feat: support Chroma vector store (#5015)

This commit is contained in:
Bowen Liang 2024-06-13 18:02:18 +08:00 committed by GitHub
parent 3f18369ad2
commit cdc08a434f
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
16 changed files with 1483 additions and 13 deletions

View File

@ -58,7 +58,7 @@ jobs:
- name: Run Workflow
run: dev/pytest/pytest_workflow.sh
- name: Set up Vector Stores (Weaviate, Qdrant, PGVector, Milvus, PgVecto-RS)
- name: Set up Vector Stores (Weaviate, Qdrant, PGVector, Milvus, PgVecto-RS, Chroma)
uses: hoverkraft-tech/compose-action@v2.0.0
with:
compose-file: |
@ -67,6 +67,7 @@ jobs:
docker/docker-compose.milvus.yaml
docker/docker-compose.pgvecto-rs.yaml
docker/docker-compose.pgvector.yaml
docker/docker-compose.chroma.yaml
services: |
weaviate
qdrant
@ -75,6 +76,7 @@ jobs:
milvus-standalone
pgvecto-rs
pgvector
chroma
- name: Test Vector Stores
run: dev/pytest/pytest_vdb.sh
@ -131,7 +133,7 @@ jobs:
- name: Run Workflow
run: poetry run -C api bash dev/pytest/pytest_workflow.sh
- name: Set up Vector Stores (Weaviate, Qdrant, PGVector, Milvus, PgVecto-RS)
- name: Set up Vector Stores (Weaviate, Qdrant, PGVector, Milvus, PgVecto-RS, Chroma)
uses: hoverkraft-tech/compose-action@v2.0.0
with:
compose-file: |
@ -140,6 +142,7 @@ jobs:
docker/docker-compose.milvus.yaml
docker/docker-compose.pgvecto-rs.yaml
docker/docker-compose.pgvector.yaml
docker/docker-compose.chroma.yaml
services: |
weaviate
qdrant
@ -148,6 +151,7 @@ jobs:
milvus-standalone
pgvecto-rs
pgvector
chroma
- name: Test Vector Stores
run: poetry run -C api bash dev/pytest/pytest_vdb.sh

1
.gitignore vendored
View File

@ -149,6 +149,7 @@ docker/volumes/qdrant/*
docker/volumes/etcd/*
docker/volumes/minio/*
docker/volumes/milvus/*
docker/volumes/chroma/*
sdks/python-client/build
sdks/python-client/dist

View File

@ -119,6 +119,14 @@ TIDB_VECTOR_USER=xxx.root
TIDB_VECTOR_PASSWORD=xxxxxx
TIDB_VECTOR_DATABASE=dify
# Chroma configuration
CHROMA_HOST=127.0.0.1
CHROMA_PORT=8000
CHROMA_TENANT=default_tenant
CHROMA_DATABASE=default_database
CHROMA_AUTH_PROVIDER=chromadb.auth.token_authn.TokenAuthenticationServerProvider
CHROMA_AUTH_CREDENTIALS=difyai123456
# Upload configuration
UPLOAD_FILE_SIZE_LIMIT=15
UPLOAD_FILE_BATCH_LIMIT=5

View File

@ -306,6 +306,14 @@ class Config:
self.TIDB_VECTOR_PASSWORD = get_env('TIDB_VECTOR_PASSWORD')
self.TIDB_VECTOR_DATABASE = get_env('TIDB_VECTOR_DATABASE')
# chroma settings
self.CHROMA_HOST = get_env('CHROMA_HOST')
self.CHROMA_PORT = get_env('CHROMA_PORT')
self.CHROMA_TENANT = get_env('CHROMA_TENANT')
self.CHROMA_DATABASE = get_env('CHROMA_DATABASE')
self.CHROMA_AUTH_PROVIDER = get_env('CHROMA_AUTH_PROVIDER')
self.CHROMA_AUTH_CREDENTIALS = get_env('CHROMA_AUTH_CREDENTIALS')
# ------------------------
# Mail Configurations.
# ------------------------

View File

@ -479,7 +479,7 @@ class DatasetRetrievalSettingApi(Resource):
vector_type = current_app.config['VECTOR_STORE']
match vector_type:
case VectorType.MILVUS | VectorType.RELYT | VectorType.PGVECTOR | VectorType.TIDB_VECTOR:
case VectorType.MILVUS | VectorType.RELYT | VectorType.PGVECTOR | VectorType.TIDB_VECTOR | VectorType.CHROMA:
return {
'retrieval_method': [
'semantic_search'
@ -501,7 +501,7 @@ class DatasetRetrievalSettingMockApi(Resource):
@account_initialization_required
def get(self, vector_type):
match vector_type:
case VectorType.MILVUS | VectorType.RELYT | VectorType.PGVECTOR | VectorType.TIDB_VECTOR:
case VectorType.MILVUS | VectorType.RELYT | VectorType.PGVECTOR | VectorType.TIDB_VECTOR | VectorType.CHROMA:
return {
'retrieval_method': [
'semantic_search'

