resources=retriever_resources))
def publish_annotation_reply(self, message_annotation_id: str) -> None:
"""
Publish annotation reply
:param message_annotation_id: message annotation id
:return:
"""
self.publish(AnnotationReplyEvent(message_annotation_id=message_annotation_id))
def publish_message_end(self, llm_result: LLMResult) -> None:
"""
Publish message end
:param llm_result: llm result
:return:
"""
self.publish(QueueMessageEndEvent(llm_result=llm_result))
self.stop_listen()
def publish_agent_thought(self, message_agent_thought: MessageAgentThought) -> None:
"""
Publish agent thought
:param message_agent_thought: message agent thought
:return:
"""
self.publish(QueueAgentThoughtEvent(
agent_thought_id=message_agent_thought.id
))
def publish_error(self, e) -> None:
"""
Publish error
:param e: error
:return:
"""
self.publish(QueueErrorEvent(
error=e
))
self.stop_listen()
def publish(self, event: AppQueueEvent) -> None:
"""
Publish event to queue
:param event:
:return:
"""
self._check_for_sqlalchemy_models(event.dict())
message = QueueMessage(
task_id=self._task_id,
message_id=self._message_id,
conversation_id=self._conversation_id,
app_mode=self._app_mode,
event=event
)
self._q.put(message)
if isinstance(event, QueueStopEvent):
self.stop_listen()
@classmethod
def set_stop_flag(cls, task_id: str, invoke_from: InvokeFrom, user_id: str) -> None:
"""
Set task stop flag
:return:
"""
result = redis_client.get(cls._generate_task_belong_cache_key(task_id))
if result is None:
return
user_prefix = 'account' if invoke_from in [InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER] else 'end-user'
if result != f"{user_prefix}-{user_id}":
return
stopped_cache_key = cls._generate_stopped_cache_key(task_id)
redis_client.setex(stopped_cache_key, 600, 1)
def _is_stopped(self) -> bool:
"""
Check if task is stopped
:return:
"""
stopped_cache_key = ApplicationQueueManager._generate_stopped_cache_key(self._task_id)
result = redis_client.get(stopped_cache_key)
if result is not None:
redis_client.delete(stopped_cache_key)
return True
return False
@classmethod
def _generate_task_belong_cache_key(cls, task_id: str) -> str:
"""
Generate task belong cache key
:param task_id: task id
:return:
"""
return f"generate_task_belong:{task_id}"
@classmethod
def _generate_stopped_cache_key(cls, task_id: str) -> str:
"""
Generate stopped cache key
:param task_id: task id
:return:
"""
return f"generate_task_stopped:{task_id}"
def _check_for_sqlalchemy_models(self, data: Any):
# from entity to dict or list
if isinstance(data, dict):
for key, value in data.items():
self._check_for_sqlalchemy_models(value)
elif isinstance(data, list):
for item in data:
self._check_for_sqlalchemy_models(item)
else:
if isinstance(data, DeclarativeMeta) or hasattr(data, '_sa_instance_state'):
raise TypeError("Critical Error: Passing SQLAlchemy Model instances "
"that cause thread safety issues is not allowed.")
class ConversationTaskStoppedException(Exception):
pass

View File

@ -2,30 +2,40 @@ import json
import logging
import time
from typing import Any, Dict, List, Union, Optional
from typing import Any, Dict, List, Union, Optional, cast
from langchain.agents import openai_functions_agent, openai_functions_multi_agent
from langchain.callbacks.base import BaseCallbackHandler
from langchain.schema import AgentAction, AgentFinish, LLMResult, ChatGeneration, BaseMessage
from core.application_queue_manager import ApplicationQueueManager
from core.callback_handler.entity.agent_loop import AgentLoop
from core.conversation_message_task import ConversationMessageTask
from core.model_providers.models.entity.message import PromptMessage
from core.model_providers.models.llm.base import BaseLLM
from core.entities.application_entities import ModelConfigEntity
from core.model_runtime.entities.llm_entities import LLMResult as RuntimeLLMResult
from core.model_runtime.entities.message_entities import UserPromptMessage, AssistantPromptMessage, PromptMessage
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
from extensions.ext_database import db
from models.model import MessageChain, MessageAgentThought, Message
class AgentLoopGatherCallbackHandler(BaseCallbackHandler):
"""Callback Handler that prints to std out."""
raise_error: bool = True
def __init__(self, model_instance: BaseLLM, conversation_message_task: ConversationMessageTask) -> None:
def __init__(self, model_config: ModelConfigEntity,
queue_manager: ApplicationQueueManager,
message: Message,
message_chain: MessageChain) -> None:
"""Initialize callback handler."""
self.model_instance = model_instance
self.conversation_message_task = conversation_message_task
self.model_config = model_config
self.queue_manager = queue_manager
self.message = message
self.message_chain = message_chain
model_type_instance = self.model_config.provider_model_bundle.model_type_instance
self.model_type_instance = cast(LargeLanguageModel, model_type_instance)
self._agent_loops = []
self._current_loop = None
self._message_agent_thought = None
self.current_chain = None
@property
def agent_loops(self) -> List[AgentLoop]:
@ -46,65 +56,60 @@ class AgentLoopGatherCallbackHandler(BaseCallbackHandler):
"""Whether to ignore chain callbacks."""
return True
def on_llm_before_invoke(self, prompt_messages: list[PromptMessage]) -> None:
if not self._current_loop:
# Agent start with a LLM query
self._current_loop = AgentLoop(
position=len(self._agent_loops) + 1,
prompt="\n".join([prompt_message.content for prompt_message in prompt_messages]),
status='llm_started',
started_at=time.perf_counter()
)
def on_llm_after_invoke(self, result: RuntimeLLMResult) -> None:
if self._current_loop and self._current_loop.status == 'llm_started':
self._current_loop.status = 'llm_end'
if result.usage:
self._current_loop.prompt_tokens = result.usage.prompt_tokens
else:
self._current_loop.prompt_tokens = self.model_type_instance.get_num_tokens(
model=self.model_config.model,
credentials=self.model_config.credentials,
prompt_messages=[UserPromptMessage(content=self._current_loop.prompt)]
)
completion_message = result.message
if completion_message.tool_calls:
self._current_loop.completion \
= json.dumps({'function_call': completion_message.tool_calls})
else:
self._current_loop.completion = completion_message.content
if result.usage:
self._current_loop.completion_tokens = result.usage.completion_tokens
else:
self._current_loop.completion_tokens = self.model_type_instance.get_num_tokens(
model=self.model_config.model,
credentials=self.model_config.credentials,
prompt_messages=[AssistantPromptMessage(content=self._current_loop.completion)]
)
def on_chat_model_start(
self,
serialized: Dict[str, Any],
messages: List[List[BaseMessage]],
**kwargs: Any
) -> Any:
if not self._current_loop:
# Agent start with a LLM query
self._current_loop = AgentLoop(
position=len(self._agent_loops) + 1,
prompt="\n".join([message.content for message in messages[0]]),
status='llm_started',
started_at=time.perf_counter()
)
pass
def on_llm_start(
self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
) -> None:
"""Print out the prompts."""
# serialized={'name': 'OpenAI'}
# prompts=['Answer the following questions...\nThought:']
# kwargs={}
if not self._current_loop:
# Agent start with a LLM query
self._current_loop = AgentLoop(
position=len(self._agent_loops) + 1,
prompt=prompts[0],
status='llm_started',
started_at=time.perf_counter()
)
pass
def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
"""Do nothing."""
# kwargs={}
if self._current_loop and self._current_loop.status == 'llm_started':
self._current_loop.status = 'llm_end'
if response.llm_output:
self._current_loop.prompt_tokens = response.llm_output['token_usage']['prompt_tokens']
else:
self._current_loop.prompt_tokens = self.model_instance.get_num_tokens(
[PromptMessage(content=self._current_loop.prompt)]
)
completion_generation = response.generations[0][0]
if isinstance(completion_generation, ChatGeneration):
completion_message = completion_generation.message
if 'function_call' in completion_message.additional_kwargs:
self._current_loop.completion \
= json.dumps({'function_call': completion_message.additional_kwargs['function_call']})
else:
self._current_loop.completion = response.generations[0][0].text
else:
self._current_loop.completion = completion_generation.text
if response.llm_output:
self._current_loop.completion_tokens = response.llm_output['token_usage']['completion_tokens']
else:
self._current_loop.completion_tokens = self.model_instance.get_num_tokens(
[PromptMessage(content=self._current_loop.completion)]
)
pass
def on_llm_error(
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
@ -150,10 +155,7 @@ class AgentLoopGatherCallbackHandler(BaseCallbackHandler):
if completion is not None:
self._current_loop.completion = completion
self._message_agent_thought = self.conversation_message_task.on_agent_start(
self.current_chain,
self._current_loop
)
self._message_agent_thought = self._init_agent_thought()
def on_tool_end(
self,
@ -176,9 +178,7 @@ class AgentLoopGatherCallbackHandler(BaseCallbackHandler):
self._current_loop.completed_at = time.perf_counter()
self._current_loop.latency = self._current_loop.completed_at - self._current_loop.started_at
self.conversation_message_task.on_agent_end(
self._message_agent_thought, self.model_instance, self._current_loop
)
self._complete_agent_thought(self._message_agent_thought)
self._agent_loops.append(self._current_loop)
self._current_loop = None
@ -202,17 +202,62 @@ class AgentLoopGatherCallbackHandler(BaseCallbackHandler):
self._current_loop.completed_at = time.perf_counter()
self._current_loop.latency = self._current_loop.completed_at - self._current_loop.started_at
self._current_loop.thought = '[DONE]'
self._message_agent_thought = self.conversation_message_task.on_agent_start(
self.current_chain,
self._current_loop
)
self._message_agent_thought = self._init_agent_thought()
self.conversation_message_task.on_agent_end(
self._message_agent_thought, self.model_instance, self._current_loop
)
self._complete_agent_thought(self._message_agent_thought)
self._agent_loops.append(self._current_loop)
self._current_loop = None
self._message_agent_thought = None
elif not self._current_loop and self._agent_loops:
self._agent_loops[-1].status = 'agent_finish'
def _init_agent_thought(self) -> MessageAgentThought:
message_agent_thought = MessageAgentThought(
message_id=self.message.id,
message_chain_id=self.message_chain.id,
position=self._current_loop.position,
thought=self._current_loop.thought,
tool=self._current_loop.tool_name,
tool_input=self._current_loop.tool_input,
message=self._current_loop.prompt,
message_price_unit=0,
answer=self._current_loop.completion,
answer_price_unit=0,
created_by_role=('account' if self.message.from_source == 'console' else 'end_user'),
created_by=(self.message.from_account_id
if self.message.from_source == 'console' else self.message.from_end_user_id)
)
db.session.add(message_agent_thought)
db.session.commit()
self.queue_manager.publish_agent_thought(message_agent_thought)
return message_agent_thought
def _complete_agent_thought(self, message_agent_thought: MessageAgentThought) -> None:
loop_message_tokens = self._current_loop.prompt_tokens
loop_answer_tokens = self._current_loop.completion_tokens
# transform usage
llm_usage = self.model_type_instance._calc_response_usage(
self.model_config.model,
self.model_config.credentials,
loop_message_tokens,
loop_answer_tokens
)
message_agent_thought.observation = self._current_loop.tool_output
message_agent_thought.tool_process_data = '' # currently not support
message_agent_thought.message_token = loop_message_tokens
message_agent_thought.message_unit_price = llm_usage.prompt_unit_price
message_agent_thought.message_price_unit = llm_usage.prompt_price_unit
message_agent_thought.answer_token = loop_answer_tokens
message_agent_thought.answer_unit_price = llm_usage.completion_unit_price
message_agent_thought.answer_price_unit = llm_usage.completion_price_unit
message_agent_thought.latency = self._current_loop.latency
message_agent_thought.tokens = self._current_loop.prompt_tokens + self._current_loop.completion_tokens
message_agent_thought.total_price = llm_usage.total_price
message_agent_thought.currency = llm_usage.currency
db.session.commit()

View File

@ -1,74 +0,0 @@
import json
import logging
from json import JSONDecodeError
from typing import Any, Dict, List, Union, Optional
from langchain.callbacks.base import BaseCallbackHandler
from core.callback_handler.entity.dataset_query import DatasetQueryObj
from core.conversation_message_task import ConversationMessageTask
class DatasetToolCallbackHandler(BaseCallbackHandler):
"""Callback Handler that prints to std out."""
raise_error: bool = True
def __init__(self, conversation_message_task: ConversationMessageTask) -> None:
"""Initialize callback handler."""
self.queries = []
self.conversation_message_task = conversation_message_task
@property
def always_verbose(self) -> bool:
"""Whether to call verbose callbacks even if verbose is False."""
return True
@property
def ignore_llm(self) -> bool:
"""Whether to ignore LLM callbacks."""
return True
@property
def ignore_chain(self) -> bool:
"""Whether to ignore chain callbacks."""
return True
@property
def ignore_agent(self) -> bool:
"""Whether to ignore agent callbacks."""
return False
def on_tool_start(
self,
serialized: Dict[str, Any],
input_str: str,
**kwargs: Any,
) -> None:
tool_name: str = serialized.get('name')
dataset_id = tool_name.removeprefix('dataset-')
try:
input_dict = json.loads(input_str.replace("'", "\""))
query = input_dict.get('query')
except JSONDecodeError:
query = input_str
self.conversation_message_task.on_dataset_query_end(DatasetQueryObj(dataset_id=dataset_id, query=query))
def on_tool_end(
self,
output: str,
color: Optional[str] = None,
observation_prefix: Optional[str] = None,
llm_prefix: Optional[str] = None,
**kwargs: Any,
) -> None:
pass
def on_tool_error(
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> None:
"""Do nothing."""
logging.debug("Dataset tool on_llm_error: %s", error)

View File

@ -1,16 +0,0 @@
from pydantic import BaseModel
class ChainResult(BaseModel):
type: str = None
prompt: dict = None
completion: dict = None
status: str = 'chain_started'
completed: bool = False
started_at: float = None
completed_at: float = None
agent_result: dict = None
"""only when type is 'AgentExecutor'"""

View File

@ -1,6 +0,0 @@
from pydantic import BaseModel
class DatasetQueryObj(BaseModel):
dataset_id: str = None
query: str = None

View File

@ -1,8 +0,0 @@
from pydantic import BaseModel
class LLMMessage(BaseModel):
prompt: str = ''
prompt_tokens: int = 0
completion: str = ''
completion_tokens: int = 0

View File

@ -1,17 +1,44 @@
from typing import List
from typing import List, Union
from langchain.schema import Document
from core.conversation_message_task import ConversationMessageTask
from core.application_queue_manager import ApplicationQueueManager
from core.entities.application_entities import InvokeFrom
from extensions.ext_database import db
from models.dataset import DocumentSegment
from models.dataset import DocumentSegment, DatasetQuery
from models.model import DatasetRetrieverResource
class DatasetIndexToolCallbackHandler:
"""Callback handler for dataset tool."""
def __init__(self, conversation_message_task: ConversationMessageTask) -> None:
self.conversation_message_task = conversation_message_task
def __init__(self, queue_manager: ApplicationQueueManager,
app_id: str,
message_id: str,
user_id: str,
invoke_from: InvokeFrom) -> None:
self._queue_manager = queue_manager
self._app_id = app_id
self._message_id = message_id
self._user_id = user_id
self._invoke_from = invoke_from
def on_query(self, query: str, dataset_id: str) -> None:
"""
Handle query.
"""
dataset_query = DatasetQuery(
dataset_id=dataset_id,
content=query,
source='app',
source_app_id=self._app_id,
created_by_role=('account'
if self._invoke_from in [InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER] else 'end_user'),
created_by=self._user_id
)
db.session.add(dataset_query)
db.session.commit()
def on_tool_end(self, documents: List[Document]) -> None:
"""Handle tool end."""
@ -30,4 +57,27 @@ class DatasetIndexToolCallbackHandler:
def return_retriever_resource_info(self, resource: List):
"""Handle return_retriever_resource_info."""
self.conversation_message_task.on_dataset_query_finish(resource)
if resource and len(resource) > 0:
for item in resource:
dataset_retriever_resource = DatasetRetrieverResource(
message_id=self._message_id,
position=item.get('position'),
dataset_id=item.get('dataset_id'),
dataset_name=item.get('dataset_name'),
document_id=item.get('document_id'),
document_name=item.get('document_name'),
data_source_type=item.get('data_source_type'),
segment_id=item.get('segment_id'),
score=item.get('score') if 'score' in item else None,
hit_count=item.get('hit_count') if 'hit_count' else None,
word_count=item.get('word_count') if 'word_count' in item else None,
segment_position=item.get('segment_position') if 'segment_position' in item else None,
index_node_hash=item.get('index_node_hash') if 'index_node_hash' in item else None,
content=item.get('content'),
retriever_from=item.get('retriever_from'),
created_by=self._user_id
)
db.session.add(dataset_retriever_resource)
db.session.commit()
self._queue_manager.publish_retriever_resources(resource)

View File

@ -1,284 +0,0 @@
import logging
import threading
import time
from typing import Any, Dict, List, Union, Optional
from flask import Flask, current_app
from langchain.callbacks.base import BaseCallbackHandler
from langchain.schema import LLMResult, BaseMessage
from pydantic import BaseModel
from core.callback_handler.entity.llm_message import LLMMessage
from core.conversation_message_task import ConversationMessageTask, ConversationTaskStoppedException, \
ConversationTaskInterruptException
from core.model_providers.models.entity.message import to_prompt_messages, PromptMessage, LCHumanMessageWithFiles, \
ImagePromptMessageFile
from core.model_providers.models.llm.base import BaseLLM
from core.moderation.base import ModerationOutputsResult, ModerationAction
from core.moderation.factory import ModerationFactory
class ModerationRule(BaseModel):
type: str
config: Dict[str, Any]
class LLMCallbackHandler(BaseCallbackHandler):
raise_error: bool = True
def __init__(self, model_instance: BaseLLM,
conversation_message_task: ConversationMessageTask):
self.model_instance = model_instance
self.llm_message = LLMMessage()
self.start_at = None
self.conversation_message_task = conversation_message_task
self.output_moderation_handler = None
self.init_output_moderation()
def init_output_moderation(self):
app_model_config = self.conversation_message_task.app_model_config
sensitive_word_avoidance_dict = app_model_config.sensitive_word_avoidance_dict
if sensitive_word_avoidance_dict and sensitive_word_avoidance_dict.get("enabled"):
self.output_moderation_handler = OutputModerationHandler(
tenant_id=self.conversation_message_task.tenant_id,
app_id=self.conversation_message_task.app.id,
rule=ModerationRule(
type=sensitive_word_avoidance_dict.get("type"),
config=sensitive_word_avoidance_dict.get("config")
),
on_message_replace_func=self.conversation_message_task.on_message_replace
)
@property
def always_verbose(self) -> bool:
"""Whether to call verbose callbacks even if verbose is False."""
return True
def on_chat_model_start(
self,
serialized: Dict[str, Any],
messages: List[List[BaseMessage]],
**kwargs: Any
) -> Any:
real_prompts = []
for message in messages[0]:
if message.type == 'human':
role = 'user'
elif message.type == 'ai':
role = 'assistant'
else:
role = 'system'
real_prompts.append({
"role": role,
"text": message.content,
"files": [{
"type": file.type.value,
"data": file.data[:10] + '...[TRUNCATED]...' + file.data[-10:],
"detail": file.detail.value if isinstance(file, ImagePromptMessageFile) else None,
} for file in (message.files if isinstance(message, LCHumanMessageWithFiles) else [])]
})
self.llm_message.prompt = real_prompts
self.llm_message.prompt_tokens = self.model_instance.get_num_tokens(to_prompt_messages(messages[0]))
def on_llm_start(
self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
) -> None:
self.llm_message.prompt = [{
"role": 'user',
"text": prompts[0]
}]
self.llm_message.prompt_tokens = self.model_instance.get_num_tokens([PromptMessage(content=prompts[0])])
def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
if self.output_moderation_handler:
self.output_moderation_handler.stop_thread()
self.llm_message.completion = self.output_moderation_handler.moderation_completion(
completion=response.generations[0][0].text,
public_event=True if self.conversation_message_task.streaming else False
)
else:
self.llm_message.completion = response.generations[0][0].text
if not self.conversation_message_task.streaming:
self.conversation_message_task.append_message_text(self.llm_message.completion)
if response.llm_output and 'token_usage' in response.llm_output:
if 'prompt_tokens' in response.llm_output['token_usage']:
self.llm_message.prompt_tokens = response.llm_output['token_usage']['prompt_tokens']
if 'completion_tokens' in response.llm_output['token_usage']:
self.llm_message.completion_tokens = response.llm_output['token_usage']['completion_tokens']
else:
self.llm_message.completion_tokens = self.model_instance.get_num_tokens(
[PromptMessage(content=self.llm_message.completion)])
else:
self.llm_message.completion_tokens = self.model_instance.get_num_tokens(
[PromptMessage(content=self.llm_message.completion)])
self.conversation_message_task.save_message(self.llm_message)
def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
if self.output_moderation_handler and self.output_moderation_handler.should_direct_output():
# stop subscribe new token when output moderation should direct output
ex = ConversationTaskInterruptException()
self.on_llm_error(error=ex)
raise ex
try:
self.conversation_message_task.append_message_text(token)
self.llm_message.completion += token
if self.output_moderation_handler:
self.output_moderation_handler.append_new_token(token)
except ConversationTaskStoppedException as ex:
self.on_llm_error(error=ex)
raise ex
def on_llm_error(
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> None:
"""Do nothing."""
if self.output_moderation_handler:
self.output_moderation_handler.stop_thread()
if isinstance(error, ConversationTaskStoppedException):
if self.conversation_message_task.streaming:
self.llm_message.completion_tokens = self.model_instance.get_num_tokens(
[PromptMessage(content=self.llm_message.completion)]
)
self.conversation_message_task.save_message(llm_message=self.llm_message, by_stopped=True)
if isinstance(error, ConversationTaskInterruptException):
self.llm_message.completion = self.output_moderation_handler.get_final_output()
self.llm_message.completion_tokens = self.model_instance.get_num_tokens(
[PromptMessage(content=self.llm_message.completion)]
)
self.conversation_message_task.save_message(llm_message=self.llm_message)
else:
logging.debug("on_llm_error: %s", error)
class OutputModerationHandler(BaseModel):
DEFAULT_BUFFER_SIZE: int = 300
tenant_id: str
app_id: str
rule: ModerationRule
on_message_replace_func: Any
thread: Optional[threading.Thread] = None
thread_running: bool = True
buffer: str = ''
is_final_chunk: bool = False
final_output: Optional[str] = None
class Config:
arbitrary_types_allowed = True
def should_direct_output(self):
return self.final_output is not None
def get_final_output(self):
return self.final_output
def append_new_token(self, token: str):
self.buffer += token
if not self.thread:
self.thread = self.start_thread()
def moderation_completion(self, completion: str, public_event: bool = False) -> str:
self.buffer = completion
self.is_final_chunk = True
result = self.moderation(
tenant_id=self.tenant_id,
app_id=self.app_id,
moderation_buffer=completion
)
if not result or not result.flagged:
return completion
if result.action == ModerationAction.DIRECT_OUTPUT:
final_output = result.preset_response
else:
final_output = result.text
if public_event:
self.on_message_replace_func(final_output)
return final_output
def start_thread(self) -> threading.Thread:
buffer_size = int(current_app.config.get('MODERATION_BUFFER_SIZE', self.DEFAULT_BUFFER_SIZE))
thread = threading.Thread(target=self.worker, kwargs={
'flask_app': current_app._get_current_object(),
'buffer_size': buffer_size if buffer_size > 0 else self.DEFAULT_BUFFER_SIZE
})
thread.start()
return thread
def stop_thread(self):
if self.thread and self.thread.is_alive():
self.thread_running = False
def worker(self, flask_app: Flask, buffer_size: int):
with flask_app.app_context():
current_length = 0
while self.thread_running:
moderation_buffer = self.buffer
buffer_length = len(moderation_buffer)
if not self.is_final_chunk:
chunk_length = buffer_length - current_length
if 0 <= chunk_length < buffer_size:
time.sleep(1)
continue
current_length = buffer_length
result = self.moderation(
tenant_id=self.tenant_id,
app_id=self.app_id,
moderation_buffer=moderation_buffer
)
if not result or not result.flagged:
continue
if result.action == ModerationAction.DIRECT_OUTPUT:
final_output = result.preset_response
self.final_output = final_output
else:
final_output = result.text + self.buffer[len(moderation_buffer):]
# trigger replace event
if self.thread_running:
self.on_message_replace_func(final_output)
if result.action == ModerationAction.DIRECT_OUTPUT:
break
def moderation(self, tenant_id: str, app_id: str, moderation_buffer: str) -> Optional[ModerationOutputsResult]:
try:
moderation_factory = ModerationFactory(
name=self.rule.type,
app_id=app_id,
tenant_id=tenant_id,
config=self.rule.config
)
result: ModerationOutputsResult = moderation_factory.moderation_for_outputs(moderation_buffer)
return result
except Exception as e:
logging.error("Moderation Output error: %s", e)
return None

