Merge branch 'main' into feat/continue-on-error

This commit is contained in:
Nov1c444 2024-11-15 15:16:34 +08:00
commit b5be84cc8e
150 changed files with 6849 additions and 195 deletions

View File

@ -1,34 +1,32 @@
# Checklist:
# Summary
Please include a summary of the change and which issue is fixed. Please also include relevant motivation and context. List any dependencies that are required for this change.
> [!Tip]
> Close issue syntax: `Fixes #<issue number>` or `Resolves #<issue number>`, see [documentation](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue#linking-a-pull-request-to-an-issue-using-a-keyword) for more details.
# Screenshots
<table>
<tr>
<td>Before: </td>
<td>After: </td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</table>
# Checklist
> [!IMPORTANT]
> Please review the checklist below before submitting your pull request.
- [ ] Please open an issue before creating a PR or link to an existing issue
- [ ] I have performed a self-review of my own code
- [ ] I have commented my code, particularly in hard-to-understand areas
- [ ] I ran `dev/reformat`(backend) and `cd web && npx lint-staged`(frontend) to appease the lint gods
# Description
Describe the big picture of your changes here to communicate to the maintainers why we should accept this pull request. If it fixes a bug or resolves a feature request, be sure to link to that issue. Close issue syntax: `Fixes #<issue number>`, see [documentation](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue#linking-a-pull-request-to-an-issue-using-a-keyword) for more details.
Fixes
## Type of Change
- [ ] Bug fix (non-breaking change which fixes an issue)
- [ ] New feature (non-breaking change which adds functionality)
- [ ] Breaking change (fix or feature that would cause existing functionality to not work as expected)
- [ ] This change requires a documentation update, included: [Dify Document](https://github.com/langgenius/dify-docs)
- [ ] Improvement, including but not limited to code refactoring, performance optimization, and UI/UX improvement
- [ ] Dependency upgrade
# Testing Instructions
Please describe the tests that you ran to verify your changes. Provide instructions so we can reproduce. Please also list any relevant details for your test configuration
- [ ] Test A
- [ ] Test B
- [x] I understand that this PR may be closed in case there was no previous discussion or issues. (This doesn't apply to typos!)
- [x] I've added a test for each change that was introduced, and I tried as much as possible to make a single atomic change.
- [x] I've updated the documentation accordingly.
- [x] I ran `dev/reformat`(backend) and `cd web && npx lint-staged`(frontend) to appease the lint gods

View File

@ -19,6 +19,9 @@
<a href="https://discord.gg/FngNHpbcY7" target="_blank">
<img src="https://img.shields.io/discord/1082486657678311454?logo=discord&labelColor=%20%235462eb&logoColor=%20%23f5f5f5&color=%20%235462eb"
alt="chat on Discord"></a>
<a href="https://reddit.com/r/difyai" target="_blank">
<img src="https://img.shields.io/reddit/subreddit-subscribers/difyai?style=plastic&logo=reddit&label=r%2Fdifyai&labelColor=white"
alt="join Reddit"></a>
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
alt="follow on X(Twitter)"></a>

View File

@ -15,6 +15,9 @@
<a href="https://discord.gg/FngNHpbcY7" target="_blank">
<img src="https://img.shields.io/discord/1082486657678311454?logo=discord&labelColor=%20%235462eb&logoColor=%20%23f5f5f5&color=%20%235462eb"
alt="chat on Discord"></a>
<a href="https://reddit.com/r/difyai" target="_blank">
<img src="https://img.shields.io/reddit/subreddit-subscribers/difyai?style=plastic&logo=reddit&label=r%2Fdifyai&labelColor=white"
alt="join Reddit"></a>
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
alt="follow on X(Twitter)"></a>

View File

@ -15,6 +15,9 @@
<a href="https://discord.gg/FngNHpbcY7" target="_blank">
<img src="https://img.shields.io/discord/1082486657678311454?logo=discord&labelColor=%20%235462eb&logoColor=%20%23f5f5f5&color=%20%235462eb"
alt="chat on Discord"></a>
<a href="https://reddit.com/r/difyai" target="_blank">
<img src="https://img.shields.io/reddit/subreddit-subscribers/difyai?style=plastic&logo=reddit&label=r%2Fdifyai&labelColor=white"
alt="join Reddit"></a>
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
alt="follow on X(Twitter)"></a>