View File

@ -0,0 +1,147 @@
import json
from typing import Any, Optional
import chromadb
from chromadb import QueryResult, Settings
from flask import current_app
from pydantic import BaseModel
from core.rag.datasource.entity.embedding import Embeddings
from core.rag.datasource.vdb.vector_base import BaseVector
from core.rag.datasource.vdb.vector_factory import AbstractVectorFactory
from core.rag.datasource.vdb.vector_type import VectorType
from core.rag.models.document import Document
from extensions.ext_redis import redis_client
from models.dataset import Dataset
class ChromaConfig(BaseModel):
host: str
port: int
tenant: str
database: str
auth_provider: Optional[str] = None
auth_credentials: Optional[str] = None
def to_chroma_params(self):
settings = Settings(
# auth
chroma_client_auth_provider=self.auth_provider,
chroma_client_auth_credentials=self.auth_credentials
)
return {
'host': self.host,
'port': self.port,
'ssl': False,
'tenant': self.tenant,
'database': self.database,
'settings': settings,
}
class ChromaVector(BaseVector):
def __init__(self, collection_name: str, config: ChromaConfig):
super().__init__(collection_name)
self._client_config = config
self._client = chromadb.HttpClient(**self._client_config.to_chroma_params())
def get_type(self) -> str:
return VectorType.CHROMA
def create(self, texts: list[Document], embeddings: list[list[float]], **kwargs):
if texts:
# create collection
self.create_collection(self._collection_name)
self.add_texts(texts, embeddings, **kwargs)
def create_collection(self, collection_name: str):
lock_name = 'vector_indexing_lock_{}'.format(collection_name)
with redis_client.lock(lock_name, timeout=20):
collection_exist_cache_key = 'vector_indexing_{}'.format(self._collection_name)
if redis_client.get(collection_exist_cache_key):
return
self._client.get_or_create_collection(collection_name)
redis_client.set(collection_exist_cache_key, 1, ex=3600)
def add_texts(self, documents: list[Document], embeddings: list[list[float]], **kwargs):
uuids = self._get_uuids(documents)
texts = [d.page_content for d in documents]
metadatas = [d.metadata for d in documents]
collection = self._client.get_or_create_collection(self._collection_name)
collection.upsert(ids=uuids, documents=texts, embeddings=embeddings, metadatas=metadatas)
def delete_by_metadata_field(self, key: str, value: str):
collection = self._client.get_or_create_collection(self._collection_name)
collection.delete(where={key: {'$eq': value}})
def delete(self):
self._client.delete_collection(self._collection_name)
def delete_by_ids(self, ids: list[str]) -> None:
collection = self._client.get_or_create_collection(self._collection_name)
collection.delete(ids=ids)
def text_exists(self, id: str) -> bool:
collection = self._client.get_or_create_collection(self._collection_name)
response = collection.get(ids=[id])
return len(response) > 0
def search_by_vector(self, query_vector: list[float], **kwargs: Any) -> list[Document]:
collection = self._client.get_or_create_collection(self._collection_name)
results: QueryResult = collection.query(query_embeddings=query_vector, n_results=kwargs.get("top_k", 4))
score_threshold = kwargs.get("score_threshold", .0) if kwargs.get('score_threshold', .0) else 0.0
ids: list[str] = results['ids'][0]
documents: list[str] = results['documents'][0]
metadatas: dict[str, Any] = results['metadatas'][0]
distances: list[float] = results['distances'][0]
docs = []
for index in range(len(ids)):
distance = distances[index]
metadata = metadatas[index]
if distance >= score_threshold:
metadata['score'] = distance
doc = Document(
page_content=documents[index],
metadata=metadata,
)
docs.append(doc)
return docs
def search_by_full_text(self, query: str, **kwargs: Any) -> list[Document]:
# chroma does not support BM25 full text searching
return []
class ChromaVectorFactory(AbstractVectorFactory):
def init_vector(self, dataset: Dataset, attributes: list, embeddings: Embeddings) -> BaseVector:
if dataset.index_struct_dict:
class_prefix: str = dataset.index_struct_dict['vector_store']['class_prefix']
collection_name = class_prefix.lower()
else:
dataset_id = dataset.id
collection_name = Dataset.gen_collection_name_by_id(dataset_id).lower()
index_struct_dict = {
"type": VectorType.CHROMA,
"vector_store": {"class_prefix": collection_name}
}
dataset.index_struct = json.dumps(index_struct_dict)
config = current_app.config
return ChromaVector(
collection_name=collection_name,
config=ChromaConfig(
host=config.get('CHROMA_HOST'),
port=int(config.get('CHROMA_PORT')),
tenant=config.get('CHROMA_TENANT', chromadb.DEFAULT_TENANT),
database=config.get('CHROMA_DATABASE', chromadb.DEFAULT_DATABASE),
auth_provider=config.get('CHROMA_AUTH_PROVIDER'),
auth_credentials=config.get('CHROMA_AUTH_CREDENTIALS'),
),
)