View File

@ -1,76 +0,0 @@
import logging
import time
from typing import Any, Dict, Union
from langchain.callbacks.base import BaseCallbackHandler
from core.callback_handler.entity.chain_result import ChainResult
from core.conversation_message_task import ConversationMessageTask
class MainChainGatherCallbackHandler(BaseCallbackHandler):
"""Callback Handler that prints to std out."""
raise_error: bool = True
def __init__(self, conversation_message_task: ConversationMessageTask) -> None:
"""Initialize callback handler."""
self._current_chain_result = None
self._current_chain_message = None
self.conversation_message_task = conversation_message_task
self.agent_callback = None
def clear_chain_results(self) -> None:
self._current_chain_result = None
self._current_chain_message = None
if self.agent_callback:
self.agent_callback.current_chain = None
@property
def always_verbose(self) -> bool:
"""Whether to call verbose callbacks even if verbose is False."""
return True
@property
def ignore_llm(self) -> bool:
"""Whether to ignore LLM callbacks."""
return True
@property
def ignore_agent(self) -> bool:
"""Whether to ignore agent callbacks."""
return True
def on_chain_start(
self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any
) -> None:
"""Print out that we are entering a chain."""
if not self._current_chain_result:
chain_type = serialized['id'][-1]
if chain_type:
self._current_chain_result = ChainResult(
type=chain_type,
prompt=inputs,
started_at=time.perf_counter()
)
self._current_chain_message = self.conversation_message_task.init_chain(self._current_chain_result)
if self.agent_callback:
self.agent_callback.current_chain = self._current_chain_message
def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None:
"""Print out that we finished a chain."""
if self._current_chain_result and self._current_chain_result.status == 'chain_started':
self._current_chain_result.status = 'chain_ended'
self._current_chain_result.completion = outputs
self._current_chain_result.completed = True
self._current_chain_result.completed_at = time.perf_counter()
self.conversation_message_task.on_chain_end(self._current_chain_message, self._current_chain_result)
self.clear_chain_results()
def on_chain_error(
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> None:
logging.debug("Dataset tool on_chain_error: %s", error)
self.clear_chain_results()

View File

@ -79,8 +79,11 @@ class DifyStdOutCallbackHandler(BaseCallbackHandler):
"""Run on agent action."""
tool = action.tool
tool_input = action.tool_input
action_name_position = action.log.index("\nAction:") + 1 if action.log else -1
thought = action.log[:action_name_position].strip() if action.log else ''
try:
action_name_position = action.log.index("\nAction:") + 1 if action.log else -1
thought = action.log[:action_name_position].strip() if action.log else ''
except ValueError:
thought = ''
log = f"Thought: {thought}\nTool: {tool}\nTool Input: {tool_input}"
print_text("\n[on_agent_action]\n" + log + "\n", color='green')

View File

@ -5,15 +5,19 @@ from langchain.callbacks.manager import CallbackManagerForChainRun
from langchain.schema import LLMResult, Generation
from langchain.schema.language_model import BaseLanguageModel
from core.model_providers.models.entity.message import to_prompt_messages
from core.model_providers.models.llm.base import BaseLLM
from core.agent.agent.agent_llm_callback import AgentLLMCallback
from core.entities.application_entities import ModelConfigEntity
from core.model_manager import ModelInstance
from core.entities.message_entities import lc_messages_to_prompt_messages
from core.third_party.langchain.llms.fake import FakeLLM
class LLMChain(LCLLMChain):
model_instance: BaseLLM
model_config: ModelConfigEntity
"""The language model instance to use."""
llm: BaseLanguageModel = FakeLLM(response="")
parameters: Dict[str, Any] = {}
agent_llm_callback: Optional[AgentLLMCallback] = None
def generate(
self,
@ -23,14 +27,23 @@ class LLMChain(LCLLMChain):
"""Generate LLM result from inputs."""
prompts, stop = self.prep_prompts(input_list, run_manager=run_manager)
messages = prompts[0].to_messages()
prompt_messages = to_prompt_messages(messages)
result = self.model_instance.run(
messages=prompt_messages,
stop=stop
prompt_messages = lc_messages_to_prompt_messages(messages)
model_instance = ModelInstance(
provider_model_bundle=self.model_config.provider_model_bundle,
model=self.model_config.model,
)
result = model_instance.invoke_llm(
prompt_messages=prompt_messages,
stream=False,
stop=stop,
callbacks=[self.agent_llm_callback] if self.agent_llm_callback else None,
model_parameters=self.parameters
)
generations = [
[Generation(text=result.content)]
[Generation(text=result.message.content)]
]
return LLMResult(generations=generations)

View File

@ -1,501 +0,0 @@
import concurrent
import json
import logging
from concurrent.futures import ThreadPoolExecutor
from typing import Optional, List, Union, Tuple
from flask import current_app, Flask
from requests.exceptions import ChunkedEncodingError
from core.agent.agent_executor import AgentExecuteResult, PlanningStrategy
from core.callback_handler.main_chain_gather_callback_handler import MainChainGatherCallbackHandler
from core.callback_handler.llm_callback_handler import LLMCallbackHandler
from core.conversation_message_task import ConversationMessageTask, ConversationTaskStoppedException, \
ConversationTaskInterruptException
from core.embedding.cached_embedding import CacheEmbedding
from core.external_data_tool.factory import ExternalDataToolFactory
from core.file.file_obj import FileObj
from core.index.vector_index.vector_index import VectorIndex
from core.model_providers.error import LLMBadRequestError
from core.memory.read_only_conversation_token_db_buffer_shared_memory import \
ReadOnlyConversationTokenDBBufferSharedMemory
from core.model_providers.model_factory import ModelFactory
from core.model_providers.models.entity.message import PromptMessage, PromptMessageFile
from core.model_providers.models.llm.base import BaseLLM
from core.orchestrator_rule_parser import OrchestratorRuleParser
from core.prompt.prompt_template import PromptTemplateParser
from core.prompt.prompt_transform import PromptTransform
from models.dataset import Dataset
from models.model import App, AppModelConfig, Account, Conversation, EndUser
from core.moderation.base import ModerationException, ModerationAction
from core.moderation.factory import ModerationFactory
from services.annotation_service import AppAnnotationService
from services.dataset_service import DatasetCollectionBindingService
class Completion:
@classmethod
def generate(cls, task_id: str, app: App, app_model_config: AppModelConfig, query: str, inputs: dict,
files: List[FileObj], user: Union[Account, EndUser], conversation: Optional[Conversation],
streaming: bool, is_override: bool = False, retriever_from: str = 'dev',
auto_generate_name: bool = True, from_source: str = 'console'):
"""
errors: ProviderTokenNotInitError
"""
query = PromptTemplateParser.remove_template_variables(query)
memory = None
if conversation:
# get memory of conversation (read-only)
memory = cls.get_memory_from_conversation(
tenant_id=app.tenant_id,
app_model_config=app_model_config,
conversation=conversation,
return_messages=False
)
inputs = conversation.inputs
final_model_instance = ModelFactory.get_text_generation_model_from_model_config(
tenant_id=app.tenant_id,
model_config=app_model_config.model_dict,
streaming=streaming
)
conversation_message_task = ConversationMessageTask(
task_id=task_id,
app=app,
app_model_config=app_model_config,
user=user,
conversation=conversation,
is_override=is_override,
inputs=inputs,
query=query,
files=files,
streaming=streaming,
model_instance=final_model_instance,
auto_generate_name=auto_generate_name
)
prompt_message_files = [file.prompt_message_file for file in files]
rest_tokens_for_context_and_memory = cls.get_validate_rest_tokens(
mode=app.mode,
model_instance=final_model_instance,
app_model_config=app_model_config,
query=query,
inputs=inputs,
files=prompt_message_files
)
# init orchestrator rule parser
orchestrator_rule_parser = OrchestratorRuleParser(
tenant_id=app.tenant_id,
app_model_config=app_model_config
)
try:
chain_callback = MainChainGatherCallbackHandler(conversation_message_task)
try:
# process sensitive_word_avoidance
inputs, query = cls.moderation_for_inputs(app.id, app.tenant_id, app_model_config, inputs, query)
except ModerationException as e:
cls.run_final_llm(
model_instance=final_model_instance,
mode=app.mode,
app_model_config=app_model_config,
query=query,
inputs=inputs,
files=prompt_message_files,
agent_execute_result=None,
conversation_message_task=conversation_message_task,
memory=memory,
fake_response=str(e)
)
return
# check annotation reply
annotation_reply = cls.query_app_annotations_to_reply(conversation_message_task, from_source)
if annotation_reply:
return
# fill in variable inputs from external data tools if exists
external_data_tools = app_model_config.external_data_tools_list
if external_data_tools:
inputs = cls.fill_in_inputs_from_external_data_tools(
tenant_id=app.tenant_id,
app_id=app.id,
external_data_tools=external_data_tools,
inputs=inputs,
query=query
)
# get agent executor
agent_executor = orchestrator_rule_parser.to_agent_executor(
conversation_message_task=conversation_message_task,
memory=memory,
rest_tokens=rest_tokens_for_context_and_memory,
chain_callback=chain_callback,
tenant_id=app.tenant_id,
retriever_from=retriever_from
)
query_for_agent = cls.get_query_for_agent(app, app_model_config, query, inputs)
# run agent executor
agent_execute_result = None
if query_for_agent and agent_executor:
should_use_agent = agent_executor.should_use_agent(query_for_agent)
if should_use_agent:
agent_execute_result = agent_executor.run(query_for_agent)
# When no extra pre prompt is specified,
# the output of the agent can be used directly as the main output content without calling LLM again
fake_response = None
if not app_model_config.pre_prompt and agent_execute_result and agent_execute_result.output \
and agent_execute_result.strategy not in [PlanningStrategy.ROUTER,
PlanningStrategy.REACT_ROUTER]:
fake_response = agent_execute_result.output
# run the final llm
cls.run_final_llm(
model_instance=final_model_instance,
mode=app.mode,
app_model_config=app_model_config,
query=query,
inputs=inputs,
files=prompt_message_files,
agent_execute_result=agent_execute_result,
conversation_message_task=conversation_message_task,
memory=memory,
fake_response=fake_response
)
except (ConversationTaskInterruptException, ConversationTaskStoppedException):
return
except ChunkedEncodingError as e:
# Interrupt by LLM (like OpenAI), handle it.
logging.warning(f'ChunkedEncodingError: {e}')
return
@classmethod
def moderation_for_inputs(cls, app_id: str, tenant_id: str, app_model_config: AppModelConfig, inputs: dict,
query: str):
if not app_model_config.sensitive_word_avoidance_dict['enabled']:
return inputs, query
type = app_model_config.sensitive_word_avoidance_dict['type']
moderation = ModerationFactory(type, app_id, tenant_id,
app_model_config.sensitive_word_avoidance_dict['config'])
moderation_result = moderation.moderation_for_inputs(inputs, query)
if not moderation_result.flagged:
return inputs, query
if moderation_result.action == ModerationAction.DIRECT_OUTPUT:
raise ModerationException(moderation_result.preset_response)
elif moderation_result.action == ModerationAction.OVERRIDED:
inputs = moderation_result.inputs
query = moderation_result.query
return inputs, query
@classmethod
def fill_in_inputs_from_external_data_tools(cls, tenant_id: str, app_id: str, external_data_tools: list[dict],
inputs: dict, query: str) -> dict:
"""
Fill in variable inputs from external data tools if exists.
:param tenant_id: workspace id
:param app_id: app id
:param external_data_tools: external data tools configs
:param inputs: the inputs
:param query: the query
:return: the filled inputs
"""
# Group tools by type and config
grouped_tools = {}
for tool in external_data_tools:
if not tool.get("enabled"):
continue
tool_key = (tool.get("type"), json.dumps(tool.get("config"), sort_keys=True))
grouped_tools.setdefault(tool_key, []).append(tool)
results = {}
with ThreadPoolExecutor() as executor:
futures = {}
for tool in external_data_tools:
if not tool.get("enabled"):
continue
future = executor.submit(
cls.query_external_data_tool, current_app._get_current_object(), tenant_id, app_id, tool,
inputs, query
)
futures[future] = tool
for future in concurrent.futures.as_completed(futures):
tool_variable, result = future.result()
results[tool_variable] = result
inputs.update(results)
return inputs
@classmethod
def query_external_data_tool(cls, flask_app: Flask, tenant_id: str, app_id: str, external_data_tool: dict,
inputs: dict, query: str) -> Tuple[Optional[str], Optional[str]]:
with flask_app.app_context():
tool_variable = external_data_tool.get("variable")
tool_type = external_data_tool.get("type")
tool_config = external_data_tool.get("config")
external_data_tool_factory = ExternalDataToolFactory(
name=tool_type,
tenant_id=tenant_id,
app_id=app_id,
variable=tool_variable,
config=tool_config
)
# query external data tool
result = external_data_tool_factory.query(
inputs=inputs,
query=query
)
return tool_variable, result
@classmethod
def get_query_for_agent(cls, app: App, app_model_config: AppModelConfig, query: str, inputs: dict) -> str:
if app.mode != 'completion':
return query
return inputs.get(app_model_config.dataset_query_variable, "")
@classmethod
def run_final_llm(cls, model_instance: BaseLLM, mode: str, app_model_config: AppModelConfig, query: str,
inputs: dict,
files: List[PromptMessageFile],
agent_execute_result: Optional[AgentExecuteResult],
conversation_message_task: ConversationMessageTask,
memory: Optional[ReadOnlyConversationTokenDBBufferSharedMemory],
fake_response: Optional[str]):
prompt_transform = PromptTransform()
# get llm prompt
if app_model_config.prompt_type == 'simple':
prompt_messages, stop_words = prompt_transform.get_prompt(
app_mode=mode,
pre_prompt=app_model_config.pre_prompt,
inputs=inputs,
query=query,
files=files,
context=agent_execute_result.output if agent_execute_result else None,
memory=memory,
model_instance=model_instance
)
else:
prompt_messages = prompt_transform.get_advanced_prompt(
app_mode=mode,
app_model_config=app_model_config,
inputs=inputs,
query=query,
files=files,
context=agent_execute_result.output if agent_execute_result else None,
memory=memory,
model_instance=model_instance
)
model_config = app_model_config.model_dict
completion_params = model_config.get("completion_params", {})
stop_words = completion_params.get("stop", [])
cls.recale_llm_max_tokens(
model_instance=model_instance,
prompt_messages=prompt_messages,
)
response = model_instance.run(
messages=prompt_messages,
stop=stop_words if stop_words else None,
callbacks=[LLMCallbackHandler(model_instance, conversation_message_task)],
fake_response=fake_response
)
return response
@classmethod
def get_history_messages_from_memory(cls, memory: ReadOnlyConversationTokenDBBufferSharedMemory,
max_token_limit: int) -> str:
"""Get memory messages."""
memory.max_token_limit = max_token_limit
memory_key = memory.memory_variables[0]
external_context = memory.load_memory_variables({})
return external_context[memory_key]
@classmethod
def query_app_annotations_to_reply(cls, conversation_message_task: ConversationMessageTask,
from_source: str) -> bool:
"""Get memory messages."""
app_model_config = conversation_message_task.app_model_config
app = conversation_message_task.app
annotation_reply = app_model_config.annotation_reply_dict
if annotation_reply['enabled']:
try:
score_threshold = annotation_reply.get('score_threshold', 1)
embedding_provider_name = annotation_reply['embedding_model']['embedding_provider_name']
embedding_model_name = annotation_reply['embedding_model']['embedding_model_name']
# get embedding model
embedding_model = ModelFactory.get_embedding_model(
tenant_id=app.tenant_id,
model_provider_name=embedding_provider_name,
model_name=embedding_model_name
)
embeddings = CacheEmbedding(embedding_model)
dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
embedding_provider_name,
embedding_model_name,
'annotation'
)
dataset = Dataset(
id=app.id,
tenant_id=app.tenant_id,
indexing_technique='high_quality',
embedding_model_provider=embedding_provider_name,
embedding_model=embedding_model_name,
collection_binding_id=dataset_collection_binding.id
)
vector_index = VectorIndex(
dataset=dataset,
config=current_app.config,
embeddings=embeddings,
attributes=['doc_id', 'annotation_id', 'app_id']
)
documents = vector_index.search(
conversation_message_task.query,
search_type='similarity_score_threshold',
search_kwargs={
'k': 1,
'score_threshold': score_threshold,
'filter': {
'group_id': [dataset.id]
}
}
)
if documents:
annotation_id = documents[0].metadata['annotation_id']
score = documents[0].metadata['score']
annotation = AppAnnotationService.get_annotation_by_id(annotation_id)
if annotation:
conversation_message_task.annotation_end(annotation.content, annotation.id, annotation.account.name)
# insert annotation history
AppAnnotationService.add_annotation_history(annotation.id,
app.id,
annotation.question,
annotation.content,
conversation_message_task.query,
conversation_message_task.user.id,
conversation_message_task.message.id,
from_source,
score)
return True
except Exception as e:
logging.warning(f'Query annotation failed, exception: {str(e)}.')
return False
return False
@classmethod
def get_memory_from_conversation(cls, tenant_id: str, app_model_config: AppModelConfig,
conversation: Conversation,
**kwargs) -> ReadOnlyConversationTokenDBBufferSharedMemory:
# only for calc token in memory
memory_model_instance = ModelFactory.get_text_generation_model_from_model_config(
tenant_id=tenant_id,
model_config=app_model_config.model_dict
)
# use llm config from conversation
memory = ReadOnlyConversationTokenDBBufferSharedMemory(
conversation=conversation,
model_instance=memory_model_instance,
max_token_limit=kwargs.get("max_token_limit", 2048),
memory_key=kwargs.get("memory_key", "chat_history"),
return_messages=kwargs.get("return_messages", True),
input_key=kwargs.get("input_key", "input"),
output_key=kwargs.get("output_key", "output"),
message_limit=kwargs.get("message_limit", 10),
)
return memory
@classmethod
def get_validate_rest_tokens(cls, mode: str, model_instance: BaseLLM, app_model_config: AppModelConfig,
query: str, inputs: dict, files: List[PromptMessageFile]) -> int:
model_limited_tokens = model_instance.model_rules.max_tokens.max
max_tokens = model_instance.get_model_kwargs().max_tokens
if model_limited_tokens is None:
return -1
if max_tokens is None:
max_tokens = 0
prompt_transform = PromptTransform()
# get prompt without memory and context
if app_model_config.prompt_type == 'simple':
prompt_messages, _ = prompt_transform.get_prompt(
app_mode=mode,
pre_prompt=app_model_config.pre_prompt,
inputs=inputs,
query=query,
files=files,
context=None,
memory=None,
model_instance=model_instance
)
else:
prompt_messages = prompt_transform.get_advanced_prompt(
app_mode=mode,
app_model_config=app_model_config,
inputs=inputs,
query=query,
files=files,
context=None,
memory=None,
model_instance=model_instance
)
prompt_tokens = model_instance.get_num_tokens(prompt_messages)
rest_tokens = model_limited_tokens - max_tokens - prompt_tokens
if rest_tokens < 0:
raise LLMBadRequestError("Query or prefix prompt is too long, you can reduce the prefix prompt, "
"or shrink the max token, or switch to a llm with a larger token limit size.")
return rest_tokens
@classmethod
def recale_llm_max_tokens(cls, model_instance: BaseLLM, prompt_messages: List[PromptMessage]):
# recalc max_tokens if sum(prompt_token + max_tokens) over model token limit
model_limited_tokens = model_instance.model_rules.max_tokens.max
max_tokens = model_instance.get_model_kwargs().max_tokens
if model_limited_tokens is None:
return
if max_tokens is None:
max_tokens = 0
prompt_tokens = model_instance.get_num_tokens(prompt_messages)
if prompt_tokens + max_tokens > model_limited_tokens:
max_tokens = max(model_limited_tokens - prompt_tokens, 16)
# update model instance max tokens
model_kwargs = model_instance.get_model_kwargs()
model_kwargs.max_tokens = max_tokens
model_instance.set_model_kwargs(model_kwargs)