View File

@ -15,6 +15,9 @@
<a href="https://discord.gg/FngNHpbcY7" target="_blank">
<img src="https://img.shields.io/discord/1082486657678311454?logo=discord&labelColor=%20%235462eb&logoColor=%20%23f5f5f5&color=%20%235462eb"
alt="chat en Discord"></a>
<a href="https://reddit.com/r/difyai" target="_blank">
<img src="https://img.shields.io/reddit/subreddit-subscribers/difyai?style=plastic&logo=reddit&label=r%2Fdifyai&labelColor=white"
alt="join Reddit"></a>
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
alt="seguir en X(Twitter)"></a>

View File

@ -15,6 +15,9 @@
<a href="https://discord.gg/FngNHpbcY7" target="_blank">
<img src="https://img.shields.io/discord/1082486657678311454?logo=discord&labelColor=%20%235462eb&logoColor=%20%23f5f5f5&color=%20%235462eb"
alt="chat sur Discord"></a>
<a href="https://reddit.com/r/difyai" target="_blank">
<img src="https://img.shields.io/reddit/subreddit-subscribers/difyai?style=plastic&logo=reddit&label=r%2Fdifyai&labelColor=white"
alt="join Reddit"></a>
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
alt="suivre sur X(Twitter)"></a>

View File

@ -15,6 +15,9 @@
<a href="https://discord.gg/FngNHpbcY7" target="_blank">
<img src="https://img.shields.io/discord/1082486657678311454?logo=discord&labelColor=%20%235462eb&logoColor=%20%23f5f5f5&color=%20%235462eb"
alt="Discordでチャット"></a>
<a href="https://reddit.com/r/difyai" target="_blank">
<img src="https://img.shields.io/reddit/subreddit-subscribers/difyai?style=plastic&logo=reddit&label=r%2Fdifyai&labelColor=white"
alt="Reddit"></a>
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
alt="X(Twitter)でフォロー"></a>

View File

@ -15,6 +15,9 @@
<a href="https://discord.gg/FngNHpbcY7" target="_blank">
<img src="https://img.shields.io/discord/1082486657678311454?logo=discord&labelColor=%20%235462eb&logoColor=%20%23f5f5f5&color=%20%235462eb"
alt="chat on Discord"></a>
<a href="https://reddit.com/r/difyai" target="_blank">
<img src="https://img.shields.io/reddit/subreddit-subscribers/difyai?style=plastic&logo=reddit&label=r%2Fdifyai&labelColor=white"
alt="Follow Reddit"></a>
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
alt="follow on X(Twitter)"></a>

View File

@ -15,6 +15,9 @@
<a href="https://discord.gg/FngNHpbcY7" target="_blank">
<img src="https://img.shields.io/discord/1082486657678311454?logo=discord&labelColor=%20%235462eb&logoColor=%20%23f5f5f5&color=%20%235462eb"
alt="chat on Discord"></a>
<a href="https://reddit.com/r/difyai" target="_blank">
<img src="https://img.shields.io/reddit/subreddit-subscribers/difyai?style=plastic&logo=reddit&label=r%2Fdifyai&labelColor=white"
alt="Follow Reddit"></a>
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
alt="follow on X(Twitter)"></a>

View File

@ -19,6 +19,9 @@
<a href="https://discord.gg/FngNHpbcY7" target="_blank">
<img src="https://img.shields.io/discord/1082486657678311454?logo=discord&labelColor=%20%235462eb&logoColor=%20%23f5f5f5&color=%20%235462eb"
alt="chat on Discord"></a>
<a href="https://reddit.com/r/difyai" target="_blank">
<img src="https://img.shields.io/reddit/subreddit-subscribers/difyai?style=plastic&logo=reddit&label=r%2Fdifyai&labelColor=white"
alt="Follow Reddit"></a>
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
alt="follow on X(Twitter)"></a>
@ -238,4 +241,4 @@ Para proteger sua privacidade, evite postar problemas de segurança no GitHub. E
## Licença
Este repositório está disponível sob a [Licença de Código Aberto Dify](LICENSE), que é essencialmente Apache 2.0 com algumas restrições adicionais.
Este repositório está disponível sob a [Licença de Código Aberto Dify](LICENSE), que é essencialmente Apache 2.0 com algumas restrições adicionais.