View File

@ -52,6 +52,9 @@ class Vector:
@staticmethod
def get_vector_factory(vector_type: str) -> type[AbstractVectorFactory]:
match vector_type:
case VectorType.CHROMA:
from core.rag.datasource.vdb.chroma.chroma_vector import ChromaVectorFactory
return ChromaVectorFactory
case VectorType.MILVUS:
from core.rag.datasource.vdb.milvus.milvus_vector import MilvusVectorFactory
return MilvusVectorFactory

View File

@ -2,6 +2,7 @@ from enum import Enum
class VectorType(str, Enum):
CHROMA = 'chroma'
MILVUS = 'milvus'
PGVECTOR = 'pgvector'
PGVECTO_RS = 'pgvecto-rs'

1249
api/poetry.lock generated

File diff suppressed because it is too large Load Diff

View File

@ -107,7 +107,6 @@ pycryptodome = "3.19.1"
python-dotenv = "1.0.0"
authlib = "1.2.0"
boto3 = "1.28.17"
tenacity = "8.2.2"
cachetools = "~5.3.0"
weaviate-client = "~3.21.0"
mailchimp-transactional = "~1.0.50"
@ -179,6 +178,7 @@ google-cloud-aiplatform = "1.49.0"
vanna = {version = "0.5.5", extras = ["postgres", "mysql", "clickhouse", "duckdb"]}
kaleido = "0.2.1"
tencentcloud-sdk-python-hunyuan = "~3.0.1158"
chromadb = "~0.5.0"
[tool.poetry.group.dev]
optional = true

View File

@ -16,7 +16,6 @@ pycryptodome==3.19.1
python-dotenv==1.0.0
Authlib==1.2.0
boto3==1.34.123
tenacity==8.2.2
cachetools~=5.3.0
weaviate-client~=3.21.0
mailchimp-transactional~=1.0.50
@ -85,4 +84,5 @@ pymysql==1.1.1
tidb-vector==0.0.9
google-cloud-aiplatform==1.49.0
vanna[postgres,mysql,clickhouse,duckdb]==0.5.5
tencentcloud-sdk-python-hunyuan~=3.0.1158
tencentcloud-sdk-python-hunyuan~=3.0.1158
chromadb~=0.5.0

View File

@ -0,0 +1,33 @@
import chromadb
from core.rag.datasource.vdb.chroma.chroma_vector import ChromaConfig, ChromaVector
from tests.integration_tests.vdb.test_vector_store import (
AbstractVectorTest,
get_example_text,
setup_mock_redis,
)
class ChromaVectorTest(AbstractVectorTest):
def __init__(self):
super().__init__()
self.vector = ChromaVector(
collection_name=self.collection_name,
config=ChromaConfig(
host='localhost',
port=8000,
tenant=chromadb.DEFAULT_TENANT,
database=chromadb.DEFAULT_DATABASE,
auth_provider="chromadb.auth.token_authn.TokenAuthClientProvider",
auth_credentials="difyai123456",
)
)
def search_by_full_text(self):
# chroma dos not support full text searching
hits_by_full_text = self.vector.search_by_full_text(query=get_example_text())
assert len(hits_by_full_text) == 0
def test_chroma_vector(setup_mock_redis):
ChromaVectorTest().run_all_tests()

View File

@ -0,0 +1,14 @@
version: '3'
services:
# Chroma vector store.
chroma:
image: ghcr.io/chroma-core/chroma:0.5.0
restart: always
volumes:
- ./volumes/chroma:/chroma/chroma
environment:
CHROMA_SERVER_AUTHN_CREDENTIALS: difyai123456
CHROMA_SERVER_AUTHN_PROVIDER: chromadb.auth.token_authn.TokenAuthenticationServerProvider
IS_PERSISTENT: TRUE
ports:
- "8000:8000"

View File

@ -140,6 +140,13 @@ services:
TIDB_VECTOR_USER: xxx.root
TIDB_VECTOR_PASSWORD: xxxxxx
TIDB_VECTOR_DATABASE: dify
# Chroma configuration
CHROMA_HOST: 127.0.0.1
CHROMA_PORT: 8000
CHROMA_TENANT: default_tenant
CHROMA_DATABASE: default_database
CHROMA_AUTH_PROVIDER: chromadb.auth.token_authn.TokenAuthClientProvider
CHROMA_AUTH_CREDENTIALS: xxxxxx
# Mail configuration, support: resend, smtp
MAIL_TYPE: ''
# default send from email address, if not specified
@ -301,6 +308,13 @@ services:
TIDB_VECTOR_USER: xxx.root
TIDB_VECTOR_PASSWORD: xxxxxx
TIDB_VECTOR_DATABASE: dify
# Chroma configuration
CHROMA_HOST: 127.0.0.1
CHROMA_PORT: 8000
CHROMA_TENANT: default_tenant
CHROMA_DATABASE: default_database
CHROMA_AUTH_PROVIDER: chromadb.auth.token_authn.TokenAuthClientProvider
CHROMA_AUTH_CREDENTIALS: xxxxxx
# Notion import configuration, support public and internal
NOTION_INTEGRATION_TYPE: public
NOTION_CLIENT_SECRET: you-client-secret