View File

@ -1,517 +0,0 @@
import json
import time
from typing import Optional, Union, List
from core.callback_handler.entity.agent_loop import AgentLoop
from core.callback_handler.entity.dataset_query import DatasetQueryObj
from core.callback_handler.entity.llm_message import LLMMessage
from core.callback_handler.entity.chain_result import ChainResult
from core.file.file_obj import FileObj
from core.model_providers.model_factory import ModelFactory
from core.model_providers.models.entity.message import to_prompt_messages, MessageType, PromptMessageFile
from core.model_providers.models.llm.base import BaseLLM
from core.prompt.prompt_builder import PromptBuilder
from core.prompt.prompt_template import PromptTemplateParser
from events.message_event import message_was_created
from extensions.ext_database import db
from extensions.ext_redis import redis_client
from models.dataset import DatasetQuery
from models.model import AppModelConfig, Conversation, Account, Message, EndUser, App, MessageAgentThought, \
MessageChain, DatasetRetrieverResource, MessageFile
class ConversationMessageTask:
def __init__(self, task_id: str, app: App, app_model_config: AppModelConfig, user: Account,
inputs: dict, query: str, files: List[FileObj], streaming: bool,
model_instance: BaseLLM, conversation: Optional[Conversation] = None, is_override: bool = False,
auto_generate_name: bool = True):
self.start_at = time.perf_counter()
self.task_id = task_id
self.app = app
self.tenant_id = app.tenant_id
self.app_model_config = app_model_config
self.is_override = is_override
self.user = user
self.inputs = inputs
self.query = query
self.files = files
self.streaming = streaming
self.conversation = conversation
self.is_new_conversation = False
self.model_instance = model_instance
self.message = None
self.retriever_resource = None
self.auto_generate_name = auto_generate_name
self.model_dict = self.app_model_config.model_dict
self.provider_name = self.model_dict.get('provider')
self.model_name = self.model_dict.get('name')
self.mode = app.mode
self.init()
self._pub_handler = PubHandler(
user=self.user,
task_id=self.task_id,
message=self.message,
conversation=self.conversation,
chain_pub=False, # disabled currently
agent_thought_pub=True
)
def init(self):
override_model_configs = None
if self.is_override:
override_model_configs = self.app_model_config.to_dict()
introduction = ''
system_instruction = ''
system_instruction_tokens = 0
if self.mode == 'chat':
introduction = self.app_model_config.opening_statement
if introduction:
prompt_template = PromptTemplateParser(template=introduction)
prompt_inputs = {k: self.inputs[k] for k in prompt_template.variable_keys if k in self.inputs}
try:
introduction = prompt_template.format(prompt_inputs)
except KeyError:
pass
if self.app_model_config.pre_prompt:
system_message = PromptBuilder.to_system_message(self.app_model_config.pre_prompt, self.inputs)
system_instruction = system_message.content
model_instance = ModelFactory.get_text_generation_model(
tenant_id=self.tenant_id,
model_provider_name=self.provider_name,
model_name=self.model_name
)
system_instruction_tokens = model_instance.get_num_tokens(to_prompt_messages([system_message]))
if not self.conversation:
self.is_new_conversation = True
self.conversation = Conversation(
app_id=self.app.id,
app_model_config_id=self.app_model_config.id,
model_provider=self.provider_name,
model_id=self.model_name,
override_model_configs=json.dumps(override_model_configs) if override_model_configs else None,
mode=self.mode,
name='New conversation',
inputs=self.inputs,
introduction=introduction,
system_instruction=system_instruction,
system_instruction_tokens=system_instruction_tokens,
status='normal',
from_source=('console' if isinstance(self.user, Account) else 'api'),
from_end_user_id=(self.user.id if isinstance(self.user, EndUser) else None),
from_account_id=(self.user.id if isinstance(self.user, Account) else None),
)
db.session.add(self.conversation)
db.session.commit()
self.message = Message(
app_id=self.app.id,
model_provider=self.provider_name,
model_id=self.model_name,
override_model_configs=json.dumps(override_model_configs) if override_model_configs else None,
conversation_id=self.conversation.id,
inputs=self.inputs,
query=self.query,
message="",
message_tokens=0,
message_unit_price=0,
message_price_unit=0,
answer="",
answer_tokens=0,
answer_unit_price=0,
answer_price_unit=0,
provider_response_latency=0,
total_price=0,
currency=self.model_instance.get_currency(),
from_source=('console' if isinstance(self.user, Account) else 'api'),
from_end_user_id=(self.user.id if isinstance(self.user, EndUser) else None),
from_account_id=(self.user.id if isinstance(self.user, Account) else None),
agent_based=self.app_model_config.agent_mode_dict.get('enabled'),
)
db.session.add(self.message)
db.session.commit()
for file in self.files:
message_file = MessageFile(
message_id=self.message.id,
type=file.type.value,
transfer_method=file.transfer_method.value,
url=file.url,
upload_file_id=file.upload_file_id,
created_by_role=('account' if isinstance(self.user, Account) else 'end_user'),
created_by=self.user.id
)
db.session.add(message_file)
db.session.commit()
def append_message_text(self, text: str):
if text is not None:
self._pub_handler.pub_text(text)
def save_message(self, llm_message: LLMMessage, by_stopped: bool = False):
message_tokens = llm_message.prompt_tokens
answer_tokens = llm_message.completion_tokens
message_unit_price = self.model_instance.get_tokens_unit_price(MessageType.USER)
message_price_unit = self.model_instance.get_price_unit(MessageType.USER)
answer_unit_price = self.model_instance.get_tokens_unit_price(MessageType.ASSISTANT)
answer_price_unit = self.model_instance.get_price_unit(MessageType.ASSISTANT)
message_total_price = self.model_instance.calc_tokens_price(message_tokens, MessageType.USER)
answer_total_price = self.model_instance.calc_tokens_price(answer_tokens, MessageType.ASSISTANT)
total_price = message_total_price + answer_total_price
self.message.message = llm_message.prompt
self.message.message_tokens = message_tokens
self.message.message_unit_price = message_unit_price
self.message.message_price_unit = message_price_unit
self.message.answer = PromptTemplateParser.remove_template_variables(
llm_message.completion.strip()) if llm_message.completion else ''
self.message.answer_tokens = answer_tokens
self.message.answer_unit_price = answer_unit_price
self.message.answer_price_unit = answer_price_unit
self.message.provider_response_latency = time.perf_counter() - self.start_at
self.message.total_price = total_price
db.session.commit()
message_was_created.send(
self.message,
conversation=self.conversation,
is_first_message=self.is_new_conversation,
auto_generate_name=self.auto_generate_name
)
if not by_stopped:
self.end()
def init_chain(self, chain_result: ChainResult):
message_chain = MessageChain(
message_id=self.message.id,
type=chain_result.type,
input=json.dumps(chain_result.prompt),
output=''
)
db.session.add(message_chain)
db.session.commit()
return message_chain
def on_chain_end(self, message_chain: MessageChain, chain_result: ChainResult):
message_chain.output = json.dumps(chain_result.completion)
db.session.commit()
self._pub_handler.pub_chain(message_chain)
def on_agent_start(self, message_chain: MessageChain, agent_loop: AgentLoop) -> MessageAgentThought:
message_agent_thought = MessageAgentThought(
message_id=self.message.id,
message_chain_id=message_chain.id,
position=agent_loop.position,
thought=agent_loop.thought,
tool=agent_loop.tool_name,
tool_input=agent_loop.tool_input,
message=agent_loop.prompt,
message_price_unit=0,
answer=agent_loop.completion,
answer_price_unit=0,
created_by_role=('account' if isinstance(self.user, Account) else 'end_user'),
created_by=self.user.id
)
db.session.add(message_agent_thought)
db.session.commit()
self._pub_handler.pub_agent_thought(message_agent_thought)
return message_agent_thought
def on_agent_end(self, message_agent_thought: MessageAgentThought, agent_model_instance: BaseLLM,
agent_loop: AgentLoop):
agent_message_unit_price = agent_model_instance.get_tokens_unit_price(MessageType.USER)
agent_message_price_unit = agent_model_instance.get_price_unit(MessageType.USER)
agent_answer_unit_price = agent_model_instance.get_tokens_unit_price(MessageType.ASSISTANT)
agent_answer_price_unit = agent_model_instance.get_price_unit(MessageType.ASSISTANT)
loop_message_tokens = agent_loop.prompt_tokens
loop_answer_tokens = agent_loop.completion_tokens
loop_message_total_price = agent_model_instance.calc_tokens_price(loop_message_tokens, MessageType.USER)
loop_answer_total_price = agent_model_instance.calc_tokens_price(loop_answer_tokens, MessageType.ASSISTANT)
loop_total_price = loop_message_total_price + loop_answer_total_price
message_agent_thought.observation = agent_loop.tool_output
message_agent_thought.tool_process_data = '' # currently not support
message_agent_thought.message_token = loop_message_tokens
message_agent_thought.message_unit_price = agent_message_unit_price
message_agent_thought.message_price_unit = agent_message_price_unit
message_agent_thought.answer_token = loop_answer_tokens
message_agent_thought.answer_unit_price = agent_answer_unit_price
message_agent_thought.answer_price_unit = agent_answer_price_unit
message_agent_thought.latency = agent_loop.latency
message_agent_thought.tokens = agent_loop.prompt_tokens + agent_loop.completion_tokens
message_agent_thought.total_price = loop_total_price
message_agent_thought.currency = agent_model_instance.get_currency()
db.session.commit()
def on_dataset_query_end(self, dataset_query_obj: DatasetQueryObj):
dataset_query = DatasetQuery(
dataset_id=dataset_query_obj.dataset_id,
content=dataset_query_obj.query,
source='app',
source_app_id=self.app.id,
created_by_role=('account' if isinstance(self.user, Account) else 'end_user'),
created_by=self.user.id
)
db.session.add(dataset_query)
db.session.commit()
def on_dataset_query_finish(self, resource: List):
if resource and len(resource) > 0:
for item in resource:
dataset_retriever_resource = DatasetRetrieverResource(
message_id=self.message.id,
position=item.get('position'),
dataset_id=item.get('dataset_id'),
dataset_name=item.get('dataset_name'),
document_id=item.get('document_id'),
document_name=item.get('document_name'),
data_source_type=item.get('data_source_type'),
segment_id=item.get('segment_id'),
score=item.get('score') if 'score' in item else None,
hit_count=item.get('hit_count') if 'hit_count' else None,
word_count=item.get('word_count') if 'word_count' in item else None,
segment_position=item.get('segment_position') if 'segment_position' in item else None,
index_node_hash=item.get('index_node_hash') if 'index_node_hash' in item else None,
content=item.get('content'),
retriever_from=item.get('retriever_from'),
created_by=self.user.id
)
db.session.add(dataset_retriever_resource)
db.session.commit()
self.retriever_resource = resource
def on_message_replace(self, text: str):
if text is not None:
self._pub_handler.pub_message_replace(text)
def message_end(self):
self._pub_handler.pub_message_end(self.retriever_resource)
def end(self):
self._pub_handler.pub_message_end(self.retriever_resource)
self._pub_handler.pub_end()
def annotation_end(self, text: str, annotation_id: str, annotation_author_name: str):
self._pub_handler.pub_annotation(text, annotation_id, annotation_author_name, self.start_at)
self._pub_handler.pub_end()
class PubHandler:
def __init__(self, user: Union[Account, EndUser], task_id: str,
message: Message, conversation: Conversation,
chain_pub: bool = False, agent_thought_pub: bool = False):
self._channel = PubHandler.generate_channel_name(user, task_id)
self._stopped_cache_key = PubHandler.generate_stopped_cache_key(user, task_id)
self._task_id = task_id
self._message = message
self._conversation = conversation
self._chain_pub = chain_pub
self._agent_thought_pub = agent_thought_pub
@classmethod
def generate_channel_name(cls, user: Union[Account, EndUser], task_id: str):
if not user:
raise ValueError("user is required")
user_str = 'account-' + str(user.id) if isinstance(user, Account) else 'end-user-' + str(user.id)
return "generate_result:{}-{}".format(user_str, task_id)
@classmethod
def generate_stopped_cache_key(cls, user: Union[Account, EndUser], task_id: str):
user_str = 'account-' + str(user.id) if isinstance(user, Account) else 'end-user-' + str(user.id)
return "generate_result_stopped:{}-{}".format(user_str, task_id)
def pub_text(self, text: str):
content = {
'event': 'message',
'data': {
'task_id': self._task_id,
'message_id': str(self._message.id),
'text': text,
'mode': self._conversation.mode,
'conversation_id': str(self._conversation.id)
}
}
redis_client.publish(self._channel, json.dumps(content))
if self._is_stopped():
self.pub_end()
raise ConversationTaskStoppedException()
def pub_message_replace(self, text: str):
content = {
'event': 'message_replace',
'data': {
'task_id': self._task_id,
'message_id': str(self._message.id),
'text': text,
'mode': self._conversation.mode,
'conversation_id': str(self._conversation.id)
}
}
redis_client.publish(self._channel, json.dumps(content))
if self._is_stopped():
self.pub_end()
raise ConversationTaskStoppedException()
def pub_chain(self, message_chain: MessageChain):
if self._chain_pub:
content = {
'event': 'chain',
'data': {
'task_id': self._task_id,
'message_id': self._message.id,
'chain_id': message_chain.id,
'type': message_chain.type,
'input': json.loads(message_chain.input),
'output': json.loads(message_chain.output),
'mode': self._conversation.mode,
'conversation_id': self._conversation.id
}
}
redis_client.publish(self._channel, json.dumps(content))
if self._is_stopped():
self.pub_end()
raise ConversationTaskStoppedException()
def pub_agent_thought(self, message_agent_thought: MessageAgentThought):
if self._agent_thought_pub:
content = {
'event': 'agent_thought',
'data': {
'id': message_agent_thought.id,
'task_id': self._task_id,
'message_id': self._message.id,
'chain_id': message_agent_thought.message_chain_id,
'position': message_agent_thought.position,
'thought': message_agent_thought.thought,
'tool': message_agent_thought.tool,
'tool_input': message_agent_thought.tool_input,
'mode': self._conversation.mode,
'conversation_id': self._conversation.id
}
}
redis_client.publish(self._channel, json.dumps(content))
if self._is_stopped():
self.pub_end()
raise ConversationTaskStoppedException()
def pub_message_end(self, retriever_resource: List):
content = {
'event': 'message_end',
'data': {
'task_id': self._task_id,
'message_id': self._message.id,
'mode': self._conversation.mode,
'conversation_id': self._conversation.id,
}
}
if retriever_resource:
content['data']['retriever_resources'] = retriever_resource
redis_client.publish(self._channel, json.dumps(content))
if self._is_stopped():
self.pub_end()
raise ConversationTaskStoppedException()
def pub_annotation(self, text: str, annotation_id: str, annotation_author_name: str, start_at: float):
content = {
'event': 'annotation',
'data': {
'task_id': self._task_id,
'message_id': self._message.id,
'mode': self._conversation.mode,
'conversation_id': self._conversation.id,
'text': text,
'annotation_id': annotation_id,
'annotation_author_name': annotation_author_name
}
}
self._message.answer = text
self._message.provider_response_latency = time.perf_counter() - start_at
db.session.commit()
redis_client.publish(self._channel, json.dumps(content))
if self._is_stopped():
self.pub_end()
raise ConversationTaskStoppedException()
def pub_end(self):
content = {
'event': 'end',
}
redis_client.publish(self._channel, json.dumps(content))
@classmethod
def pub_error(cls, user: Union[Account, EndUser], task_id: str, e):
content = {
'error': type(e).__name__,
'description': e.description if getattr(e, 'description', None) is not None else str(e)
}
channel = cls.generate_channel_name(user, task_id)
redis_client.publish(channel, json.dumps(content))
def _is_stopped(self):
return redis_client.get(self._stopped_cache_key) is not None
@classmethod
def ping(cls, user: Union[Account, EndUser], task_id: str):
content = {
'event': 'ping'
}
channel = cls.generate_channel_name(user, task_id)
redis_client.publish(channel, json.dumps(content))
@classmethod
def stop(cls, user: Union[Account, EndUser], task_id: str):
stopped_cache_key = cls.generate_stopped_cache_key(user, task_id)
redis_client.setex(stopped_cache_key, 600, 1)
class ConversationTaskStoppedException(Exception):
pass
class ConversationTaskInterruptException(Exception):
pass

View File

@ -1,9 +1,11 @@
from typing import Any, Dict, Optional, Sequence
from typing import Any, Dict, Optional, Sequence, cast
from langchain.schema import Document
from sqlalchemy import func
from core.model_providers.model_factory import ModelFactory
from core.model_manager import ModelManager
from core.model_runtime.entities.model_entities import ModelType
from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
from extensions.ext_database import db
from models.dataset import Dataset, DocumentSegment
@ -69,10 +71,12 @@ class DatasetDocumentStore:
max_position = 0
embedding_model = None
if self._dataset.indexing_technique == 'high_quality':
embedding_model = ModelFactory.get_embedding_model(
model_manager = ModelManager()
embedding_model = model_manager.get_model_instance(
tenant_id=self._dataset.tenant_id,
model_provider_name=self._dataset.embedding_model_provider,
model_name=self._dataset.embedding_model
provider=self._dataset.embedding_model_provider,
model_type=ModelType.TEXT_EMBEDDING,
model=self._dataset.embedding_model
)
for doc in docs:
@ -89,7 +93,16 @@ class DatasetDocumentStore:
)
# calc embedding use tokens
tokens = embedding_model.get_num_tokens(doc.page_content) if embedding_model else 0
if embedding_model:
model_type_instance = embedding_model.model_type_instance
model_type_instance = cast(TextEmbeddingModel, model_type_instance)
tokens = model_type_instance.get_num_tokens(
model=embedding_model.model,
credentials=embedding_model.credentials,
texts=[doc.page_content]
)
else:
tokens = 0
if not segment_document:
max_position += 1

View File

@ -1,19 +1,22 @@
import logging
from typing import List
from typing import List, Optional
import numpy as np
from langchain.embeddings.base import Embeddings
from sqlalchemy.exc import IntegrityError
from core.model_providers.models.embedding.base import BaseEmbedding
from core.model_manager import ModelInstance
from extensions.ext_database import db
from libs import helper
from models.dataset import Embedding
logger = logging.getLogger(__name__)
class CacheEmbedding(Embeddings):
def __init__(self, embeddings: BaseEmbedding):
self._embeddings = embeddings
def __init__(self, model_instance: ModelInstance, user: Optional[str] = None) -> None:
self._model_instance = model_instance
self._user = user
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Embed search docs."""
@ -22,7 +25,7 @@ class CacheEmbedding(Embeddings):
embedding_queue_indices = []
for i, text in enumerate(texts):
hash = helper.generate_text_hash(text)
embedding = db.session.query(Embedding).filter_by(model_name=self._embeddings.name, hash=hash).first()
embedding = db.session.query(Embedding).filter_by(model_name=self._model_instance.model, hash=hash).first()
if embedding:
text_embeddings[i] = embedding.get_embedding()
else:
@ -30,15 +33,21 @@ class CacheEmbedding(Embeddings):
if embedding_queue_indices:
try:
embedding_results = self._embeddings.client.embed_documents([texts[i] for i in embedding_queue_indices])
embedding_result = self._model_instance.invoke_text_embedding(
texts=[texts[i] for i in embedding_queue_indices],
user=self._user
)
embedding_results = embedding_result.embeddings
except Exception as ex:
raise self._embeddings.handle_exceptions(ex)
logger.error('Failed to embed documents: ', ex)
raise ex
for i, indice in enumerate(embedding_queue_indices):
hash = helper.generate_text_hash(texts[indice])
try:
embedding = Embedding(model_name=self._embeddings.name, hash=hash)
embedding = Embedding(model_name=self._model_instance.model, hash=hash)
vector = embedding_results[i]
normalized_embedding = (vector / np.linalg.norm(vector)).tolist()
text_embeddings[indice] = normalized_embedding
@ -58,18 +67,23 @@ class CacheEmbedding(Embeddings):
"""Embed query text."""
# use doc embedding cache or store if not exists
hash = helper.generate_text_hash(text)
embedding = db.session.query(Embedding).filter_by(model_name=self._embeddings.name, hash=hash).first()
embedding = db.session.query(Embedding).filter_by(model_name=self._model_instance.model, hash=hash).first()
if embedding:
return embedding.get_embedding()
try:
embedding_results = self._embeddings.client.embed_query(text)
embedding_result = self._model_instance.invoke_text_embedding(
texts=[text],
user=self._user
)
embedding_results = embedding_result.embeddings[0]
embedding_results = (embedding_results / np.linalg.norm(embedding_results)).tolist()
except Exception as ex:
raise self._embeddings.handle_exceptions(ex)
raise ex
try:
embedding = Embedding(model_name=self._embeddings.name, hash=hash)
embedding = Embedding(model_name=self._model_instance.model, hash=hash)
embedding.set_embedding(embedding_results)
db.session.add(embedding)
db.session.commit()
@ -79,4 +93,3 @@ class CacheEmbedding(Embeddings):
logging.exception('Failed to add embedding to db')
return embedding_results