180
README_SI.md Normal file
View File

@ -0,0 +1,180 @@
![cover-v5-optimized](https://github.com/langgenius/dify/assets/13230914/f9e19af5-61ba-4119-b926-d10c4c06ebab)
<p align="center">
📌 <a href="https://dify.ai/blog/introducing-dify-workflow-file-upload-a-demo-on-ai-podcast">Predstavljamo nalaganje datotek Dify Workflow: znova ustvarite Google NotebookLM Podcast</a>
</p>
<p align="center">
<a href="https://cloud.dify.ai">Dify Cloud</a> ·
<a href="https://docs.dify.ai/getting-started/install-self-hosted">Samostojno gostovanje</a> ·
<a href="https://docs.dify.ai">Dokumentacija</a> ·
<a href="https://udify.app/chat/22L1zSxg6yW1cWQg">Povpraševanje za podjetja</a>
</p>
<p align="center">
<a href="https://dify.ai" target="_blank">
<img alt="Static Badge" src="https://img.shields.io/badge/Product-F04438"></a>
<a href="https://dify.ai/pricing" target="_blank">
<img alt="Static Badge" src="https://img.shields.io/badge/free-pricing?logo=free&color=%20%23155EEF&label=pricing&labelColor=%20%23528bff"></a>
<a href="https://discord.gg/FngNHpbcY7" target="_blank">
<img src="https://img.shields.io/discord/1082486657678311454?logo=discord&labelColor=%20%235462eb&logoColor=%20%23f5f5f5&color=%20%235462eb"
alt="chat on Discord"></a>
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
alt="follow on X(Twitter)"></a>
<a href="https://hub.docker.com/u/langgenius" target="_blank">
<img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web?labelColor=%20%23FDB062&color=%20%23f79009"></a>
<a href="https://github.com/langgenius/dify/graphs/commit-activity" target="_blank">
<img alt="Commits last month" src="https://img.shields.io/github/commit-activity/m/langgenius/dify?labelColor=%20%2332b583&color=%20%2312b76a"></a>
<a href="https://github.com/langgenius/dify/" target="_blank">
<img alt="Issues closed" src="https://img.shields.io/github/issues-search?query=repo%3Alanggenius%2Fdify%20is%3Aclosed&label=issues%20closed&labelColor=%20%237d89b0&color=%20%235d6b98"></a>
<a href="https://github.com/langgenius/dify/discussions/" target="_blank">
<img alt="Discussion posts" src="https://img.shields.io/github/discussions/langgenius/dify?labelColor=%20%239b8afb&color=%20%237a5af8"></a>
</p>
<p align="center">
<a href="./README.md"><img alt="README in English" src="https://img.shields.io/badge/English-d9d9d9"></a>
<a href="./README_CN.md"><img alt="简体中文版自述文件" src="https://img.shields.io/badge/简体中文-d9d9d9"></a>
<a href="./README_JA.md"><img alt="日本語のREADME" src="https://img.shields.io/badge/日本語-d9d9d9"></a>
<a href="./README_ES.md"><img alt="README en Español" src="https://img.shields.io/badge/Español-d9d9d9"></a>
<a href="./README_FR.md"><img alt="README en Français" src="https://img.shields.io/badge/Français-d9d9d9"></a>
<a href="./README_KL.md"><img alt="README tlhIngan Hol" src="https://img.shields.io/badge/Klingon-d9d9d9"></a>
<a href="./README_KR.md"><img alt="README in Korean" src="https://img.shields.io/badge/한국어-d9d9d9"></a>
<a href="./README_AR.md"><img alt="README بالعربية" src="https://img.shields.io/badge/العربية-d9d9d9"></a>
<a href="./README_TR.md"><img alt="Türkçe README" src="https://img.shields.io/badge/Türkçe-d9d9d9"></a>
<a href="./README_VI.md"><img alt="README Tiếng Việt" src="https://img.shields.io/badge/Ti%E1%BA%BFng%20Vi%E1%BB%87t-d9d9d9"></a>
<a href="./README_SI.md"><img alt="README Slovenščina" src="https://img.shields.io/badge/Sloven%C5%A1%C4%8Dina-d9d9d9"></a>
</p>
Dify je odprtokodna platforma za razvoj aplikacij LLM. Njegov intuitivni vmesnik združuje agentski potek dela z umetno inteligenco, cevovod RAG, zmogljivosti agentov, upravljanje modelov, funkcije opazovanja in več, kar vam omogoča hiter prehod od prototipa do proizvodnje.
## Hitri začetek
> Preden namestite Dify, se prepričajte, da vaša naprava izpolnjuje naslednje minimalne sistemske zahteve:
>
>- CPU >= 2 Core
>- RAM >= 4 GiB
</br>
Najlažji način za zagon strežnika Dify je prek docker compose . Preden zaženete Dify z naslednjimi ukazi, se prepričajte, da sta Docker in Docker Compose nameščena na vašem računalniku:
```bash
cd dify
cd docker
cp .env.example .env
docker compose up -d
```
Po zagonu lahko dostopate do nadzorne plošče Dify v brskalniku na [http://localhost/install](http://localhost/install) in začnete postopek inicializacije.
#### Iskanje pomoči
Prosimo, glejte naša pogosta vprašanja [FAQ](https://docs.dify.ai/getting-started/install-self-hosted/faqs) če naletite na težave pri nastavitvi Dify. Če imate še vedno težave, se obrnite na [skupnost ali nas](#community--contact).
> Če želite prispevati k Difyju ali narediti dodaten razvoj, glejte naš vodnik za [uvajanje iz izvorne kode](https://docs.dify.ai/getting-started/install-self-hosted/local-source-code)
## Ključne značilnosti
**1. Potek dela**:
Zgradite in preizkusite zmogljive poteke dela AI na vizualnem platnu, pri čemer izkoristite vse naslednje funkcije in več.
https://github.com/langgenius/dify/assets/13230914/356df23e-1604-483d-80a6-9517ece318aa
**2. Celovita podpora za modele**:
Brezhibna integracija s stotinami lastniških/odprtokodnih LLM-jev ducatov ponudnikov sklepanja in samostojnih rešitev, ki pokrivajo GPT, Mistral, Llama3 in vse modele, združljive z API-jem OpenAI. Celoten seznam podprtih ponudnikov modelov najdete [tukaj](https://docs.dify.ai/getting-started/readme/model-providers).
![providers-v5](https://github.com/langgenius/dify/assets/13230914/5a17bdbe-097a-4100-8363-40255b70f6e3)
**3. Prompt IDE**:
intuitivni vmesnik za ustvarjanje pozivov, primerjavo zmogljivosti modela in dodajanje dodatnih funkcij, kot je pretvorba besedila v govor, aplikaciji, ki temelji na klepetu.
**4. RAG Pipeline**:
E Obsežne zmogljivosti RAG, ki pokrivajo vse od vnosa dokumenta do priklica, s podporo za ekstrakcijo besedila iz datotek PDF, PPT in drugih običajnih formatov dokumentov.
**5. Agent capabilities**:
definirate lahko agente, ki temeljijo na klicanju funkcij LLM ali ReAct, in dodate vnaprej izdelana orodja ali orodja po meri za agenta. Dify ponuja več kot 50 vgrajenih orodij za agente AI, kot so Google Search, DALL·E, Stable Diffusion in WolframAlpha.
**6. LLMOps**:
Spremljajte in analizirajte dnevnike aplikacij in učinkovitost skozi čas. Pozive, nabore podatkov in modele lahko nenehno izboljšujete na podlagi proizvodnih podatkov in opomb.
**7. Backend-as-a-Service**:
AVse ponudbe Difyja so opremljene z ustreznimi API-ji, tako da lahko Dify brez težav integrirate v svojo poslovno logiko.
## Uporaba Dify
- **Cloud </br>**
Gostimo storitev Dify Cloud za vsakogar, ki jo lahko preizkusite brez nastavitev. Zagotavlja vse zmožnosti različice za samostojno namestitev in vključuje 200 brezplačnih klicev GPT-4 v načrtu peskovnika.
- **Self-hosting Dify Community Edition</br>**
Hitro zaženite Dify v svojem okolju s tem [začetnim vodnikom](#quick-start) . Za dodatne reference in podrobnejša navodila uporabite našo [dokumentacijo](https://docs.dify.ai) .
- **Dify za podjetja/organizacije</br>**