View File

@ -0,0 +1,265 @@
from enum import Enum
from typing import Optional, Any, cast
from pydantic import BaseModel
from core.entities.provider_configuration import ProviderModelBundle
from core.file.file_obj import FileObj
from core.model_runtime.entities.message_entities import PromptMessageRole
from core.model_runtime.entities.model_entities import AIModelEntity
class ModelConfigEntity(BaseModel):
"""
Model Config Entity.
"""
provider: str
model: str
model_schema: AIModelEntity
mode: str
provider_model_bundle: ProviderModelBundle
credentials: dict[str, Any] = {}
parameters: dict[str, Any] = {}
stop: list[str] = []
class AdvancedChatMessageEntity(BaseModel):
"""
Advanced Chat Message Entity.
"""
text: str
role: PromptMessageRole
class AdvancedChatPromptTemplateEntity(BaseModel):
"""
Advanced Chat Prompt Template Entity.
"""
messages: list[AdvancedChatMessageEntity]
class AdvancedCompletionPromptTemplateEntity(BaseModel):
"""
Advanced Completion Prompt Template Entity.
"""
class RolePrefixEntity(BaseModel):
"""
Role Prefix Entity.
"""
user: str
assistant: str
prompt: str
role_prefix: Optional[RolePrefixEntity] = None
class PromptTemplateEntity(BaseModel):
"""
Prompt Template Entity.
"""
class PromptType(Enum):
"""
Prompt Type.
'simple', 'advanced'
"""
SIMPLE = 'simple'
ADVANCED = 'advanced'
@classmethod
def value_of(cls, value: str) -> 'PromptType':
"""
Get value of given mode.
:param value: mode value
:return: mode
"""
for mode in cls:
if mode.value == value:
return mode
raise ValueError(f'invalid prompt type value {value}')
prompt_type: PromptType
simple_prompt_template: Optional[str] = None
advanced_chat_prompt_template: Optional[AdvancedChatPromptTemplateEntity] = None
advanced_completion_prompt_template: Optional[AdvancedCompletionPromptTemplateEntity] = None
class ExternalDataVariableEntity(BaseModel):
"""
External Data Variable Entity.
"""
variable: str
type: str
config: dict[str, Any] = {}
class DatasetRetrieveConfigEntity(BaseModel):
"""
Dataset Retrieve Config Entity.
"""
class RetrieveStrategy(Enum):
"""
Dataset Retrieve Strategy.
'single' or 'multiple'
"""
SINGLE = 'single'
MULTIPLE = 'multiple'
@classmethod
def value_of(cls, value: str) -> 'RetrieveStrategy':
"""
Get value of given mode.
:param value: mode value
:return: mode
"""
for mode in cls:
if mode.value == value:
return mode
raise ValueError(f'invalid retrieve strategy value {value}')
query_variable: Optional[str] = None # Only when app mode is completion
retrieve_strategy: RetrieveStrategy
single_strategy: Optional[str] = None # for temp
top_k: Optional[int] = None
score_threshold: Optional[float] = None
reranking_model: Optional[dict] = None
class DatasetEntity(BaseModel):
"""
Dataset Config Entity.
"""
dataset_ids: list[str]
retrieve_config: DatasetRetrieveConfigEntity
class SensitiveWordAvoidanceEntity(BaseModel):
"""
Sensitive Word Avoidance Entity.
"""
type: str
config: dict[str, Any] = {}
class FileUploadEntity(BaseModel):
"""
File Upload Entity.
"""
image_config: Optional[dict[str, Any]] = None
class AgentToolEntity(BaseModel):
"""
Agent Tool Entity.
"""
tool_id: str
config: dict[str, Any] = {}
class AgentEntity(BaseModel):
"""
Agent Entity.
"""
class Strategy(Enum):
"""
Agent Strategy.
"""
CHAIN_OF_THOUGHT = 'chain-of-thought'
FUNCTION_CALLING = 'function-calling'
provider: str
model: str
strategy: Strategy
tools: list[AgentToolEntity] = []
class AppOrchestrationConfigEntity(BaseModel):
"""
App Orchestration Config Entity.
"""
model_config: ModelConfigEntity
prompt_template: PromptTemplateEntity
external_data_variables: list[ExternalDataVariableEntity] = []
agent: Optional[AgentEntity] = None
# features
dataset: Optional[DatasetEntity] = None
file_upload: Optional[FileUploadEntity] = None
opening_statement: Optional[str] = None
suggested_questions_after_answer: bool = False
show_retrieve_source: bool = False
more_like_this: bool = False
speech_to_text: bool = False
sensitive_word_avoidance: Optional[SensitiveWordAvoidanceEntity] = None
class InvokeFrom(Enum):
"""
Invoke From.
"""
SERVICE_API = 'service-api'
WEB_APP = 'web-app'
EXPLORE = 'explore'
DEBUGGER = 'debugger'
@classmethod
def value_of(cls, value: str) -> 'InvokeFrom':
"""
Get value of given mode.
:param value: mode value
:return: mode
"""
for mode in cls:
if mode.value == value:
return mode
raise ValueError(f'invalid invoke from value {value}')
def to_source(self) -> str:
"""
Get source of invoke from.
:return: source
"""
if self == InvokeFrom.WEB_APP:
return 'web_app'
elif self == InvokeFrom.DEBUGGER:
return 'dev'
elif self == InvokeFrom.EXPLORE:
return 'explore_app'
elif self == InvokeFrom.SERVICE_API:
return 'api'
return 'dev'
class ApplicationGenerateEntity(BaseModel):
"""
Application Generate Entity.
"""
task_id: str
tenant_id: str
app_id: str
app_model_config_id: str
# for save
app_model_config_dict: dict
app_model_config_override: bool
# Converted from app_model_config to Entity object, or directly covered by external input
app_orchestration_config_entity: AppOrchestrationConfigEntity
conversation_id: Optional[str] = None
inputs: dict[str, str]
query: Optional[str] = None
files: list[FileObj] = []
user_id: str
# extras
stream: bool
invoke_from: InvokeFrom
# extra parameters, like: auto_generate_conversation_name
extras: dict[str, Any] = {}

View File

@ -0,0 +1,128 @@
import enum
from typing import Any, cast
from langchain.schema import HumanMessage, AIMessage, SystemMessage, BaseMessage, FunctionMessage
from pydantic import BaseModel
from core.model_runtime.entities.message_entities import PromptMessage, UserPromptMessage, TextPromptMessageContent, \
ImagePromptMessageContent, AssistantPromptMessage, SystemPromptMessage, ToolPromptMessage
class PromptMessageFileType(enum.Enum):
IMAGE = 'image'
@staticmethod
def value_of(value):
for member in PromptMessageFileType:
if member.value == value:
return member
raise ValueError(f"No matching enum found for value '{value}'")
class PromptMessageFile(BaseModel):
type: PromptMessageFileType
data: Any
class ImagePromptMessageFile(PromptMessageFile):
class DETAIL(enum.Enum):
LOW = 'low'
HIGH = 'high'
type: PromptMessageFileType = PromptMessageFileType.IMAGE
detail: DETAIL = DETAIL.LOW
class LCHumanMessageWithFiles(HumanMessage):
# content: Union[str, List[Union[str, Dict]]]
content: str
files: list[PromptMessageFile]
def lc_messages_to_prompt_messages(messages: list[BaseMessage]) -> list[PromptMessage]:
prompt_messages = []
for message in messages:
if isinstance(message, HumanMessage):
if isinstance(message, LCHumanMessageWithFiles):
file_prompt_message_contents = []
for file in message.files:
if file.type == PromptMessageFileType.IMAGE:
file = cast(ImagePromptMessageFile, file)
file_prompt_message_contents.append(ImagePromptMessageContent(
data=file.data,
detail=ImagePromptMessageContent.DETAIL.HIGH
if file.detail.value == "high" else ImagePromptMessageContent.DETAIL.LOW
))
prompt_message_contents = [TextPromptMessageContent(data=message.content)]
prompt_message_contents.extend(file_prompt_message_contents)
prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
else:
prompt_messages.append(UserPromptMessage(content=message.content))
elif isinstance(message, AIMessage):
message_kwargs = {
'content': message.content
}
if 'function_call' in message.additional_kwargs:
message_kwargs['tool_calls'] = [
AssistantPromptMessage.ToolCall(
id=message.additional_kwargs['function_call']['id'],
type='function',
function=AssistantPromptMessage.ToolCall.ToolCallFunction(
name=message.additional_kwargs['function_call']['name'],
arguments=message.additional_kwargs['function_call']['arguments']
)
)
]
prompt_messages.append(AssistantPromptMessage(**message_kwargs))
elif isinstance(message, SystemMessage):
prompt_messages.append(SystemPromptMessage(content=message.content))
elif isinstance(message, FunctionMessage):
prompt_messages.append(ToolPromptMessage(content=message.content, tool_call_id=message.name))
return prompt_messages
def prompt_messages_to_lc_messages(prompt_messages: list[PromptMessage]) -> list[BaseMessage]:
messages = []
for prompt_message in prompt_messages:
if isinstance(prompt_message, UserPromptMessage):
if isinstance(prompt_message.content, str):
messages.append(HumanMessage(content=prompt_message.content))
else:
message_contents = []
for content in prompt_message.content:
if isinstance(content, TextPromptMessageContent):
message_contents.append(content.data)
elif isinstance(content, ImagePromptMessageContent):
message_contents.append({
'type': 'image',
'data': content.data,
'detail': content.detail.value
})
messages.append(HumanMessage(content=message_contents))
elif isinstance(prompt_message, AssistantPromptMessage):
message_kwargs = {
'content': prompt_message.content
}
if prompt_message.tool_calls:
message_kwargs['additional_kwargs'] = {
'function_call': {
'id': prompt_message.tool_calls[0].id,
'name': prompt_message.tool_calls[0].function.name,
'arguments': prompt_message.tool_calls[0].function.arguments
}
}
messages.append(AIMessage(**message_kwargs))
elif isinstance(prompt_message, SystemPromptMessage):
messages.append(SystemMessage(content=prompt_message.content))
elif isinstance(prompt_message, ToolPromptMessage):
messages.append(FunctionMessage(name=prompt_message.tool_call_id, content=prompt_message.content))
return messages

View File

@ -0,0 +1,71 @@
from enum import Enum
from typing import Optional
from pydantic import BaseModel
from core.model_runtime.entities.common_entities import I18nObject
from core.model_runtime.entities.model_entities import ProviderModel, ModelType
from core.model_runtime.entities.provider_entities import SimpleProviderEntity, ProviderEntity
class ModelStatus(Enum):
"""
Enum class for model status.
"""
ACTIVE = "active"
NO_CONFIGURE = "no-configure"
QUOTA_EXCEEDED = "quota-exceeded"
NO_PERMISSION = "no-permission"
class SimpleModelProviderEntity(BaseModel):
"""
Simple provider.
"""
provider: str
label: I18nObject
icon_small: Optional[I18nObject] = None
icon_large: Optional[I18nObject] = None
supported_model_types: list[ModelType]
def __init__(self, provider_entity: ProviderEntity) -> None:
"""
Init simple provider.
:param provider_entity: provider entity
"""
super().__init__(
provider=provider_entity.provider,
label=provider_entity.label,
icon_small=provider_entity.icon_small,
icon_large=provider_entity.icon_large,
supported_model_types=provider_entity.supported_model_types
)
class ModelWithProviderEntity(ProviderModel):
"""
Model with provider entity.
"""
provider: SimpleModelProviderEntity
status: ModelStatus
class DefaultModelProviderEntity(BaseModel):
"""
Default model provider entity.
"""
provider: str
label: I18nObject
icon_small: Optional[I18nObject] = None
icon_large: Optional[I18nObject] = None
supported_model_types: list[ModelType]
class DefaultModelEntity(BaseModel):
"""
Default model entity.
"""
model: str
model_type: ModelType
provider: DefaultModelProviderEntity

View File

@ -0,0 +1,657 @@
import datetime
import json
import time
from json import JSONDecodeError
from typing import Optional, List, Dict, Tuple, Iterator
from pydantic import BaseModel
from core.entities.model_entities import ModelWithProviderEntity, ModelStatus, SimpleModelProviderEntity
from core.entities.provider_entities import SystemConfiguration, CustomConfiguration, SystemConfigurationStatus
from core.helper import encrypter
from core.model_runtime.entities.model_entities import ModelType
from core.model_runtime.entities.provider_entities import ProviderEntity, CredentialFormSchema, FormType
from core.model_runtime.model_providers import model_provider_factory
from core.model_runtime.model_providers.__base.ai_model import AIModel
from core.model_runtime.model_providers.__base.model_provider import ModelProvider
from core.model_runtime.utils import encoders
from extensions.ext_database import db
from models.provider import ProviderType, Provider, ProviderModel, TenantPreferredModelProvider
class ProviderConfiguration(BaseModel):
"""
Model class for provider configuration.
"""
tenant_id: str
provider: ProviderEntity
preferred_provider_type: ProviderType
using_provider_type: ProviderType
system_configuration: SystemConfiguration
custom_configuration: CustomConfiguration
def get_current_credentials(self, model_type: ModelType, model: str) -> Optional[dict]:
"""
Get current credentials.
:param model_type: model type
:param model: model name
:return:
"""
if self.using_provider_type == ProviderType.SYSTEM:
return self.system_configuration.credentials
else:
if self.custom_configuration.models:
for model_configuration in self.custom_configuration.models:
if model_configuration.model_type == model_type and model_configuration.model == model:
return model_configuration.credentials
if self.custom_configuration.provider:
return self.custom_configuration.provider.credentials
else:
return None
def get_system_configuration_status(self) -> SystemConfigurationStatus:
"""
Get system configuration status.
:return:
"""
if self.system_configuration.enabled is False:
return SystemConfigurationStatus.UNSUPPORTED
current_quota_type = self.system_configuration.current_quota_type
current_quota_configuration = next(
(q for q in self.system_configuration.quota_configurations if q.quota_type == current_quota_type),
None
)
return SystemConfigurationStatus.ACTIVE if current_quota_configuration.is_valid else \
SystemConfigurationStatus.QUOTA_EXCEEDED
def is_custom_configuration_available(self) -> bool:
"""
Check custom configuration available.
:return:
"""
return (self.custom_configuration.provider is not None
or len(self.custom_configuration.models) > 0)
def get_custom_credentials(self, obfuscated: bool = False) -> Optional[dict]:
"""
Get custom credentials.
:param obfuscated: obfuscated secret data in credentials
:return:
"""
if self.custom_configuration.provider is None:
return None
credentials = self.custom_configuration.provider.credentials
if not obfuscated:
return credentials
# Obfuscate credentials
return self._obfuscated_credentials(
credentials=credentials,
credential_form_schemas=self.provider.provider_credential_schema.credential_form_schemas
if self.provider.provider_credential_schema else []
)
def custom_credentials_validate(self, credentials: dict) -> Tuple[Provider, dict]:
"""
Validate custom credentials.
:param credentials: provider credentials
:return:
"""
# get provider
provider_record = db.session.query(Provider) \
.filter(
Provider.tenant_id == self.tenant_id,
Provider.provider_name == self.provider.provider,
Provider.provider_type == ProviderType.CUSTOM.value
).first()
# Get provider credential secret variables
provider_credential_secret_variables = self._extract_secret_variables(
self.provider.provider_credential_schema.credential_form_schemas
if self.provider.provider_credential_schema else []
)
if provider_record:
try:
original_credentials = json.loads(provider_record.encrypted_config) if provider_record.encrypted_config else {}
except JSONDecodeError:
original_credentials = {}
# encrypt credentials
for key, value in credentials.items():
if key in provider_credential_secret_variables:
# if send [__HIDDEN__] in secret input, it will be same as original value
if value == '[__HIDDEN__]' and key in original_credentials:
credentials[key] = encrypter.decrypt_token(self.tenant_id, original_credentials[key])
model_provider_factory.provider_credentials_validate(
self.provider.provider,
credentials
)
for key, value in credentials.items():
if key in provider_credential_secret_variables:
credentials[key] = encrypter.encrypt_token(self.tenant_id, value)
return provider_record, credentials
def add_or_update_custom_credentials(self, credentials: dict) -> None:
"""
Add or update custom provider credentials.
:param credentials:
:return:
"""
# validate custom provider config
provider_record, credentials = self.custom_credentials_validate(credentials)
# save provider
# Note: Do not switch the preferred provider, which allows users to use quotas first
if provider_record:
provider_record.encrypted_config = json.dumps(credentials)
provider_record.is_valid = True
provider_record.updated_at = datetime.datetime.utcnow()
db.session.commit()
else:
provider_record = Provider(
tenant_id=self.tenant_id,
provider_name=self.provider.provider,
provider_type=ProviderType.CUSTOM.value,
encrypted_config=json.dumps(credentials),
is_valid=True
)
db.session.add(provider_record)
db.session.commit()
self.switch_preferred_provider_type(ProviderType.CUSTOM)
def delete_custom_credentials(self) -> None:
"""
Delete custom provider credentials.
:return:
"""
# get provider
provider_record = db.session.query(Provider) \
.filter(
Provider.tenant_id == self.tenant_id,
Provider.provider_name == self.provider.provider,
Provider.provider_type == ProviderType.CUSTOM.value
).first()
# delete provider
if provider_record:
self.switch_preferred_provider_type(ProviderType.SYSTEM)
db.session.delete(provider_record)
db.session.commit()
def get_custom_model_credentials(self, model_type: ModelType, model: str, obfuscated: bool = False) \
-> Optional[dict]:
"""
Get custom model credentials.
:param model_type: model type
:param model: model name
:param obfuscated: obfuscated secret data in credentials
:return:
"""
if not self.custom_configuration.models:
return None
for model_configuration in self.custom_configuration.models:
if model_configuration.model_type == model_type and model_configuration.model == model:
credentials = model_configuration.credentials
if not obfuscated:
return credentials
# Obfuscate credentials
return self._obfuscated_credentials(
credentials=credentials,
credential_form_schemas=self.provider.model_credential_schema.credential_form_schemas
if self.provider.model_credential_schema else []
)
return None
def custom_model_credentials_validate(self, model_type: ModelType, model: str, credentials: dict) \
-> Tuple[ProviderModel, dict]:
"""
Validate custom model credentials.
:param model_type: model type
:param model: model name
:param credentials: model credentials
:return:
"""
# get provider model
provider_model_record = db.session.query(ProviderModel) \
.filter(
ProviderModel.tenant_id == self.tenant_id,
ProviderModel.provider_name == self.provider.provider,
ProviderModel.model_name == model,
ProviderModel.model_type == model_type.to_origin_model_type()
).first()
# Get provider credential secret variables
provider_credential_secret_variables = self._extract_secret_variables(
self.provider.model_credential_schema.credential_form_schemas
if self.provider.model_credential_schema else []
)
if provider_model_record:
try:
original_credentials = json.loads(provider_model_record.encrypted_config) if provider_model_record.encrypted_config else {}
except JSONDecodeError:
original_credentials = {}
# decrypt credentials
for key, value in credentials.items():
if key in provider_credential_secret_variables:
# if send [__HIDDEN__] in secret input, it will be same as original value
if value == '[__HIDDEN__]' and key in original_credentials:
credentials[key] = encrypter.decrypt_token(self.tenant_id, original_credentials[key])
model_provider_factory.model_credentials_validate(
provider=self.provider.provider,
model_type=model_type,
model=model,
credentials=credentials
)
model_schema = (
model_provider_factory.get_provider_instance(self.provider.provider)
.get_model_instance(model_type)._get_customizable_model_schema(
model=model,
credentials=credentials
)
)
if model_schema:
credentials['schema'] = json.dumps(encoders.jsonable_encoder(model_schema))
for key, value in credentials.items():
if key in provider_credential_secret_variables:
credentials[key] = encrypter.encrypt_token(self.tenant_id, value)
return provider_model_record, credentials
def add_or_update_custom_model_credentials(self, model_type: ModelType, model: str, credentials: dict) -> None:
"""
Add or update custom model credentials.
:param model_type: model type
:param model: model name
:param credentials: model credentials
:return:
"""
# validate custom model config
provider_model_record, credentials = self.custom_model_credentials_validate(model_type, model, credentials)
# save provider model
# Note: Do not switch the preferred provider, which allows users to use quotas first
if provider_model_record:
provider_model_record.encrypted_config = json.dumps(credentials)
provider_model_record.is_valid = True
provider_model_record.updated_at = datetime.datetime.utcnow()
db.session.commit()
else:
provider_model_record = ProviderModel(
tenant_id=self.tenant_id,
provider_name=self.provider.provider,
model_name=model,
model_type=model_type.to_origin_model_type(),
encrypted_config=json.dumps(credentials),
is_valid=True
)
db.session.add(provider_model_record)
db.session.commit()
def delete_custom_model_credentials(self, model_type: ModelType, model: str) -> None:
"""
Delete custom model credentials.
:param model_type: model type
:param model: model name
:return:
"""
# get provider model
provider_model_record = db.session.query(ProviderModel) \
.filter(
ProviderModel.tenant_id == self.tenant_id,
ProviderModel.provider_name == self.provider.provider,
ProviderModel.model_name == model,
ProviderModel.model_type == model_type.to_origin_model_type()
).first()
# delete provider model
if provider_model_record:
db.session.delete(provider_model_record)
db.session.commit()
def get_provider_instance(self) -> ModelProvider:
"""
Get provider instance.
:return:
"""
return model_provider_factory.get_provider_instance(self.provider.provider)
def get_model_type_instance(self, model_type: ModelType) -> AIModel:
"""
Get current model type instance.
:param model_type: model type
:return:
"""
# Get provider instance
provider_instance = self.get_provider_instance()
# Get model instance of LLM
return provider_instance.get_model_instance(model_type)
def switch_preferred_provider_type(self, provider_type: ProviderType) -> None:
"""
Switch preferred provider type.
:param provider_type:
:return:
"""
if provider_type == self.preferred_provider_type:
return
if provider_type == ProviderType.SYSTEM and not self.system_configuration.enabled:
return
# get preferred provider
preferred_model_provider = db.session.query(TenantPreferredModelProvider) \
.filter(
TenantPreferredModelProvider.tenant_id == self.tenant_id,
TenantPreferredModelProvider.provider_name == self.provider.provider
).first()
if preferred_model_provider:
preferred_model_provider.preferred_provider_type = provider_type.value
else:
preferred_model_provider = TenantPreferredModelProvider(
tenant_id=self.tenant_id,
provider_name=self.provider.provider,
preferred_provider_type=provider_type.value
)
db.session.add(preferred_model_provider)
db.session.commit()
def _extract_secret_variables(self, credential_form_schemas: list[CredentialFormSchema]) -> list[str]:
"""
Extract secret input form variables.
:param credential_form_schemas:
:return:
"""
secret_input_form_variables = []
for credential_form_schema in credential_form_schemas:
if credential_form_schema.type == FormType.SECRET_INPUT:
secret_input_form_variables.append(credential_form_schema.variable)
return secret_input_form_variables
def _obfuscated_credentials(self, credentials: dict, credential_form_schemas: list[CredentialFormSchema]) -> dict:
"""
Obfuscated credentials.
:param credentials: credentials
:param credential_form_schemas: credential form schemas
:return:
"""
# Get provider credential secret variables
credential_secret_variables = self._extract_secret_variables(
credential_form_schemas
)
# Obfuscate provider credentials
copy_credentials = credentials.copy()
for key, value in copy_credentials.items():
if key in credential_secret_variables:
copy_credentials[key] = encrypter.obfuscated_token(value)
return copy_credentials
def get_provider_model(self, model_type: ModelType,
model: str,
only_active: bool = False) -> Optional[ModelWithProviderEntity]:
"""
Get provider model.
:param model_type: model type
:param model: model name
:param only_active: return active model only
:return:
"""
provider_models = self.get_provider_models(model_type, only_active)
for provider_model in provider_models:
if provider_model.model == model:
return provider_model
return None
def get_provider_models(self, model_type: Optional[ModelType] = None,
only_active: bool = False) -> list[ModelWithProviderEntity]:
"""
Get provider models.
:param model_type: model type
:param only_active: only active models
:return:
"""
provider_instance = self.get_provider_instance()
model_types = []
if model_type:
model_types.append(model_type)
else:
model_types = provider_instance.get_provider_schema().supported_model_types
if self.using_provider_type == ProviderType.SYSTEM:
provider_models = self._get_system_provider_models(
model_types=model_types,
provider_instance=provider_instance
)
else:
provider_models = self._get_custom_provider_models(
model_types=model_types,
provider_instance=provider_instance
)
if only_active:
provider_models = [m for m in provider_models if m.status == ModelStatus.ACTIVE]
# resort provider_models
return sorted(provider_models, key=lambda x: x.model_type.value)
def _get_system_provider_models(self,
model_types: list[ModelType],
provider_instance: ModelProvider) -> list[ModelWithProviderEntity]:
"""
Get system provider models.
:param model_types: model types
:param provider_instance: provider instance
:return:
"""
provider_models = []
for model_type in model_types:
provider_models.extend(
[
ModelWithProviderEntity(
**m.dict(),
provider=SimpleModelProviderEntity(self.provider),
status=ModelStatus.ACTIVE
)
for m in provider_instance.models(model_type)
]
)
for quota_configuration in self.system_configuration.quota_configurations:
if self.system_configuration.current_quota_type != quota_configuration.quota_type:
continue
restrict_llms = quota_configuration.restrict_llms
if not restrict_llms:
break
# if llm name not in restricted llm list, remove it
for m in provider_models:
if m.model_type == ModelType.LLM and m.model not in restrict_llms:
m.status = ModelStatus.NO_PERMISSION
elif not quota_configuration.is_valid:
m.status = ModelStatus.QUOTA_EXCEEDED
return provider_models
def _get_custom_provider_models(self,
model_types: list[ModelType],
provider_instance: ModelProvider) -> list[ModelWithProviderEntity]:
"""
Get custom provider models.
:param model_types: model types
:param provider_instance: provider instance
:return:
"""
provider_models = []
credentials = None
if self.custom_configuration.provider:
credentials = self.custom_configuration.provider.credentials
for model_type in model_types:
if model_type not in self.provider.supported_model_types:
continue
models = provider_instance.models(model_type)
for m in models:
provider_models.append(
ModelWithProviderEntity(
**m.dict(),
provider=SimpleModelProviderEntity(self.provider),
status=ModelStatus.ACTIVE if credentials else ModelStatus.NO_CONFIGURE
)
)
# custom models
for model_configuration in self.custom_configuration.models:
if model_configuration.model_type not in model_types:
continue
custom_model_schema = (
provider_instance.get_model_instance(model_configuration.model_type)
.get_customizable_model_schema_from_credentials(
model_configuration.model,
model_configuration.credentials
)
)
if not custom_model_schema:
continue
provider_models.append(
ModelWithProviderEntity(
**custom_model_schema.dict(),
provider=SimpleModelProviderEntity(self.provider),
status=ModelStatus.ACTIVE
)
)
return provider_models
class ProviderConfigurations(BaseModel):
"""
Model class for provider configuration dict.
"""
tenant_id: str
configurations: Dict[str, ProviderConfiguration] = {}
def __init__(self, tenant_id: str):
super().__init__(tenant_id=tenant_id)
def get_models(self,
provider: Optional[str] = None,
model_type: Optional[ModelType] = None,
only_active: bool = False) \
-> list[ModelWithProviderEntity]:
"""
Get available models.
If preferred provider type is `system`:
Get the current **system mode** if provider supported,
if all system modes are not available (no quota), it is considered to be the **custom credential mode**.
If there is no model configured in custom mode, it is treated as no_configure.
system > custom > no_configure
If preferred provider type is `custom`:
If custom credentials are configured, it is treated as custom mode.
Otherwise, get the current **system mode** if supported,
If all system modes are not available (no quota), it is treated as no_configure.
custom > system > no_configure
If real mode is `system`, use system credentials to get models,
paid quotas > provider free quotas > system free quotas
include pre-defined models (exclude GPT-4, status marked as `no_permission`).
If real mode is `custom`, use workspace custom credentials to get models,
include pre-defined models, custom models(manual append).
If real mode is `no_configure`, only return pre-defined models from `model runtime`.
(model status marked as `no_configure` if preferred provider type is `custom` otherwise `quota_exceeded`)
model status marked as `active` is available.
:param provider: provider name
:param model_type: model type
:param only_active: only active models
:return:
"""
all_models = []
for provider_configuration in self.values():
if provider and provider_configuration.provider.provider != provider:
continue
all_models.extend(provider_configuration.get_provider_models(model_type, only_active))
return all_models
def to_list(self) -> List[ProviderConfiguration]:
"""
Convert to list.
:return:
"""
return list(self.values())
def __getitem__(self, key):
return self.configurations[key]
def __setitem__(self, key, value):
self.configurations[key] = value
def __iter__(self):
return iter(self.configurations)
def values(self) -> Iterator[ProviderConfiguration]:
return self.configurations.values()
def get(self, key, default=None):
return self.configurations.get(key, default)
class ProviderModelBundle(BaseModel):
"""
Provider model bundle.
"""
configuration: ProviderConfiguration
provider_instance: ModelProvider
model_type_instance: AIModel
class Config:
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True