Ponujamo dodatne funkcije, osredotočene na podjetja. Zabeležite svoja vprašanja prek tega klepetalnega robota ali nam pošljite e-pošto, da se pogovorimo o potrebah podjetja. </br>
> Za novoustanovljena podjetja in mala podjetja, ki uporabljajo AWS, si oglejte Dify Premium na AWS Marketplace in ga z enim klikom uvedite v svoj AWS VPC. To je cenovno ugodna ponudba AMI z možnostjo ustvarjanja aplikacij z logotipom in blagovno znamko po meri.
## Staying ahead
Star Dify on GitHub and be instantly notified of new releases.
![star-us](https://github.com/langgenius/dify/assets/13230914/b823edc1-6388-4e25-ad45-2f6b187adbb4)
## Napredne nastavitve
Če morate prilagoditi konfiguracijo, si oglejte komentarje v naši datoteki .env.example in posodobite ustrezne vrednosti v svoji .env datoteki. Poleg tega boste morda morali prilagoditi docker-compose.yamlsamo datoteko, na primer spremeniti različice slike, preslikave vrat ali namestitve nosilca, glede na vaše specifično okolje in zahteve za uvajanje. Po kakršnih koli spremembah ponovno zaženite docker-compose up -d. Celoten seznam razpoložljivih spremenljivk okolja najdete tukaj .
Če želite konfigurirati visoko razpoložljivo nastavitev, so na voljo Helm Charts in datoteke YAML, ki jih prispeva skupnost, ki omogočajo uvedbo Difyja v Kubernetes.
- [Helm Chart by @LeoQuote](https://github.com/douban/charts/tree/master/charts/dify)
- [Helm Chart by @BorisPolonsky](https://github.com/BorisPolonsky/dify-helm)
- [YAML file by @Winson-030](https://github.com/Winson-030/dify-kubernetes)
#### Uporaba Terraform za uvajanje
namestite Dify v Cloud Platform z enim klikom z uporabo [terraform](https://www.terraform.io/)
##### Azure Global
- [Azure Terraform by @nikawang](https://github.com/nikawang/dify-azure-terraform)
##### Google Cloud
- [Google Cloud Terraform by @sotazum](https://github.com/DeNA/dify-google-cloud-terraform)
## Prispevam
Za tiste, ki bi radi prispevali kodo, si oglejte naš vodnik za prispevke . Hkrati vas prosimo, da podprete Dify tako, da ga delite na družbenih medijih ter na dogodkih in konferencah.
> Iščemo sodelavce za pomoč pri prevajanju Difyja v jezike, ki niso mandarinščina ali angleščina. Če želite pomagati, si oglejte i18n README za več informacij in nam pustite komentar v global-userskanalu našega strežnika skupnosti Discord .
## Skupnost in stik
* [Github Discussion](https://github.com/langgenius/dify/discussions). Najboljše za: izmenjavo povratnih informacij in postavljanje vprašanj.
* [GitHub Issues](https://github.com/langgenius/dify/issues). Najboljše za: hrošče, na katere naletite pri uporabi Dify.AI, in predloge funkcij. Oglejte si naš [vodnik za prispevke](https://github.com/langgenius/dify/blob/main/CONTRIBUTING.md).
* [Discord](https://discord.gg/FngNHpbcY7). Najboljše za: deljenje vaših aplikacij in druženje s skupnostjo.
* [X(Twitter)](https://twitter.com/dify_ai). Najboljše za: deljenje vaših aplikacij in druženje s skupnostjo.
**Contributors**
<a href="https://github.com/langgenius/dify/graphs/contributors">
<img src="https://contrib.rocks/image?repo=langgenius/dify" />
</a>
## Star history
[![Star History Chart](https://api.star-history.com/svg?repos=langgenius/dify&type=Date)](https://star-history.com/#langgenius/dify&Date)
## Varnostno razkritje
Zaradi zaščite vaše zasebnosti se izogibajte objavljanju varnostnih vprašanj na GitHub. Namesto tega pošljite vprašanja na security@dify.ai in zagotovili vam bomo podrobnejši odgovor.
## Licenca
To skladišče je na voljo pod [odprtokodno licenco Dify](LICENSE) , ki je v bistvu Apache 2.0 z nekaj dodatnimi omejitvami.