View File

@ -0,0 +1,67 @@
from enum import Enum
from typing import Optional
from pydantic import BaseModel
from core.model_runtime.entities.model_entities import ModelType
from models.provider import ProviderQuotaType
class QuotaUnit(Enum):
TIMES = 'times'
TOKENS = 'tokens'
class SystemConfigurationStatus(Enum):
"""
Enum class for system configuration status.
"""
ACTIVE = 'active'
QUOTA_EXCEEDED = 'quota-exceeded'
UNSUPPORTED = 'unsupported'
class QuotaConfiguration(BaseModel):
"""
Model class for provider quota configuration.
"""
quota_type: ProviderQuotaType
quota_unit: QuotaUnit
quota_limit: int
quota_used: int
is_valid: bool
restrict_llms: list[str] = []
class SystemConfiguration(BaseModel):
"""
Model class for provider system configuration.
"""
enabled: bool
current_quota_type: Optional[ProviderQuotaType] = None
quota_configurations: list[QuotaConfiguration] = []
credentials: Optional[dict] = None
class CustomProviderConfiguration(BaseModel):
"""
Model class for provider custom configuration.
"""
credentials: dict
class CustomModelConfiguration(BaseModel):
"""
Model class for provider custom model configuration.
"""
model: str
model_type: ModelType
credentials: dict
class CustomConfiguration(BaseModel):
"""
Model class for provider custom configuration.
"""
provider: Optional[CustomProviderConfiguration] = None
models: list[CustomModelConfiguration] = []

View File

@ -0,0 +1,118 @@
from enum import Enum
from typing import Any
from pydantic import BaseModel
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk
class QueueEvent(Enum):
"""
QueueEvent enum
"""
MESSAGE = "message"
MESSAGE_REPLACE = "message-replace"
MESSAGE_END = "message-end"
RETRIEVER_RESOURCES = "retriever-resources"
ANNOTATION_REPLY = "annotation-reply"
AGENT_THOUGHT = "agent-thought"
ERROR = "error"
PING = "ping"
STOP = "stop"
class AppQueueEvent(BaseModel):
"""
QueueEvent entity
"""
event: QueueEvent
class QueueMessageEvent(AppQueueEvent):
"""
QueueMessageEvent entity
"""
event = QueueEvent.MESSAGE
chunk: LLMResultChunk
class QueueMessageReplaceEvent(AppQueueEvent):
"""
QueueMessageReplaceEvent entity
"""
event = QueueEvent.MESSAGE_REPLACE
text: str
class QueueRetrieverResourcesEvent(AppQueueEvent):
"""
QueueRetrieverResourcesEvent entity
"""
event = QueueEvent.RETRIEVER_RESOURCES
retriever_resources: list[dict]
class AnnotationReplyEvent(AppQueueEvent):
"""
AnnotationReplyEvent entity
"""
event = QueueEvent.ANNOTATION_REPLY
message_annotation_id: str
class QueueMessageEndEvent(AppQueueEvent):
"""
QueueMessageEndEvent entity
"""
event = QueueEvent.MESSAGE_END
llm_result: LLMResult
class QueueAgentThoughtEvent(AppQueueEvent):
"""
QueueAgentThoughtEvent entity
"""
event = QueueEvent.AGENT_THOUGHT
agent_thought_id: str
class QueueErrorEvent(AppQueueEvent):
"""
QueueErrorEvent entity
"""
event = QueueEvent.ERROR
error: Any
class QueuePingEvent(AppQueueEvent):
"""
QueuePingEvent entity
"""
event = QueueEvent.PING
class QueueStopEvent(AppQueueEvent):
"""
QueueStopEvent entity
"""
class StopBy(Enum):
"""
Stop by enum
"""
USER_MANUAL = "user-manual"
ANNOTATION_REPLY = "annotation-reply"
OUTPUT_MODERATION = "output-moderation"
event = QueueEvent.STOP
stopped_by: StopBy
class QueueMessage(BaseModel):
"""
QueueMessage entity
"""
task_id: str
message_id: str
conversation_id: str
app_mode: str
event: AppQueueEvent

View File

@ -14,26 +14,6 @@ class LLMBadRequestError(LLMError):
description = "Bad Request"
class LLMAPIConnectionError(LLMError):
"""Raised when the LLM returns API connection error."""
description = "API Connection Error"
class LLMAPIUnavailableError(LLMError):
"""Raised when the LLM returns API unavailable error."""
description = "API Unavailable Error"
class LLMRateLimitError(LLMError):
"""Raised when the LLM returns rate limit error."""
description = "Rate Limit Error"
class LLMAuthorizationError(LLMError):
"""Raised when the LLM returns authorization error."""
description = "Authorization Error"
class ProviderTokenNotInitError(Exception):
"""
Custom exception raised when the provider token is not initialized.

View File

@ -0,0 +1,35 @@
{
"label": {
"en-US": "Weather Search",
"zh-Hans": "天气查询"
},
"form_schema": [
{
"type": "select",
"label": {
"en-US": "Temperature Unit",
"zh-Hans": "温度单位"
},
"variable": "temperature_unit",
"required": true,
"options": [
{
"label": {
"en-US": "Fahrenheit",
"zh-Hans": "华氏度"
},
"value": "fahrenheit"
},
{
"label": {
"en-US": "Centigrade",
"zh-Hans": "摄氏度"
},
"value": "centigrade"
}
],
"default": "centigrade",
"placeholder": "Please select temperature unit"
}
]
}

View File

@ -0,0 +1,45 @@
from typing import Optional
from core.external_data_tool.base import ExternalDataTool
class WeatherSearch(ExternalDataTool):
"""
The name of custom type must be unique, keep the same with directory and file name.
"""
name: str = "weather_search"
@classmethod
def validate_config(cls, tenant_id: str, config: dict) -> None:
"""
schema.json validation. It will be called when user save the config.
Example:
.. code-block:: python
config = {
"temperature_unit": "centigrade"
}
:param tenant_id: the id of workspace
:param config: the variables of form config
:return:
"""
if not config.get('temperature_unit'):
raise ValueError('temperature unit is required')
def query(self, inputs: dict, query: Optional[str] = None) -> str:
"""
Query the external data tool.
:param inputs: user inputs
:param query: the query of chat app
:return: the tool query result
"""
city = inputs.get('city')
temperature_unit = self.config.get('temperature_unit')
if temperature_unit == 'fahrenheit':
return f'Weather in {city} is 32°F'
else:
return f'Weather in {city} is 0°C'

View File

@ -0,0 +1,325 @@
import logging
from typing import cast, Optional, List
from langchain import WikipediaAPIWrapper
from langchain.callbacks.base import BaseCallbackHandler
from langchain.tools import BaseTool, WikipediaQueryRun, Tool
from pydantic import BaseModel, Field
from core.agent.agent.agent_llm_callback import AgentLLMCallback
from core.agent.agent_executor import PlanningStrategy, AgentConfiguration, AgentExecutor
from core.application_queue_manager import ApplicationQueueManager
from core.callback_handler.agent_loop_gather_callback_handler import AgentLoopGatherCallbackHandler
from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
from core.callback_handler.std_out_callback_handler import DifyStdOutCallbackHandler
from core.entities.application_entities import ModelConfigEntity, InvokeFrom, \
AgentEntity, AgentToolEntity, AppOrchestrationConfigEntity
from core.memory.token_buffer_memory import TokenBufferMemory
from core.model_runtime.entities.model_entities import ModelFeature, ModelType
from core.model_runtime.model_providers import model_provider_factory
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
from core.tool.current_datetime_tool import DatetimeTool
from core.tool.dataset_retriever_tool import DatasetRetrieverTool
from core.tool.provider.serpapi_provider import SerpAPIToolProvider
from core.tool.serpapi_wrapper import OptimizedSerpAPIWrapper, OptimizedSerpAPIInput
from core.tool.web_reader_tool import WebReaderTool
from extensions.ext_database import db
from models.dataset import Dataset
from models.model import Message
logger = logging.getLogger(__name__)
class AgentRunnerFeature:
def __init__(self, tenant_id: str,
app_orchestration_config: AppOrchestrationConfigEntity,
model_config: ModelConfigEntity,
config: AgentEntity,
queue_manager: ApplicationQueueManager,
message: Message,
user_id: str,
agent_llm_callback: AgentLLMCallback,
callback: AgentLoopGatherCallbackHandler,
memory: Optional[TokenBufferMemory] = None,) -> None:
"""
Agent runner
:param tenant_id: tenant id
:param app_orchestration_config: app orchestration config
:param model_config: model config
:param config: dataset config
:param queue_manager: queue manager
:param message: message
:param user_id: user id
:param agent_llm_callback: agent llm callback
:param callback: callback
:param memory: memory
"""
self.tenant_id = tenant_id
self.app_orchestration_config = app_orchestration_config
self.model_config = model_config
self.config = config
self.queue_manager = queue_manager
self.message = message
self.user_id = user_id
self.agent_llm_callback = agent_llm_callback
self.callback = callback
self.memory = memory
def run(self, query: str,
invoke_from: InvokeFrom) -> Optional[str]:
"""
Retrieve agent loop result.
:param query: query
:param invoke_from: invoke from
:return:
"""
provider = self.config.provider
model = self.config.model
tool_configs = self.config.tools
# check model is support tool calling
provider_instance = model_provider_factory.get_provider_instance(provider=provider)
model_type_instance = provider_instance.get_model_instance(ModelType.LLM)
model_type_instance = cast(LargeLanguageModel, model_type_instance)
# get model schema
model_schema = model_type_instance.get_model_schema(
model=model,
credentials=self.model_config.credentials
)
if not model_schema:
return None
planning_strategy = PlanningStrategy.REACT
features = model_schema.features
if features:
if ModelFeature.TOOL_CALL in features \
or ModelFeature.MULTI_TOOL_CALL in features:
planning_strategy = PlanningStrategy.FUNCTION_CALL
tools = self.to_tools(
tool_configs=tool_configs,
invoke_from=invoke_from,
callbacks=[self.callback, DifyStdOutCallbackHandler()],
)
if len(tools) == 0:
return None
agent_configuration = AgentConfiguration(
strategy=planning_strategy,
model_config=self.model_config,
tools=tools,
memory=self.memory,
max_iterations=10,
max_execution_time=400.0,
early_stopping_method="generate",
agent_llm_callback=self.agent_llm_callback,
callbacks=[self.callback, DifyStdOutCallbackHandler()]
)
agent_executor = AgentExecutor(agent_configuration)
try:
# check if should use agent
should_use_agent = agent_executor.should_use_agent(query)
if not should_use_agent:
return None
result = agent_executor.run(query)
return result.output
except Exception as ex:
logger.exception("agent_executor run failed")
return None
def to_tools(self, tool_configs: list[AgentToolEntity],
invoke_from: InvokeFrom,
callbacks: list[BaseCallbackHandler]) \
-> Optional[List[BaseTool]]:
"""
Convert tool configs to tools
:param tool_configs: tool configs
:param invoke_from: invoke from
:param callbacks: callbacks
"""
tools = []
for tool_config in tool_configs:
tool = None
if tool_config.tool_id == "dataset":
tool = self.to_dataset_retriever_tool(
tool_config=tool_config.config,
invoke_from=invoke_from
)
elif tool_config.tool_id == "web_reader":
tool = self.to_web_reader_tool(
tool_config=tool_config.config,
invoke_from=invoke_from
)
elif tool_config.tool_id == "google_search":
tool = self.to_google_search_tool(
tool_config=tool_config.config,
invoke_from=invoke_from
)
elif tool_config.tool_id == "wikipedia":
tool = self.to_wikipedia_tool(
tool_config=tool_config.config,
invoke_from=invoke_from
)
elif tool_config.tool_id == "current_datetime":
tool = self.to_current_datetime_tool(
tool_config=tool_config.config,
invoke_from=invoke_from
)
if tool:
if tool.callbacks is not None:
tool.callbacks.extend(callbacks)
else:
tool.callbacks = callbacks
tools.append(tool)
return tools
def to_dataset_retriever_tool(self, tool_config: dict,
invoke_from: InvokeFrom) \
-> Optional[BaseTool]:
"""
A dataset tool is a tool that can be used to retrieve information from a dataset
:param tool_config: tool config
:param invoke_from: invoke from
"""
show_retrieve_source = self.app_orchestration_config.show_retrieve_source
hit_callback = DatasetIndexToolCallbackHandler(
queue_manager=self.queue_manager,
app_id=self.message.app_id,
message_id=self.message.id,
user_id=self.user_id,
invoke_from=invoke_from
)
# get dataset from dataset id
dataset = db.session.query(Dataset).filter(
Dataset.tenant_id == self.tenant_id,
Dataset.id == tool_config.get("id")
).first()
# pass if dataset is not available
if not dataset:
return None
# pass if dataset is not available
if (dataset and dataset.available_document_count == 0
and dataset.available_document_count == 0):
return None
# get retrieval model config
default_retrieval_model = {
'search_method': 'semantic_search',
'reranking_enable': False,
'reranking_model': {
'reranking_provider_name': '',
'reranking_model_name': ''
},
'top_k': 2,
'score_threshold_enabled': False
}
retrieval_model_config = dataset.retrieval_model \
if dataset.retrieval_model else default_retrieval_model
# get top k
top_k = retrieval_model_config['top_k']
# get score threshold
score_threshold = None
score_threshold_enabled = retrieval_model_config.get("score_threshold_enabled")
if score_threshold_enabled:
score_threshold = retrieval_model_config.get("score_threshold")
tool = DatasetRetrieverTool.from_dataset(
dataset=dataset,
top_k=top_k,
score_threshold=score_threshold,
hit_callbacks=[hit_callback],
return_resource=show_retrieve_source,
retriever_from=invoke_from.to_source()
)
return tool
def to_web_reader_tool(self, tool_config: dict,
invoke_from: InvokeFrom) -> Optional[BaseTool]:
"""
A tool for reading web pages
:param tool_config: tool config
:param invoke_from: invoke from
:return:
"""
model_parameters = {
"temperature": 0,
"max_tokens": 500
}
tool = WebReaderTool(
model_config=self.model_config,
model_parameters=model_parameters,
max_chunk_length=4000,
continue_reading=True
)
return tool
def to_google_search_tool(self, tool_config: dict,
invoke_from: InvokeFrom) -> Optional[BaseTool]:
"""
A tool for performing a Google search and extracting snippets and webpages
:param tool_config: tool config
:param invoke_from: invoke from
:return:
"""
tool_provider = SerpAPIToolProvider(tenant_id=self.tenant_id)
func_kwargs = tool_provider.credentials_to_func_kwargs()
if not func_kwargs:
return None
tool = Tool(
name="google_search",
description="A tool for performing a Google search and extracting snippets and webpages "
"when you need to search for something you don't know or when your information "
"is not up to date. "
"Input should be a search query.",
func=OptimizedSerpAPIWrapper(**func_kwargs).run,
args_schema=OptimizedSerpAPIInput
)
return tool
def to_current_datetime_tool(self, tool_config: dict,
invoke_from: InvokeFrom) -> Optional[BaseTool]:
"""
A tool for getting the current date and time
:param tool_config: tool config
:param invoke_from: invoke from
:return:
"""
return DatetimeTool()
def to_wikipedia_tool(self, tool_config: dict,
invoke_from: InvokeFrom) -> Optional[BaseTool]:
"""
A tool for searching Wikipedia
:param tool_config: tool config
:param invoke_from: invoke from
:return:
"""
class WikipediaInput(BaseModel):
query: str = Field(..., description="search query.")
return WikipediaQueryRun(
name="wikipedia",
api_wrapper=WikipediaAPIWrapper(doc_content_chars_max=4000),
args_schema=WikipediaInput
)

View File

@ -0,0 +1,119 @@
import logging
from typing import Optional
from flask import current_app
from core.embedding.cached_embedding import CacheEmbedding
from core.entities.application_entities import InvokeFrom
from core.index.vector_index.vector_index import VectorIndex
from core.model_manager import ModelManager
from core.model_runtime.entities.model_entities import ModelType
from extensions.ext_database import db
from models.dataset import Dataset
from models.model import App, Message, AppAnnotationSetting, MessageAnnotation
from services.annotation_service import AppAnnotationService
from services.dataset_service import DatasetCollectionBindingService
logger = logging.getLogger(__name__)
class AnnotationReplyFeature:
def query(self, app_record: App,
message: Message,
query: str,
user_id: str,
invoke_from: InvokeFrom) -> Optional[MessageAnnotation]:
"""
Query app annotations to reply
:param app_record: app record
:param message: message
:param query: query
:param user_id: user id
:param invoke_from: invoke from
:return:
"""
annotation_setting = db.session.query(AppAnnotationSetting).filter(
AppAnnotationSetting.app_id == app_record.id).first()
if not annotation_setting:
return None
collection_binding_detail = annotation_setting.collection_binding_detail
try:
score_threshold = annotation_setting.score_threshold or 1
embedding_provider_name = collection_binding_detail.provider_name
embedding_model_name = collection_binding_detail.model_name
model_manager = ModelManager()
model_instance = model_manager.get_model_instance(
tenant_id=app_record.tenant_id,
provider=embedding_provider_name,
model_type=ModelType.TEXT_EMBEDDING,
model=embedding_model_name
)
# get embedding model
embeddings = CacheEmbedding(model_instance)
dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
embedding_provider_name,
embedding_model_name,
'annotation'
)
dataset = Dataset(
id=app_record.id,
tenant_id=app_record.tenant_id,
indexing_technique='high_quality',
embedding_model_provider=embedding_provider_name,
embedding_model=embedding_model_name,
collection_binding_id=dataset_collection_binding.id
)
vector_index = VectorIndex(
dataset=dataset,
config=current_app.config,
embeddings=embeddings,
attributes=['doc_id', 'annotation_id', 'app_id']
)
documents = vector_index.search(
query=query,
search_type='similarity_score_threshold',
search_kwargs={
'k': 1,
'score_threshold': score_threshold,
'filter': {
'group_id': [dataset.id]
}
}
)
if documents:
annotation_id = documents[0].metadata['annotation_id']
score = documents[0].metadata['score']
annotation = AppAnnotationService.get_annotation_by_id(annotation_id)
if annotation:
if invoke_from in [InvokeFrom.SERVICE_API, InvokeFrom.WEB_APP]:
from_source = 'api'
else:
from_source = 'console'
# insert annotation history
AppAnnotationService.add_annotation_history(annotation.id,
app_record.id,
annotation.question,
annotation.content,
query,
user_id,
message.id,
from_source,
score)
return annotation
except Exception as e:
logger.warning(f'Query annotation failed, exception: {str(e)}.')
return None
return None

View File

@ -0,0 +1,181 @@
from typing import cast, Optional, List
from langchain.tools import BaseTool
from core.agent.agent_executor import PlanningStrategy, AgentConfiguration, AgentExecutor
from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
from core.entities.application_entities import DatasetEntity, ModelConfigEntity, InvokeFrom, DatasetRetrieveConfigEntity
from core.memory.token_buffer_memory import TokenBufferMemory
from core.model_runtime.entities.model_entities import ModelFeature
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
from core.tool.dataset_multi_retriever_tool import DatasetMultiRetrieverTool
from core.tool.dataset_retriever_tool import DatasetRetrieverTool
from extensions.ext_database import db
from models.dataset import Dataset
class DatasetRetrievalFeature:
def retrieve(self, tenant_id: str,
model_config: ModelConfigEntity,
config: DatasetEntity,
query: str,
invoke_from: InvokeFrom,
show_retrieve_source: bool,
hit_callback: DatasetIndexToolCallbackHandler,
memory: Optional[TokenBufferMemory] = None) -> Optional[str]:
"""
Retrieve dataset.
:param tenant_id: tenant id
:param model_config: model config
:param config: dataset config
:param query: query
:param invoke_from: invoke from
:param show_retrieve_source: show retrieve source
:param hit_callback: hit callback
:param memory: memory
:return:
"""
dataset_ids = config.dataset_ids
retrieve_config = config.retrieve_config
# check model is support tool calling
model_type_instance = model_config.provider_model_bundle.model_type_instance
model_type_instance = cast(LargeLanguageModel, model_type_instance)
# get model schema
model_schema = model_type_instance.get_model_schema(
model=model_config.model,
credentials=model_config.credentials
)
if not model_schema:
return None
planning_strategy = PlanningStrategy.REACT_ROUTER
features = model_schema.features
if features:
if ModelFeature.TOOL_CALL in features \
or ModelFeature.MULTI_TOOL_CALL in features:
planning_strategy = PlanningStrategy.ROUTER
dataset_retriever_tools = self.to_dataset_retriever_tool(
tenant_id=tenant_id,
dataset_ids=dataset_ids,
retrieve_config=retrieve_config,
return_resource=show_retrieve_source,
invoke_from=invoke_from,
hit_callback=hit_callback
)
if len(dataset_retriever_tools) == 0:
return None
agent_configuration = AgentConfiguration(
strategy=planning_strategy,
model_config=model_config,
tools=dataset_retriever_tools,
memory=memory,
max_iterations=10,
max_execution_time=400.0,
early_stopping_method="generate"
)
agent_executor = AgentExecutor(agent_configuration)
should_use_agent = agent_executor.should_use_agent(query)
if not should_use_agent:
return None
result = agent_executor.run(query)
return result.output
def to_dataset_retriever_tool(self, tenant_id: str,
dataset_ids: list[str],
retrieve_config: DatasetRetrieveConfigEntity,
return_resource: bool,
invoke_from: InvokeFrom,
hit_callback: DatasetIndexToolCallbackHandler) \
-> Optional[List[BaseTool]]:
"""
A dataset tool is a tool that can be used to retrieve information from a dataset
:param tenant_id: tenant id
:param dataset_ids: dataset ids
:param retrieve_config: retrieve config
:param return_resource: return resource
:param invoke_from: invoke from
:param hit_callback: hit callback
"""
tools = []
available_datasets = []
for dataset_id in dataset_ids:
# get dataset from dataset id
dataset = db.session.query(Dataset).filter(
Dataset.tenant_id == tenant_id,
Dataset.id == dataset_id
).first()
# pass if dataset is not available
if not dataset:
continue
# pass if dataset is not available
if (dataset and dataset.available_document_count == 0
and dataset.available_document_count == 0):
continue
available_datasets.append(dataset)
if retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.SINGLE:
# get retrieval model config
default_retrieval_model = {
'search_method': 'semantic_search',
'reranking_enable': False,
'reranking_model': {
'reranking_provider_name': '',
'reranking_model_name': ''
},
'top_k': 2,
'score_threshold_enabled': False
}
for dataset in available_datasets:
retrieval_model_config = dataset.retrieval_model \
if dataset.retrieval_model else default_retrieval_model
# get top k
top_k = retrieval_model_config['top_k']
# get score threshold
score_threshold = None
score_threshold_enabled = retrieval_model_config.get("score_threshold_enabled")
if score_threshold_enabled:
score_threshold = retrieval_model_config.get("score_threshold")
tool = DatasetRetrieverTool.from_dataset(
dataset=dataset,
top_k=top_k,
score_threshold=score_threshold,
hit_callbacks=[hit_callback],
return_resource=return_resource,
retriever_from=invoke_from.to_source()
)
tools.append(tool)
elif retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.MULTIPLE:
tool = DatasetMultiRetrieverTool.from_dataset(
dataset_ids=[dataset.id for dataset in available_datasets],
tenant_id=tenant_id,
top_k=retrieve_config.top_k or 2,
score_threshold=(retrieve_config.score_threshold or 0.5)
if retrieve_config.reranking_model.get('score_threshold_enabled', False) else None,
hit_callbacks=[hit_callback],
return_resource=return_resource,
retriever_from=invoke_from.to_source(),
reranking_provider_name=retrieve_config.reranking_model.get('reranking_provider_name'),
reranking_model_name=retrieve_config.reranking_model.get('reranking_model_name')
)
tools.append(tool)
return tools

View File

@ -0,0 +1,96 @@
import concurrent
import json
import logging
from concurrent.futures import ThreadPoolExecutor
from typing import Tuple, Optional
from flask import current_app, Flask
from core.entities.application_entities import ExternalDataVariableEntity
from core.external_data_tool.factory import ExternalDataToolFactory
logger = logging.getLogger(__name__)
class ExternalDataFetchFeature:
def fetch(self, tenant_id: str,
app_id: str,
external_data_tools: list[ExternalDataVariableEntity],
inputs: dict,
query: str) -> dict:
"""
Fill in variable inputs from external data tools if exists.
:param tenant_id: workspace id
:param app_id: app id
:param external_data_tools: external data tools configs
:param inputs: the inputs
:param query: the query
:return: the filled inputs
"""
# Group tools by type and config
grouped_tools = {}
for tool in external_data_tools:
tool_key = (tool.type, json.dumps(tool.config, sort_keys=True))
grouped_tools.setdefault(tool_key, []).append(tool)
results = {}
with ThreadPoolExecutor() as executor:
futures = {}
for tool in external_data_tools:
future = executor.submit(
self._query_external_data_tool,
current_app._get_current_object(),
tenant_id,
app_id,
tool,
inputs,
query
)
futures[future] = tool
for future in concurrent.futures.as_completed(futures):
tool_variable, result = future.result()
results[tool_variable] = result
inputs.update(results)
return inputs
def _query_external_data_tool(self, flask_app: Flask,
tenant_id: str,
app_id: str,
external_data_tool: ExternalDataVariableEntity,
inputs: dict,
query: str) -> Tuple[Optional[str], Optional[str]]:
"""
Query external data tool.
:param flask_app: flask app
:param tenant_id: tenant id
:param app_id: app id
:param external_data_tool: external data tool
:param inputs: inputs
:param query: query
:return:
"""
with flask_app.app_context():
tool_variable = external_data_tool.variable
tool_type = external_data_tool.type
tool_config = external_data_tool.config
external_data_tool_factory = ExternalDataToolFactory(
name=tool_type,
tenant_id=tenant_id,
app_id=app_id,
variable=tool_variable,
config=tool_config
)
# query external data tool
result = external_data_tool_factory.query(
inputs=inputs,
query=query
)
return tool_variable, result

View File

@ -0,0 +1,32 @@
import logging
from core.entities.application_entities import ApplicationGenerateEntity
from core.helper import moderation
from core.model_runtime.entities.message_entities import PromptMessage
logger = logging.getLogger(__name__)
class HostingModerationFeature:
def check(self, application_generate_entity: ApplicationGenerateEntity,
prompt_messages: list[PromptMessage]) -> bool:
"""
Check hosting moderation
:param application_generate_entity: application generate entity
:param prompt_messages: prompt messages
:return:
"""
app_orchestration_config = application_generate_entity.app_orchestration_config_entity
model_config = app_orchestration_config.model_config
text = ""
for prompt_message in prompt_messages:
if isinstance(prompt_message.content, str):
text += prompt_message.content + "\n"
moderation_result = moderation.check_moderation(
model_config,
text
)
return moderation_result

View File

@ -0,0 +1,50 @@
import logging
from typing import Tuple
from core.entities.application_entities import AppOrchestrationConfigEntity
from core.moderation.base import ModerationAction, ModerationException
from core.moderation.factory import ModerationFactory
logger = logging.getLogger(__name__)
class ModerationFeature:
def check(self, app_id: str,
tenant_id: str,
app_orchestration_config_entity: AppOrchestrationConfigEntity,
inputs: dict,
query: str) -> Tuple[bool, dict, str]:
"""
Process sensitive_word_avoidance.
:param app_id: app id
:param tenant_id: tenant id
:param app_orchestration_config_entity: app orchestration config entity
:param inputs: inputs
:param query: query
:return:
"""
if not app_orchestration_config_entity.sensitive_word_avoidance:
return False, inputs, query
sensitive_word_avoidance_config = app_orchestration_config_entity.sensitive_word_avoidance
moderation_type = sensitive_word_avoidance_config.type
moderation_factory = ModerationFactory(
name=moderation_type,
app_id=app_id,
tenant_id=tenant_id,
config=sensitive_word_avoidance_config.config
)
moderation_result = moderation_factory.moderation_for_inputs(inputs, query)
if not moderation_result.flagged:
return False, inputs, query
if moderation_result.action == ModerationAction.DIRECT_OUTPUT:
raise ModerationException(moderation_result.preset_response)
elif moderation_result.action == ModerationAction.OVERRIDED:
inputs = moderation_result.inputs
query = moderation_result.query
return True, inputs, query

View File

@ -4,7 +4,7 @@ from typing import Optional
from pydantic import BaseModel
from core.file.upload_file_parser import UploadFileParser
from core.model_providers.models.entity.message import PromptMessageFile, ImagePromptMessageFile
from core.model_runtime.entities.message_entities import ImagePromptMessageContent
from extensions.ext_database import db
from models.model import UploadFile
@ -50,14 +50,14 @@ class FileObj(BaseModel):
return self._get_data(force_url=True)
@property
def prompt_message_file(self) -> PromptMessageFile:
def prompt_message_content(self) -> ImagePromptMessageContent:
if self.type == FileType.IMAGE:
image_config = self.file_config.get('image')
return ImagePromptMessageFile(
return ImagePromptMessageContent(
data=self.data,
detail=ImagePromptMessageFile.DETAIL.HIGH
if image_config.get("detail") == "high" else ImagePromptMessageFile.DETAIL.LOW
detail=ImagePromptMessageContent.DETAIL.HIGH
if image_config.get("detail") == "high" else ImagePromptMessageContent.DETAIL.LOW
)
def _get_data(self, force_url: bool = False) -> Optional[str]:

View File

@ -3,10 +3,10 @@ import logging
from langchain.schema import OutputParserException
from core.model_providers.error import LLMError, ProviderTokenNotInitError
from core.model_providers.model_factory import ModelFactory
from core.model_providers.models.entity.message import PromptMessage, MessageType
from core.model_providers.models.entity.model_params import ModelKwargs
from core.model_manager import ModelManager
from core.model_runtime.entities.message_entities import UserPromptMessage, SystemPromptMessage
from core.model_runtime.entities.model_entities import ModelType
from core.model_runtime.errors.invoke import InvokeAuthorizationError, InvokeError
from core.prompt.output_parser.rule_config_generator import RuleConfigGeneratorOutputParser
from core.prompt.output_parser.suggested_questions_after_answer import SuggestedQuestionsAfterAnswerOutputParser
@ -26,17 +26,22 @@ class LLMGenerator:
prompt += query + "\n"
model_instance = ModelFactory.get_text_generation_model(
model_manager = ModelManager()
model_instance = model_manager.get_default_model_instance(
tenant_id=tenant_id,
model_kwargs=ModelKwargs(
temperature=1,
max_tokens=100
)
model_type=ModelType.LLM,
)
prompts = [PromptMessage(content=prompt)]
response = model_instance.run(prompts)
answer = response.content
prompts = [UserPromptMessage(content=prompt)]
response = model_instance.invoke_llm(
prompt_messages=prompts,
model_parameters={
"max_tokens": 100,
"temperature": 1
},
stream=False
)
answer = response.message.content
result_dict = json.loads(answer)
answer = result_dict['Your Output']
@ -62,22 +67,28 @@ class LLMGenerator:
})
try:
model_instance = ModelFactory.get_text_generation_model(
model_manager = ModelManager()
model_instance = model_manager.get_default_model_instance(
tenant_id=tenant_id,
model_kwargs=ModelKwargs(
max_tokens=256,
temperature=0
)
model_type=ModelType.LLM,
)
except ProviderTokenNotInitError:
except InvokeAuthorizationError:
return []
prompt_messages = [PromptMessage(content=prompt)]
prompt_messages = [UserPromptMessage(content=prompt)]
try:
output = model_instance.run(prompt_messages)
questions = output_parser.parse(output.content)
except LLMError:
response = model_instance.invoke_llm(
prompt_messages=prompt_messages,
model_parameters={
"max_tokens": 256,
"temperature": 0
},
stream=False
)
questions = output_parser.parse(response.message.content)
except InvokeError:
questions = []
except Exception as e:
logging.exception(e)
@ -105,20 +116,26 @@ class LLMGenerator:
remove_template_variables=False
)
model_instance = ModelFactory.get_text_generation_model(
model_manager = ModelManager()
model_instance = model_manager.get_default_model_instance(
tenant_id=tenant_id,
model_kwargs=ModelKwargs(
max_tokens=512,
temperature=0
)
model_type=ModelType.LLM,
)
prompt_messages = [PromptMessage(content=prompt)]
prompt_messages = [UserPromptMessage(content=prompt)]
try:
output = model_instance.run(prompt_messages)
rule_config = output_parser.parse(output.content)
except LLMError as e:
response = model_instance.invoke_llm(
prompt_messages=prompt_messages,
model_parameters={
"max_tokens": 512,
"temperature": 0
},
stream=False
)
rule_config = output_parser.parse(response.message.content)
except InvokeError as e:
raise e
except OutputParserException:
raise ValueError('Please give a valid input for intended audience or hoping to solve problems.')
@ -136,18 +153,24 @@ class LLMGenerator:
def generate_qa_document(cls, tenant_id: str, query, document_language: str):
prompt = GENERATOR_QA_PROMPT.format(language=document_language)
model_instance = ModelFactory.get_text_generation_model(
model_manager = ModelManager()
model_instance = model_manager.get_default_model_instance(
tenant_id=tenant_id,
model_kwargs=ModelKwargs(
max_tokens=2000
)
model_type=ModelType.LLM,
)
prompts = [
PromptMessage(content=prompt, type=MessageType.SYSTEM),
PromptMessage(content=query)
prompt_messages = [
SystemPromptMessage(content=prompt),
UserPromptMessage(content=query)
]
response = model_instance.run(prompts)
answer = response.content
response = model_instance.invoke_llm(
prompt_messages=prompt_messages,
model_parameters={
"max_tokens": 2000
},
stream=False
)
answer = response.message.content
return answer.strip()

View File

@ -18,3 +18,17 @@ def encrypt_token(tenant_id: str, token: str):
def decrypt_token(tenant_id: str, token: str):
return rsa.decrypt(base64.b64decode(token), tenant_id)
def batch_decrypt_token(tenant_id: str, tokens: list[str]):
rsa_key, cipher_rsa = rsa.get_decrypt_decoding(tenant_id)
return [rsa.decrypt_token_with_decoding(base64.b64decode(token), rsa_key, cipher_rsa) for token in tokens]
def get_decrypt_decoding(tenant_id: str):
return rsa.get_decrypt_decoding(tenant_id)
def decrypt_token_with_decoding(token: str, rsa_key, cipher_rsa):
return rsa.decrypt_token_with_decoding(base64.b64decode(token), rsa_key, cipher_rsa)

View File

@ -0,0 +1,22 @@
from collections import OrderedDict
from typing import Any
class LRUCache:
def __init__(self, capacity: int):
self.cache = OrderedDict()
self.capacity = capacity
def get(self, key: Any) -> Any:
if key not in self.cache:
return None
else:
self.cache.move_to_end(key) # move the key to the end of the OrderedDict
return self.cache[key]
def put(self, key: Any, value: Any) -> None:
if key in self.cache:
self.cache.move_to_end(key)
self.cache[key] = value
if len(self.cache) > self.capacity:
self.cache.popitem(last=False) # pop the first item

View File

@ -1,18 +1,27 @@
import logging
import random
import openai
from core.model_providers.error import LLMBadRequestError
from core.model_providers.providers.base import BaseModelProvider
from core.model_providers.providers.hosted import hosted_config, hosted_model_providers
from core.entities.application_entities import ModelConfigEntity
from core.model_runtime.errors.invoke import InvokeBadRequestError
from core.model_runtime.model_providers.openai.moderation.moderation import OpenAIModerationModel
from extensions.ext_hosting_provider import hosting_configuration
from models.provider import ProviderType
logger = logging.getLogger(__name__)
def check_moderation(model_config: ModelConfigEntity, text: str) -> bool:
moderation_config = hosting_configuration.moderation_config
if (moderation_config and moderation_config.enabled is True
and 'openai' in hosting_configuration.provider_map
and hosting_configuration.provider_map['openai'].enabled is True
):
using_provider_type = model_config.provider_model_bundle.configuration.using_provider_type
provider_name = model_config.provider
if using_provider_type == ProviderType.SYSTEM \
and provider_name in moderation_config.providers:
hosting_openai_config = hosting_configuration.provider_map['openai']
def check_moderation(model_provider: BaseModelProvider, text: str) -> bool:
if hosted_config.moderation.enabled is True and hosted_model_providers.openai:
if model_provider.provider.provider_type == ProviderType.SYSTEM.value \
and model_provider.provider_name in hosted_config.moderation.providers:
# 2000 text per chunk
length = 2000
text_chunks = [text[i:i + length] for i in range(0, len(text), length)]
@ -23,14 +32,17 @@ def check_moderation(model_provider: BaseModelProvider, text: str) -> bool:
text_chunk = random.choice(text_chunks)
try:
moderation_result = openai.Moderation.create(input=text_chunk,
api_key=hosted_model_providers.openai.api_key)
model_type_instance = OpenAIModerationModel()
moderation_result = model_type_instance.invoke(
model='text-moderation-stable',
credentials=hosting_openai_config.credentials,
text=text_chunk
)
if moderation_result is True:
return True
except Exception as ex:
logging.exception(ex)
raise LLMBadRequestError('Rate limit exceeded, please try again later.')
logger.exception(ex)
raise InvokeBadRequestError('Rate limit exceeded, please try again later.')
for result in moderation_result.results:
if result['flagged'] is True:
return False
return True
return False

View File

@ -0,0 +1,213 @@
import os
from typing import Optional
from flask import Flask
from pydantic import BaseModel
from core.entities.provider_entities import QuotaUnit
from models.provider import ProviderQuotaType
class HostingQuota(BaseModel):
quota_type: ProviderQuotaType
restrict_llms: list[str] = []
class TrialHostingQuota(HostingQuota):
quota_type: ProviderQuotaType = ProviderQuotaType.TRIAL
quota_limit: int = 0
"""Quota limit for the hosting provider models. -1 means unlimited."""
class PaidHostingQuota(HostingQuota):
quota_type: ProviderQuotaType = ProviderQuotaType.PAID
stripe_price_id: str = None
increase_quota: int = 1
min_quantity: int = 20
max_quantity: int = 100
class FreeHostingQuota(HostingQuota):
quota_type: ProviderQuotaType = ProviderQuotaType.FREE
class HostingProvider(BaseModel):
enabled: bool = False
credentials: Optional[dict] = None
quota_unit: Optional[QuotaUnit] = None
quotas: list[HostingQuota] = []
class HostedModerationConfig(BaseModel):
enabled: bool = False
providers: list[str] = []
class HostingConfiguration:
provider_map: dict[str, HostingProvider] = {}
moderation_config: HostedModerationConfig = None
def init_app(self, app: Flask):
if app.config.get('EDITION') != 'CLOUD':
return
self.provider_map["openai"] = self.init_openai()
self.provider_map["anthropic"] = self.init_anthropic()
self.provider_map["minimax"] = self.init_minimax()
self.provider_map["spark"] = self.init_spark()
self.provider_map["zhipuai"] = self.init_zhipuai()
self.moderation_config = self.init_moderation_config()
def init_openai(self) -> HostingProvider:
quota_unit = QuotaUnit.TIMES
if os.environ.get("HOSTED_OPENAI_ENABLED") and os.environ.get("HOSTED_OPENAI_ENABLED").lower() == 'true':
credentials = {
"openai_api_key": os.environ.get("HOSTED_OPENAI_API_KEY"),
}
if os.environ.get("HOSTED_OPENAI_API_BASE"):
credentials["openai_api_base"] = os.environ.get("HOSTED_OPENAI_API_BASE")
if os.environ.get("HOSTED_OPENAI_API_ORGANIZATION"):
credentials["openai_organization"] = os.environ.get("HOSTED_OPENAI_API_ORGANIZATION")
quotas = []
hosted_quota_limit = int(os.environ.get("HOSTED_OPENAI_QUOTA_LIMIT", "200"))
if hosted_quota_limit != -1 or hosted_quota_limit > 0:
trial_quota = TrialHostingQuota(
quota_limit=hosted_quota_limit,
restrict_llms=[
"gpt-3.5-turbo",
"gpt-3.5-turbo-1106",
"gpt-3.5-turbo-instruct",
"gpt-3.5-turbo-16k",
"text-davinci-003"
]
)
quotas.append(trial_quota)
if os.environ.get("HOSTED_OPENAI_PAID_ENABLED") and os.environ.get(
"HOSTED_OPENAI_PAID_ENABLED").lower() == 'true':
paid_quota = PaidHostingQuota(
stripe_price_id=os.environ.get("HOSTED_OPENAI_PAID_STRIPE_PRICE_ID"),
increase_quota=int(os.environ.get("HOSTED_OPENAI_PAID_INCREASE_QUOTA", "1")),
min_quantity=int(os.environ.get("HOSTED_OPENAI_PAID_MIN_QUANTITY", "1")),
max_quantity=int(os.environ.get("HOSTED_OPENAI_PAID_MAX_QUANTITY", "1"))
)
quotas.append(paid_quota)
return HostingProvider(
enabled=True,
credentials=credentials,
quota_unit=quota_unit,
quotas=quotas
)
return HostingProvider(
enabled=False,
quota_unit=quota_unit,
)
def init_anthropic(self) -> HostingProvider:
quota_unit = QuotaUnit.TOKENS
if os.environ.get("HOSTED_ANTHROPIC_ENABLED") and os.environ.get("HOSTED_ANTHROPIC_ENABLED").lower() == 'true':
credentials = {
"anthropic_api_key": os.environ.get("HOSTED_ANTHROPIC_API_KEY"),
}
if os.environ.get("HOSTED_ANTHROPIC_API_BASE"):
credentials["anthropic_api_url"] = os.environ.get("HOSTED_ANTHROPIC_API_BASE")
quotas = []
hosted_quota_limit = int(os.environ.get("HOSTED_ANTHROPIC_QUOTA_LIMIT", "0"))
if hosted_quota_limit != -1 or hosted_quota_limit > 0:
trial_quota = TrialHostingQuota(
quota_limit=hosted_quota_limit
)
quotas.append(trial_quota)
if os.environ.get("HOSTED_ANTHROPIC_PAID_ENABLED") and os.environ.get(
"HOSTED_ANTHROPIC_PAID_ENABLED").lower() == 'true':
paid_quota = PaidHostingQuota(
stripe_price_id=os.environ.get("HOSTED_ANTHROPIC_PAID_STRIPE_PRICE_ID"),
increase_quota=int(os.environ.get("HOSTED_ANTHROPIC_PAID_INCREASE_QUOTA", "1000000")),
min_quantity=int(os.environ.get("HOSTED_ANTHROPIC_PAID_MIN_QUANTITY", "20")),
max_quantity=int(os.environ.get("HOSTED_ANTHROPIC_PAID_MAX_QUANTITY", "100"))
)
quotas.append(paid_quota)
return HostingProvider(
enabled=True,
credentials=credentials,
quota_unit=quota_unit,
quotas=quotas
)
return HostingProvider(
enabled=False,
quota_unit=quota_unit,
)
def init_minimax(self) -> HostingProvider:
quota_unit = QuotaUnit.TOKENS
if os.environ.get("HOSTED_MINIMAX_ENABLED") and os.environ.get("HOSTED_MINIMAX_ENABLED").lower() == 'true':
quotas = [FreeHostingQuota()]
return HostingProvider(
enabled=True,
credentials=None, # use credentials from the provider
quota_unit=quota_unit,
quotas=quotas
)
return HostingProvider(
enabled=False,
quota_unit=quota_unit,
)
def init_spark(self) -> HostingProvider:
quota_unit = QuotaUnit.TOKENS
if os.environ.get("HOSTED_SPARK_ENABLED") and os.environ.get("HOSTED_SPARK_ENABLED").lower() == 'true':
quotas = [FreeHostingQuota()]
return HostingProvider(
enabled=True,
credentials=None, # use credentials from the provider
quota_unit=quota_unit,
quotas=quotas
)
return HostingProvider(
enabled=False,
quota_unit=quota_unit,
)
def init_zhipuai(self) -> HostingProvider:
quota_unit = QuotaUnit.TOKENS
if os.environ.get("HOSTED_ZHIPUAI_ENABLED") and os.environ.get("HOSTED_ZHIPUAI_ENABLED").lower() == 'true':
quotas = [FreeHostingQuota()]
return HostingProvider(
enabled=True,
credentials=None, # use credentials from the provider
quota_unit=quota_unit,
quotas=quotas
)
return HostingProvider(
enabled=False,
quota_unit=quota_unit,
)
def init_moderation_config(self) -> HostedModerationConfig:
if os.environ.get("HOSTED_MODERATION_ENABLED") and os.environ.get("HOSTED_MODERATION_ENABLED").lower() == 'true' \
and os.environ.get("HOSTED_MODERATION_PROVIDERS"):
return HostedModerationConfig(
enabled=True,
providers=os.environ.get("HOSTED_MODERATION_PROVIDERS").split(',')
)
return HostedModerationConfig(
enabled=False
)

View File

@ -1,18 +1,12 @@
import json
from flask import current_app
from langchain.embeddings import OpenAIEmbeddings
from core.embedding.cached_embedding import CacheEmbedding
from core.index.keyword_table_index.keyword_table_index import KeywordTableIndex, KeywordTableConfig
from core.index.vector_index.vector_index import VectorIndex
from core.model_providers.model_factory import ModelFactory
from core.model_providers.models.embedding.openai_embedding import OpenAIEmbedding
from core.model_providers.models.entity.model_params import ModelKwargs
from core.model_providers.models.llm.openai_model import OpenAIModel
from core.model_providers.providers.openai_provider import OpenAIProvider
from core.model_manager import ModelManager
from core.model_runtime.entities.model_entities import ModelType
from models.dataset import Dataset
from models.provider import Provider, ProviderType
class IndexBuilder:
@ -22,10 +16,12 @@ class IndexBuilder:
if not ignore_high_quality_check and dataset.indexing_technique != 'high_quality':
return None
embedding_model = ModelFactory.get_embedding_model(
model_manager = ModelManager()
embedding_model = model_manager.get_model_instance(
tenant_id=dataset.tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
model_type=ModelType.TEXT_EMBEDDING,
provider=dataset.embedding_model_provider,
model=dataset.embedding_model
)
embeddings = CacheEmbedding(embedding_model)

View File

@ -18,9 +18,11 @@ from core.data_loader.loader.notion import NotionLoader
from core.docstore.dataset_docstore import DatasetDocumentStore
from core.generator.llm_generator import LLMGenerator
from core.index.index import IndexBuilder
from core.model_providers.error import ProviderTokenNotInitError
from core.model_providers.model_factory import ModelFactory
from core.model_providers.models.entity.message import MessageType
from core.model_manager import ModelManager
from core.errors.error import ProviderTokenNotInitError
from core.model_runtime.entities.model_entities import ModelType, PriceType
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
from core.spiltter.fixed_text_splitter import FixedRecursiveCharacterTextSplitter
from extensions.ext_database import db
from extensions.ext_redis import redis_client
@ -36,6 +38,7 @@ class IndexingRunner:
def __init__(self):
self.storage = storage
self.model_manager = ModelManager()
def run(self, dataset_documents: List[DatasetDocument]):
"""Run the indexing process."""
@ -210,7 +213,7 @@ class IndexingRunner:
"""
Estimate the indexing for the document.
"""
embedding_model = None
embedding_model_instance = None
if dataset_id:
dataset = Dataset.query.filter_by(
id=dataset_id
@ -218,15 +221,17 @@ class IndexingRunner:
if not dataset:
raise ValueError('Dataset not found.')
if dataset.indexing_technique == 'high_quality' or indexing_technique == 'high_quality':
embedding_model = ModelFactory.get_embedding_model(
tenant_id=dataset.tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
embedding_model_instance = self.model_manager.get_model_instance(
tenant_id=tenant_id,
provider=dataset.embedding_model_provider,
model_type=ModelType.TEXT_EMBEDDING,
model=dataset.embedding_model
)
else:
if indexing_technique == 'high_quality':
embedding_model = ModelFactory.get_embedding_model(
tenant_id=tenant_id
embedding_model_instance = self.model_manager.get_default_model_instance(
tenant_id=tenant_id,
model_type=ModelType.TEXT_EMBEDDING,
)
tokens = 0
preview_texts = []
@ -255,32 +260,56 @@ class IndexingRunner:
for document in documents:
if len(preview_texts) < 5:
preview_texts.append(document.page_content)
if indexing_technique == 'high_quality' or embedding_model:
tokens += embedding_model.get_num_tokens(self.filter_string(document.page_content))
if indexing_technique == 'high_quality' or embedding_model_instance:
embedding_model_type_instance = embedding_model_instance.model_type_instance
embedding_model_type_instance = cast(TextEmbeddingModel, embedding_model_type_instance)
tokens += embedding_model_type_instance.get_num_tokens(
model=embedding_model_instance.model,
credentials=embedding_model_instance.credentials,
texts=[self.filter_string(document.page_content)]
)
if doc_form and doc_form == 'qa_model':
text_generation_model = ModelFactory.get_text_generation_model(
tenant_id=tenant_id
model_instance = self.model_manager.get_default_model_instance(
tenant_id=tenant_id,
model_type=ModelType.LLM
)
model_type_instance = model_instance.model_type_instance
model_type_instance = cast(LargeLanguageModel, model_type_instance)
if len(preview_texts) > 0:
# qa model document
response = LLMGenerator.generate_qa_document(current_user.current_tenant_id, preview_texts[0],
doc_language)
document_qa_list = self.format_split_text(response)
price_info = model_type_instance.get_price(
model=model_instance.model,
credentials=model_instance.credentials,
price_type=PriceType.INPUT,
tokens=total_segments * 2000,
)
return {
"total_segments": total_segments * 20,
"tokens": total_segments * 2000,
"total_price": '{:f}'.format(
text_generation_model.calc_tokens_price(total_segments * 2000, MessageType.USER)),
"currency": embedding_model.get_currency(),
"total_price": '{:f}'.format(price_info.total_amount),
"currency": price_info.currency,
"qa_preview": document_qa_list,
"preview": preview_texts
}
if embedding_model_instance:
embedding_model_type_instance = cast(TextEmbeddingModel, embedding_model_instance.model_type_instance)
embedding_price_info = embedding_model_type_instance.get_price(
model=embedding_model_instance.model,
credentials=embedding_model_instance.credentials,
price_type=PriceType.INPUT,
tokens=tokens
)
return {
"total_segments": total_segments,
"tokens": tokens,
"total_price": '{:f}'.format(embedding_model.calc_tokens_price(tokens)) if embedding_model else 0,
"currency": embedding_model.get_currency() if embedding_model else 'USD',
"total_price": '{:f}'.format(embedding_price_info.total_amount) if embedding_model_instance else 0,
"currency": embedding_price_info.currency if embedding_model_instance else 'USD',
"preview": preview_texts
}
@ -290,7 +319,7 @@ class IndexingRunner:
"""
Estimate the indexing for the document.
"""
embedding_model = None
embedding_model_instance = None
if dataset_id:
dataset = Dataset.query.filter_by(
id=dataset_id
@ -298,15 +327,17 @@ class IndexingRunner:
if not dataset:
raise ValueError('Dataset not found.')
if dataset.indexing_technique == 'high_quality' or indexing_technique == 'high_quality':
embedding_model = ModelFactory.get_embedding_model(
tenant_id=dataset.tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
embedding_model_instance = self.model_manager.get_model_instance(
tenant_id=tenant_id,
provider=dataset.embedding_model_provider,
model_type=ModelType.TEXT_EMBEDDING,
model=dataset.embedding_model
)
else:
if indexing_technique == 'high_quality':
embedding_model = ModelFactory.get_embedding_model(
tenant_id=tenant_id
embedding_model_instance = self.model_manager.get_default_model_instance(
tenant_id=tenant_id,
model_type=ModelType.TEXT_EMBEDDING
)
# load data from notion
tokens = 0
@ -349,35 +380,63 @@ class IndexingRunner:
processing_rule=processing_rule
)
total_segments += len(documents)
embedding_model_type_instance = embedding_model_instance.model_type_instance
embedding_model_type_instance = cast(TextEmbeddingModel, embedding_model_type_instance)
for document in documents:
if len(preview_texts) < 5:
preview_texts.append(document.page_content)
if indexing_technique == 'high_quality' or embedding_model:
tokens += embedding_model.get_num_tokens(document.page_content)
if indexing_technique == 'high_quality' or embedding_model_instance:
tokens += embedding_model_type_instance.get_num_tokens(
model=embedding_model_instance.model,
credentials=embedding_model_instance.credentials,
texts=[document.page_content]
)
if doc_form and doc_form == 'qa_model':
text_generation_model = ModelFactory.get_text_generation_model(
tenant_id=tenant_id
model_instance = self.model_manager.get_default_model_instance(
tenant_id=tenant_id,
model_type=ModelType.LLM
)
model_type_instance = model_instance.model_type_instance
model_type_instance = cast(LargeLanguageModel, model_type_instance)
if len(preview_texts) > 0:
# qa model document
response = LLMGenerator.generate_qa_document(current_user.current_tenant_id, preview_texts[0],
doc_language)
document_qa_list = self.format_split_text(response)
price_info = model_type_instance.get_price(
model=model_instance.model,
credentials=model_instance.credentials,
price_type=PriceType.INPUT,
tokens=total_segments * 2000,
)
return {
"total_segments": total_segments * 20,
"tokens": total_segments * 2000,
"total_price": '{:f}'.format(
text_generation_model.calc_tokens_price(total_segments * 2000, MessageType.USER)),
"currency": embedding_model.get_currency(),
"total_price": '{:f}'.format(price_info.total_amount),
"currency": price_info.currency,
"qa_preview": document_qa_list,
"preview": preview_texts
}
embedding_model_type_instance = embedding_model_instance.model_type_instance
embedding_model_type_instance = cast(TextEmbeddingModel, embedding_model_type_instance)
embedding_price_info = embedding_model_type_instance.get_price(
model=embedding_model_instance.model,
credentials=embedding_model_instance.credentials,
price_type=PriceType.INPUT,
tokens=tokens
)
return {
"total_segments": total_segments,
"tokens": tokens,
"total_price": '{:f}'.format(embedding_model.calc_tokens_price(tokens)) if embedding_model else 0,
"currency": embedding_model.get_currency() if embedding_model else 'USD',
"total_price": '{:f}'.format(embedding_price_info.total_amount) if embedding_model_instance else 0,
"currency": embedding_price_info.currency if embedding_model_instance else 'USD',
"preview": preview_texts
}
@ -656,25 +715,36 @@ class IndexingRunner:
"""
vector_index = IndexBuilder.get_index(dataset, 'high_quality')
keyword_table_index = IndexBuilder.get_index(dataset, 'economy')
embedding_model = None
embedding_model_instance = None
if dataset.indexing_technique == 'high_quality':
embedding_model = ModelFactory.get_embedding_model(
embedding_model_instance = self.model_manager.get_model_instance(
tenant_id=dataset.tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
provider=dataset.embedding_model_provider,
model_type=ModelType.TEXT_EMBEDDING,
model=dataset.embedding_model
)
# chunk nodes by chunk size
indexing_start_at = time.perf_counter()
tokens = 0
chunk_size = 100
embedding_model_type_instance = None
if embedding_model_instance:
embedding_model_type_instance = embedding_model_instance.model_type_instance
embedding_model_type_instance = cast(TextEmbeddingModel, embedding_model_type_instance)
for i in range(0, len(documents), chunk_size):
# check document is paused
self._check_document_paused_status(dataset_document.id)
chunk_documents = documents[i:i + chunk_size]
if dataset.indexing_technique == 'high_quality' or embedding_model:
if dataset.indexing_technique == 'high_quality' or embedding_model_type_instance:
tokens += sum(
embedding_model.get_num_tokens(document.page_content)
embedding_model_type_instance.get_num_tokens(
embedding_model_instance.model,
embedding_model_instance.credentials,
[document.page_content]
)
for document in chunk_documents
)

View File

@ -1,95 +0,0 @@
from typing import Any, List, Dict
from langchain.memory.chat_memory import BaseChatMemory
from langchain.schema import get_buffer_string, BaseMessage
from core.file.message_file_parser import MessageFileParser
from core.model_providers.models.entity.message import PromptMessage, MessageType, to_lc_messages
from core.model_providers.models.llm.base import BaseLLM
from extensions.ext_database import db
from models.model import Conversation, Message
class ReadOnlyConversationTokenDBBufferSharedMemory(BaseChatMemory):
conversation: Conversation
human_prefix: str = "Human"
ai_prefix: str = "Assistant"
model_instance: BaseLLM
memory_key: str = "chat_history"
max_token_limit: int = 2000
message_limit: int = 10
@property
def buffer(self) -> List[BaseMessage]:
"""String buffer of memory."""
app_model = self.conversation.app
# fetch limited messages desc, and return reversed
messages = db.session.query(Message).filter(
Message.conversation_id == self.conversation.id,
Message.answer != ''
).order_by(Message.created_at.desc()).limit(self.message_limit).all()
messages = list(reversed(messages))
message_file_parser = MessageFileParser(tenant_id=app_model.tenant_id, app_id=self.conversation.app_id)
chat_messages: List[PromptMessage] = []
for message in messages:
files = message.message_files
if files:
file_objs = message_file_parser.transform_message_files(
files, message.app_model_config
)
prompt_message_files = [file_obj.prompt_message_file for file_obj in file_objs]
chat_messages.append(PromptMessage(
content=message.query,
type=MessageType.USER,
files=prompt_message_files
))
else:
chat_messages.append(PromptMessage(content=message.query, type=MessageType.USER))
chat_messages.append(PromptMessage(content=message.answer, type=MessageType.ASSISTANT))
if not chat_messages:
return []
# prune the chat message if it exceeds the max token limit
curr_buffer_length = self.model_instance.get_num_tokens(chat_messages)
if curr_buffer_length > self.max_token_limit:
pruned_memory = []
while curr_buffer_length > self.max_token_limit and chat_messages:
pruned_memory.append(chat_messages.pop(0))
curr_buffer_length = self.model_instance.get_num_tokens(chat_messages)
return to_lc_messages(chat_messages)
@property
def memory_variables(self) -> List[str]:
"""Will always return list of memory variables.
:meta private:
"""
return [self.memory_key]
def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, Any]:
"""Return history buffer."""
buffer: Any = self.buffer
if self.return_messages:
final_buffer: Any = buffer
else:
final_buffer = get_buffer_string(
buffer,
human_prefix=self.human_prefix,
ai_prefix=self.ai_prefix,
)
return {self.memory_key: final_buffer}
def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None:
"""Nothing should be saved or changed"""
pass
def clear(self) -> None:
"""Nothing to clear, got a memory like a vault."""
pass

View File

@ -1,36 +0,0 @@
from typing import Any, List, Dict
from langchain.memory.chat_memory import BaseChatMemory
from langchain.schema import get_buffer_string
from core.memory.read_only_conversation_token_db_buffer_shared_memory import \
ReadOnlyConversationTokenDBBufferSharedMemory
class ReadOnlyConversationTokenDBStringBufferSharedMemory(BaseChatMemory):
memory: ReadOnlyConversationTokenDBBufferSharedMemory
@property
def memory_variables(self) -> List[str]:
"""Return memory variables."""
return self.memory.memory_variables
def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, str]:
"""Load memory variables from memory."""
buffer: Any = self.memory.buffer
final_buffer = get_buffer_string(
buffer,
human_prefix=self.memory.human_prefix,
ai_prefix=self.memory.ai_prefix,
)
return {self.memory.memory_key: final_buffer}
def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None:
"""Nothing should be saved or changed"""
pass
def clear(self) -> None:
"""Nothing to clear, got a memory like a vault."""
pass

View File

@ -0,0 +1,109 @@
from core.file.message_file_parser import MessageFileParser
from core.model_manager import ModelInstance
from core.model_runtime.entities.message_entities import PromptMessage, TextPromptMessageContent, UserPromptMessage, \
AssistantPromptMessage, PromptMessageRole
from core.model_runtime.entities.model_entities import ModelType
from core.model_runtime.model_providers import model_provider_factory
from extensions.ext_database import db
from models.model import Conversation, Message
class TokenBufferMemory:
def __init__(self, conversation: Conversation, model_instance: ModelInstance) -> None:
self.conversation = conversation
self.model_instance = model_instance
def get_history_prompt_messages(self, max_token_limit: int = 2000,
message_limit: int = 10) -> list[PromptMessage]:
"""
Get history prompt messages.
:param max_token_limit: max token limit
:param message_limit: message limit
"""
app_record = self.conversation.app
# fetch limited messages, and return reversed
messages = db.session.query(Message).filter(
Message.conversation_id == self.conversation.id,
Message.answer != ''
).order_by(Message.created_at.desc()).limit(message_limit).all()
messages = list(reversed(messages))
message_file_parser = MessageFileParser(
tenant_id=app_record.tenant_id,
app_id=app_record.id
)
prompt_messages = []
for message in messages:
files = message.message_files
if files:
file_objs = message_file_parser.transform_message_files(
files, message.app_model_config
)
prompt_message_contents = [TextPromptMessageContent(data=message.query)]
for file_obj in file_objs:
prompt_message_contents.append(file_obj.prompt_message_content)
prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
else:
prompt_messages.append(UserPromptMessage(content=message.query))
prompt_messages.append(AssistantPromptMessage(content=message.answer))
if not prompt_messages:
return []
# prune the chat message if it exceeds the max token limit
provider_instance = model_provider_factory.get_provider_instance(self.model_instance.provider)
model_type_instance = provider_instance.get_model_instance(ModelType.LLM)
curr_message_tokens = model_type_instance.get_num_tokens(
self.model_instance.model,
self.model_instance.credentials,
prompt_messages
)
if curr_message_tokens > max_token_limit:
pruned_memory = []
while curr_message_tokens > max_token_limit and prompt_messages:
pruned_memory.append(prompt_messages.pop(0))
curr_message_tokens = model_type_instance.get_num_tokens(
self.model_instance.model,
self.model_instance.credentials,
prompt_messages
)
return prompt_messages
def get_history_prompt_text(self, human_prefix: str = "Human",
ai_prefix: str = "Assistant",
max_token_limit: int = 2000,
message_limit: int = 10) -> str:
"""
Get history prompt text.
:param human_prefix: human prefix
:param ai_prefix: ai prefix
:param max_token_limit: max token limit
:param message_limit: message limit
:return:
"""
prompt_messages = self.get_history_prompt_messages(
max_token_limit=max_token_limit,
message_limit=message_limit
)
string_messages = []
for m in prompt_messages:
if m.role == PromptMessageRole.USER:
role = human_prefix
elif m.role == PromptMessageRole.ASSISTANT:
role = ai_prefix
else:
continue
message = f"{role}: {m.content}"
string_messages.append(message)
return "\n".join(string_messages)

209
api/core/model_manager.py Normal file
View File

@ -0,0 +1,209 @@
from typing import Optional, Union, Generator, cast, List, IO
from core.entities.provider_configuration import ProviderModelBundle
from core.errors.error import ProviderTokenNotInitError
from core.model_runtime.callbacks.base_callback import Callback
from core.model_runtime.entities.llm_entities import LLMResult
from core.model_runtime.entities.message_entities import PromptMessageTool, PromptMessage
from core.model_runtime.entities.model_entities import ModelType
from core.model_runtime.entities.rerank_entities import RerankResult
from core.model_runtime.entities.text_embedding_entities import TextEmbeddingResult
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
from core.model_runtime.model_providers.__base.moderation_model import ModerationModel
from core.model_runtime.model_providers.__base.rerank_model import RerankModel
from core.model_runtime.model_providers.__base.speech2text_model import Speech2TextModel
from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
from core.provider_manager import ProviderManager
class ModelInstance:
"""
Model instance class
"""
def __init__(self, provider_model_bundle: ProviderModelBundle, model: str) -> None:
self._provider_model_bundle = provider_model_bundle
self.model = model
self.provider = provider_model_bundle.configuration.provider.provider
self.credentials = self._fetch_credentials_from_bundle(provider_model_bundle, model)
self.model_type_instance = self._provider_model_bundle.model_type_instance
def _fetch_credentials_from_bundle(self, provider_model_bundle: ProviderModelBundle, model: str) -> dict:
"""
Fetch credentials from provider model bundle
:param provider_model_bundle: provider model bundle
:param model: model name
:return:
"""
credentials = provider_model_bundle.configuration.get_current_credentials(
model_type=provider_model_bundle.model_type_instance.model_type,
model=model
)
if credentials is None:
raise ProviderTokenNotInitError(f"Model {model} credentials is not initialized.")
return credentials
def invoke_llm(self, prompt_messages: list[PromptMessage], model_parameters: Optional[dict] = None,
tools: Optional[list[PromptMessageTool]] = None, stop: Optional[List[str]] = None,
stream: bool = True, user: Optional[str] = None, callbacks: list[Callback] = None) \
-> Union[LLMResult, Generator]:
"""
Invoke large language model
:param prompt_messages: prompt messages
:param model_parameters: model parameters
:param tools: tools for tool calling
:param stop: stop words
:param stream: is stream response
:param user: unique user id
:param callbacks: callbacks
:return: full response or stream response chunk generator result
"""
if not isinstance(self.model_type_instance, LargeLanguageModel):
raise Exception(f"Model type instance is not LargeLanguageModel")
self.model_type_instance = cast(LargeLanguageModel, self.model_type_instance)
return self.model_type_instance.invoke(
model=self.model,
credentials=self.credentials,
prompt_messages=prompt_messages,
model_parameters=model_parameters,
tools=tools,
stop=stop,
stream=stream,
user=user,
callbacks=callbacks
)
def invoke_text_embedding(self, texts: list[str], user: Optional[str] = None) \
-> TextEmbeddingResult:
"""
Invoke large language model
:param texts: texts to embed
:param user: unique user id
:return: embeddings result
"""
if not isinstance(self.model_type_instance, TextEmbeddingModel):
raise Exception(f"Model type instance is not TextEmbeddingModel")
self.model_type_instance = cast(TextEmbeddingModel, self.model_type_instance)
return self.model_type_instance.invoke(
model=self.model,
credentials=self.credentials,
texts=texts,
user=user
)
def invoke_rerank(self, query: str, docs: list[str], score_threshold: Optional[float] = None, top_n: Optional[int] = None,
user: Optional[str] = None) \
-> RerankResult:
"""
Invoke rerank model
:param query: search query
:param docs: docs for reranking
:param score_threshold: score threshold
:param top_n: top n
:param user: unique user id
:return: rerank result
"""
if not isinstance(self.model_type_instance, RerankModel):
raise Exception(f"Model type instance is not RerankModel")
self.model_type_instance = cast(RerankModel, self.model_type_instance)
return self.model_type_instance.invoke(
model=self.model,
credentials=self.credentials,
query=query,
docs=docs,
score_threshold=score_threshold,
top_n=top_n,
user=user
)
def invoke_moderation(self, text: str, user: Optional[str] = None) \
-> bool:
"""
Invoke moderation model
:param text: text to moderate
:param user: unique user id
:return: false if text is safe, true otherwise
"""
if not isinstance(self.model_type_instance, ModerationModel):
raise Exception(f"Model type instance is not ModerationModel")
self.model_type_instance = cast(ModerationModel, self.model_type_instance)
return self.model_type_instance.invoke(
model=self.model,
credentials=self.credentials,
text=text,
user=user
)
def invoke_speech2text(self, file: IO[bytes], user: Optional[str] = None) \
-> str:
"""
Invoke large language model
:param file: audio file
:param user: unique user id
:return: text for given audio file
"""
if not isinstance(self.model_type_instance, Speech2TextModel):
raise Exception(f"Model type instance is not Speech2TextModel")
self.model_type_instance = cast(Speech2TextModel, self.model_type_instance)
return self.model_type_instance.invoke(
model=self.model,
credentials=self.credentials,
file=file,
user=user
)
class ModelManager:
def __init__(self) -> None:
self._provider_manager = ProviderManager()
def get_model_instance(self, tenant_id: str, provider: str, model_type: ModelType, model: str) -> ModelInstance:
"""
Get model instance
:param tenant_id: tenant id
:param provider: provider name
:param model_type: model type
:param model: model name
:return:
"""
provider_model_bundle = self._provider_manager.get_provider_model_bundle(
tenant_id=tenant_id,
provider=provider,
model_type=model_type
)
return ModelInstance(provider_model_bundle, model)
def get_default_model_instance(self, tenant_id: str, model_type: ModelType) -> ModelInstance:
"""
Get default model instance
:param tenant_id: tenant id
:param model_type: model type
:return:
"""
default_model_entity = self._provider_manager.get_default_model(
tenant_id=tenant_id,
model_type=model_type
)
if not default_model_entity:
raise ProviderTokenNotInitError(f"Default model not found for {model_type}")
return self.get_model_instance(
tenant_id=tenant_id,
provider=default_model_entity.provider.provider,
model_type=model_type,
model=default_model_entity.model
)

View File

@ -1,335 +0,0 @@
from typing import Optional
from langchain.callbacks.base import Callbacks
from core.model_providers.error import ProviderTokenNotInitError, LLMBadRequestError
from core.model_providers.model_provider_factory import ModelProviderFactory, DEFAULT_MODELS
from core.model_providers.models.base import BaseProviderModel
from core.model_providers.models.embedding.base import BaseEmbedding
from core.model_providers.models.entity.model_params import ModelKwargs, ModelType
from core.model_providers.models.llm.base import BaseLLM
from core.model_providers.models.moderation.base import BaseModeration
from core.model_providers.models.reranking.base import BaseReranking
from core.model_providers.models.speech2text.base import BaseSpeech2Text
from extensions.ext_database import db
from models.provider import TenantDefaultModel
class ModelFactory:
@classmethod
def get_text_generation_model_from_model_config(cls, tenant_id: str,
model_config: dict,
streaming: bool = False,
callbacks: Callbacks = None) -> Optional[BaseLLM]:
provider_name = model_config.get("provider")
model_name = model_config.get("name")
completion_params = model_config.get("completion_params", {})
return cls.get_text_generation_model(
tenant_id=tenant_id,
model_provider_name=provider_name,
model_name=model_name,
model_kwargs=ModelKwargs(
temperature=completion_params.get('temperature', 0),
max_tokens=completion_params.get('max_tokens', 256),
top_p=completion_params.get('top_p', 0),
frequency_penalty=completion_params.get('frequency_penalty', 0.1),
presence_penalty=completion_params.get('presence_penalty', 0.1)
),
streaming=streaming,
callbacks=callbacks
)
@classmethod
def get_text_generation_model(cls,
tenant_id: str,
model_provider_name: Optional[str] = None,
model_name: Optional[str] = None,
model_kwargs: Optional[ModelKwargs] = None,
streaming: bool = False,
callbacks: Callbacks = None,
deduct_quota: bool = True) -> Optional[BaseLLM]:
"""
get text generation model.
:param tenant_id: a string representing the ID of the tenant.
:param model_provider_name:
:param model_name:
:param model_kwargs:
:param streaming:
:param callbacks:
:param deduct_quota:
:return:
"""
is_default_model = False
if model_provider_name is None and model_name is None:
default_model = cls.get_default_model(tenant_id, ModelType.TEXT_GENERATION)
if not default_model:
raise LLMBadRequestError(f"Default model is not available. "
f"Please configure a Default System Reasoning Model "
f"in the Settings -> Model Provider.")
model_provider_name = default_model.provider_name
model_name = default_model.model_name
is_default_model = True
# get model provider
model_provider = ModelProviderFactory.get_preferred_model_provider(tenant_id, model_provider_name)
if not model_provider:
raise ProviderTokenNotInitError(f"Model {model_name} provider credentials is not initialized.")
# init text generation model
model_class = model_provider.get_model_class(model_type=ModelType.TEXT_GENERATION)
try:
model_instance = model_class(
model_provider=model_provider,
name=model_name,
model_kwargs=model_kwargs,
streaming=streaming,
callbacks=callbacks
)
except LLMBadRequestError as e:
if is_default_model:
raise LLMBadRequestError(f"Default model {model_name} is not available. "
f"Please check your model provider credentials.")
else:
raise e
if is_default_model or not deduct_quota:
model_instance.deduct_quota = False
return model_instance
@classmethod
def get_embedding_model(cls,
tenant_id: str,
model_provider_name: Optional[str] = None,
model_name: Optional[str] = None) -> Optional[BaseEmbedding]:
"""
get embedding model.
:param tenant_id: a string representing the ID of the tenant.
:param model_provider_name:
:param model_name:
:return:
"""
if model_provider_name is None and model_name is None:
default_model = cls.get_default_model(tenant_id, ModelType.EMBEDDINGS)
if not default_model:
raise LLMBadRequestError(f"Default model is not available. "
f"Please configure a Default Embedding Model "
f"in the Settings -> Model Provider.")
model_provider_name = default_model.provider_name
model_name = default_model.model_name
# get model provider
model_provider = ModelProviderFactory.get_preferred_model_provider(tenant_id, model_provider_name)
if not model_provider:
raise ProviderTokenNotInitError(f"Model {model_name} provider credentials is not initialized.")
# init embedding model
model_class = model_provider.get_model_class(model_type=ModelType.EMBEDDINGS)
return model_class(
model_provider=model_provider,
name=model_name
)
@classmethod
def get_reranking_model(cls,
tenant_id: str,
model_provider_name: Optional[str] = None,
model_name: Optional[str] = None) -> Optional[BaseReranking]:
"""
get reranking model.
:param tenant_id: a string representing the ID of the tenant.
:param model_provider_name:
:param model_name:
:return:
"""
if (model_provider_name is None or len(model_provider_name) == 0) and (model_name is None or len(model_name) == 0):
default_model = cls.get_default_model(tenant_id, ModelType.RERANKING)
if not default_model:
raise LLMBadRequestError(f"Default model is not available. "
f"Please configure a Default Reranking Model "
f"in the Settings -> Model Provider.")
model_provider_name = default_model.provider_name
model_name = default_model.model_name
# get model provider
model_provider = ModelProviderFactory.get_preferred_model_provider(tenant_id, model_provider_name)
if not model_provider:
raise ProviderTokenNotInitError(f"Model {model_name} provider credentials is not initialized.")
# init reranking model
model_class = model_provider.get_model_class(model_type=ModelType.RERANKING)
return model_class(
model_provider=model_provider,
name=model_name
)
@classmethod
def get_speech2text_model(cls,
tenant_id: str,
model_provider_name: Optional[str] = None,
model_name: Optional[str] = None) -> Optional[BaseSpeech2Text]:
"""
get speech to text model.
:param tenant_id: a string representing the ID of the tenant.
:param model_provider_name:
:param model_name:
:return:
"""
if model_provider_name is None and model_name is None:
default_model = cls.get_default_model(tenant_id, ModelType.SPEECH_TO_TEXT)
if not default_model:
raise LLMBadRequestError(f"Default model is not available. "
f"Please configure a Default Speech-to-Text Model "
f"in the Settings -> Model Provider.")
model_provider_name = default_model.provider_name
model_name = default_model.model_name
# get model provider
model_provider = ModelProviderFactory.get_preferred_model_provider(tenant_id, model_provider_name)
if not model_provider:
raise ProviderTokenNotInitError(f"Model {model_name} provider credentials is not initialized.")
# init speech to text model
model_class = model_provider.get_model_class(model_type=ModelType.SPEECH_TO_TEXT)
return model_class(
model_provider=model_provider,
name=model_name
)
@classmethod
def get_moderation_model(cls,
tenant_id: str,
model_provider_name: str,
model_name: str) -> Optional[BaseModeration]:
"""
get moderation model.
:param tenant_id: a string representing the ID of the tenant.
:param model_provider_name:
:param model_name:
:return:
"""
# get model provider
model_provider = ModelProviderFactory.get_preferred_model_provider(tenant_id, model_provider_name)
if not model_provider:
raise ProviderTokenNotInitError(f"Model {model_name} provider credentials is not initialized.")
# init moderation model
model_class = model_provider.get_model_class(model_type=ModelType.MODERATION)
return model_class(
model_provider=model_provider,
name=model_name
)
@classmethod
def get_default_model(cls, tenant_id: str, model_type: ModelType) -> TenantDefaultModel:
"""
get default model of model type.
:param tenant_id:
:param model_type:
:return:
"""
# get default model
default_model = db.session.query(TenantDefaultModel) \
.filter(
TenantDefaultModel.tenant_id == tenant_id,
TenantDefaultModel.model_type == model_type.value
).first()
if not default_model:
model_provider_rules = ModelProviderFactory.get_provider_rules()
for model_provider_name, model_provider_rule in model_provider_rules.items():
model_provider = ModelProviderFactory.get_preferred_model_provider(tenant_id, model_provider_name)
if not model_provider:
continue
model_list = model_provider.get_supported_model_list(model_type)
if model_list:
model_info = model_list[0]
default_model = TenantDefaultModel(
tenant_id=tenant_id,
model_type=model_type.value,
provider_name=model_provider_name,
model_name=model_info['id']
)
db.session.add(default_model)
db.session.commit()
break
return default_model
@classmethod
def update_default_model(cls,
tenant_id: str,
model_type: ModelType,
provider_name: str,
model_name: str) -> TenantDefaultModel:
"""
update default model of model type.
:param tenant_id:
:param model_type:
:param provider_name:
:param model_name:
:return:
"""
model_provider_name = ModelProviderFactory.get_provider_names()
if provider_name not in model_provider_name:
raise ValueError(f'Invalid provider name: {provider_name}')
model_provider = ModelProviderFactory.get_preferred_model_provider(tenant_id, provider_name)
if not model_provider:
raise ProviderTokenNotInitError(f"Model {model_name} provider credentials is not initialized.")
model_list = model_provider.get_supported_model_list(model_type)
model_ids = [model['id'] for model in model_list]
if model_name not in model_ids:
raise ValueError(f'Invalid model name: {model_name}')
# get default model
default_model = db.session.query(TenantDefaultModel) \
.filter(
TenantDefaultModel.tenant_id == tenant_id,
TenantDefaultModel.model_type == model_type.value
).first()
if default_model:
# update default model
default_model.provider_name = provider_name
default_model.model_name = model_name
db.session.commit()
else:
# create default model
default_model = TenantDefaultModel(
tenant_id=tenant_id,
model_type=model_type.value,
provider_name=provider_name,
model_name=model_name,
)
db.session.add(default_model)
db.session.commit()
return default_model

View File

@ -1,276 +0,0 @@
from typing import Type
from sqlalchemy.exc import IntegrityError
from core.model_providers.models.entity.model_params import ModelType
from core.model_providers.providers.base import BaseModelProvider
from core.model_providers.rules import provider_rules
from extensions.ext_database import db
from models.provider import TenantPreferredModelProvider, ProviderType, Provider, ProviderQuotaType
DEFAULT_MODELS = {
ModelType.TEXT_GENERATION.value: {
'provider_name': 'openai',
'model_name': 'gpt-3.5-turbo',
},
ModelType.EMBEDDINGS.value: {
'provider_name': 'openai',
'model_name': 'text-embedding-ada-002',
},
ModelType.SPEECH_TO_TEXT.value: {
'provider_name': 'openai',
'model_name': 'whisper-1',
}
}
class ModelProviderFactory:
@classmethod
def get_model_provider_class(cls, provider_name: str) -> Type[BaseModelProvider]:
if provider_name == 'openai':
from core.model_providers.providers.openai_provider import OpenAIProvider
return OpenAIProvider
elif provider_name == 'anthropic':
from core.model_providers.providers.anthropic_provider import AnthropicProvider
return AnthropicProvider
elif provider_name == 'minimax':
from core.model_providers.providers.minimax_provider import MinimaxProvider
return MinimaxProvider
elif provider_name == 'spark':
from core.model_providers.providers.spark_provider import SparkProvider
return SparkProvider
elif provider_name == 'tongyi':
from core.model_providers.providers.tongyi_provider import TongyiProvider
return TongyiProvider
elif provider_name == 'wenxin':
from core.model_providers.providers.wenxin_provider import WenxinProvider
return WenxinProvider
elif provider_name == 'zhipuai':
from core.model_providers.providers.zhipuai_provider import ZhipuAIProvider
return ZhipuAIProvider
elif provider_name == 'chatglm':
from core.model_providers.providers.chatglm_provider import ChatGLMProvider
return ChatGLMProvider
elif provider_name == 'baichuan':
from core.model_providers.providers.baichuan_provider import BaichuanProvider
return BaichuanProvider
elif provider_name == 'azure_openai':
from core.model_providers.providers.azure_openai_provider import AzureOpenAIProvider
return AzureOpenAIProvider
elif provider_name == 'replicate':
from core.model_providers.providers.replicate_provider import ReplicateProvider
return ReplicateProvider
elif provider_name == 'huggingface_hub':
from core.model_providers.providers.huggingface_hub_provider import HuggingfaceHubProvider
return HuggingfaceHubProvider
elif provider_name == 'xinference':
from core.model_providers.providers.xinference_provider import XinferenceProvider
return XinferenceProvider
elif provider_name == 'openllm':
from core.model_providers.providers.openllm_provider import OpenLLMProvider
return OpenLLMProvider
elif provider_name == 'localai':
from core.model_providers.providers.localai_provider import LocalAIProvider
return LocalAIProvider
elif provider_name == 'cohere':
from core.model_providers.providers.cohere_provider import CohereProvider
return CohereProvider
elif provider_name == 'jina':
from core.model_providers.providers.jina_provider import JinaProvider
return JinaProvider
else:
raise NotImplementedError
@classmethod
def get_provider_names(cls):
"""
Returns a list of provider names.
"""
return list(provider_rules.keys())
@classmethod
def get_provider_rules(cls):
"""
Returns a list of provider rules.
:return:
"""
return provider_rules
@classmethod
def get_provider_rule(cls, provider_name: str):
"""
Returns provider rule.
"""
return provider_rules[provider_name]
@classmethod
def get_preferred_model_provider(cls, tenant_id: str, model_provider_name: str):
"""
get preferred model provider.
:param tenant_id: a string representing the ID of the tenant.
:param model_provider_name:
:return:
"""
# get preferred provider
preferred_provider = cls._get_preferred_provider(tenant_id, model_provider_name)
if not preferred_provider or not preferred_provider.is_valid:
return None
# init model provider
model_provider_class = ModelProviderFactory.get_model_provider_class(model_provider_name)
return model_provider_class(provider=preferred_provider)
@classmethod
def get_preferred_type_by_preferred_model_provider(cls,
tenant_id: str,
model_provider_name: str,
preferred_model_provider: TenantPreferredModelProvider):
"""
get preferred provider type by preferred model provider.
:param model_provider_name:
:param preferred_model_provider:
:return:
"""
if not preferred_model_provider:
model_provider_rules = ModelProviderFactory.get_provider_rule(model_provider_name)
support_provider_types = model_provider_rules['support_provider_types']
if ProviderType.CUSTOM.value in support_provider_types:
custom_provider = db.session.query(Provider) \
.filter(
Provider.tenant_id == tenant_id,
Provider.provider_name == model_provider_name,
Provider.provider_type == ProviderType.CUSTOM.value,
Provider.is_valid == True
).first()
if custom_provider:
return ProviderType.CUSTOM.value
model_provider = cls.get_model_provider_class(model_provider_name)
if ProviderType.SYSTEM.value in support_provider_types \
and model_provider.is_provider_type_system_supported():
return ProviderType.SYSTEM.value
elif ProviderType.CUSTOM.value in support_provider_types:
return ProviderType.CUSTOM.value
else:
return preferred_model_provider.preferred_provider_type
@classmethod
def _get_preferred_provider(cls, tenant_id: str, model_provider_name: str):
"""
get preferred provider of tenant.
:param tenant_id:
:param model_provider_name:
:return:
"""
# get preferred provider type
preferred_provider_type = cls._get_preferred_provider_type(tenant_id, model_provider_name)
# get providers by preferred provider type
providers = db.session.query(Provider) \
.filter(
Provider.tenant_id == tenant_id,
Provider.provider_name == model_provider_name,
Provider.provider_type == preferred_provider_type
).all()
no_system_provider = False
if preferred_provider_type == ProviderType.SYSTEM.value:
quota_type_to_provider_dict = {}
for provider in providers:
quota_type_to_provider_dict[provider.quota_type] = provider
model_provider_rules = ModelProviderFactory.get_provider_rule(model_provider_name)
for quota_type_enum in ProviderQuotaType:
quota_type = quota_type_enum.value
if quota_type in model_provider_rules['system_config']['supported_quota_types']:
if quota_type in quota_type_to_provider_dict.keys():
provider = quota_type_to_provider_dict[quota_type]
if provider.is_valid and provider.quota_limit > provider.quota_used:
return provider
elif quota_type == ProviderQuotaType.TRIAL.value:
try:
provider = Provider(
tenant_id=tenant_id,
provider_name=model_provider_name,
provider_type=ProviderType.SYSTEM.value,
is_valid=True,
quota_type=ProviderQuotaType.TRIAL.value,
quota_limit=model_provider_rules['system_config']['quota_limit'],
quota_used=0
)
db.session.add(provider)
db.session.commit()
except IntegrityError:
db.session.rollback()
provider = db.session.query(Provider) \
.filter(
Provider.tenant_id == tenant_id,
Provider.provider_name == model_provider_name,
Provider.provider_type == ProviderType.SYSTEM.value,
Provider.quota_type == ProviderQuotaType.TRIAL.value
).first()
if provider.quota_limit == 0:
return None
return provider
no_system_provider = True
if no_system_provider:
providers = db.session.query(Provider) \
.filter(
Provider.tenant_id == tenant_id,
Provider.provider_name == model_provider_name,
Provider.provider_type == ProviderType.CUSTOM.value
).all()
if preferred_provider_type == ProviderType.CUSTOM.value or no_system_provider:
if providers:
return providers[0]
else:
try:
provider = Provider(
tenant_id=tenant_id,
provider_name=model_provider_name,
provider_type=ProviderType.CUSTOM.value,
is_valid=False
)
db.session.add(provider)
db.session.commit()
except IntegrityError:
db.session.rollback()
provider = db.session.query(Provider) \
.filter(
Provider.tenant_id == tenant_id,
Provider.provider_name == model_provider_name,
Provider.provider_type == ProviderType.CUSTOM.value
).first()
return provider
return None
@classmethod
def _get_preferred_provider_type(cls, tenant_id: str, model_provider_name: str):
"""
get preferred provider type of tenant.
:param tenant_id:
:param model_provider_name:
:return:
"""
preferred_model_provider = db.session.query(TenantPreferredModelProvider) \
.filter(
TenantPreferredModelProvider.tenant_id == tenant_id,
TenantPreferredModelProvider.provider_name == model_provider_name
).first()
return cls.get_preferred_type_by_preferred_model_provider(tenant_id, model_provider_name, preferred_model_provider)

Some files were not shown because too many files have changed in this diff Show More