View File

@ -15,6 +15,9 @@
<a href="https://discord.gg/FngNHpbcY7" target="_blank">
<img src="https://img.shields.io/discord/1082486657678311454?logo=discord&labelColor=%20%235462eb&logoColor=%20%23f5f5f5&color=%20%235462eb"
alt="Discord'da sohbet et"></a>
<a href="https://reddit.com/r/difyai" target="_blank">
<img src="https://img.shields.io/reddit/subreddit-subscribers/difyai?style=plastic&logo=reddit&label=r%2Fdifyai&labelColor=white"
alt="Follow Reddit"></a>
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
alt="X(Twitter)'da takip et"></a>

View File

@ -15,6 +15,9 @@
<a href="https://discord.gg/FngNHpbcY7" target="_blank">
<img src="https://img.shields.io/discord/1082486657678311454?logo=discord&labelColor=%20%235462eb&logoColor=%20%23f5f5f5&color=%20%235462eb"
alt="chat trên Discord"></a>
<a href="https://reddit.com/r/difyai" target="_blank">
<img src="https://img.shields.io/reddit/subreddit-subscribers/difyai?style=plastic&logo=reddit&label=r%2Fdifyai&labelColor=white"
alt="Follow Reddit"></a>
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
alt="theo dõi trên X(Twitter)"></a>
@ -235,4 +238,4 @@ Triển khai Dify lên nền tảng đám mây với một cú nhấp chuột b
## Giấy phép
Kho lưu trữ này có sẵn theo [Giấy phép Mã nguồn Mở Dify](LICENSE), về cơ bản là Apache 2.0 với một vài hạn chế bổ sung.
Kho lưu trữ này có sẵn theo [Giấy phép Mã nguồn Mở Dify](LICENSE), về cơ bản là Apache 2.0 với một vài hạn chế bổ sung.

View File

@ -55,7 +55,7 @@ RUN apt-get update \
&& echo "deb http://deb.debian.org/debian testing main" > /etc/apt/sources.list \
&& apt-get update \
# For Security
&& apt-get install -y --no-install-recommends expat=2.6.3-2 libldap-2.5-0=2.5.18+dfsg-3+b1 perl=5.40.0-7 libsqlite3-0=3.46.1-1 zlib1g=1:1.3.dfsg+really1.3.1-1+b1 \
&& apt-get install -y --no-install-recommends expat=2.6.4-1 libldap-2.5-0=2.5.18+dfsg-3+b1 perl=5.40.0-7 libsqlite3-0=3.46.1-1 zlib1g=1:1.3.dfsg+really1.3.1-1+b1 \
# install a chinese font to support the use of tools like matplotlib
&& apt-get install -y fonts-noto-cjk \
&& apt-get autoremove -y \

View File

@ -53,7 +53,6 @@ if dify_config.TESTING:
@app.after_request
def after_request(response):
"""Add Version headers to the response."""
response.set_cookie("remember_token", "", expires=0)
response.headers.add("X-Version", dify_config.CURRENT_VERSION)
response.headers.add("X-Env", dify_config.DEPLOY_ENV)
return response

View File

@ -17,6 +17,7 @@ language_timezone_mapping = {
"hi-IN": "Asia/Kolkata",
"tr-TR": "Europe/Istanbul",
"fa-IR": "Asia/Tehran",
"sl-SI": "Europe/Ljubljana",
}
languages = list(language_timezone_mapping.keys())

View File

@ -113,7 +113,7 @@ class AzureOpenAILargeLanguageModel(_CommonAzureOpenAI, LargeLanguageModel):
try:
client = AzureOpenAI(**self._to_credential_kwargs(credentials))
if model.startswith("o1"):
if "o1" in model:
client.chat.completions.create(
messages=[{"role": "user", "content": "ping"}],
model=model,
@ -311,7 +311,7 @@ class AzureOpenAILargeLanguageModel(_CommonAzureOpenAI, LargeLanguageModel):
prompt_messages = self._clear_illegal_prompt_messages(model, prompt_messages)
block_as_stream = False
if model.startswith("o1"):
if "o1" in model:
if stream:
block_as_stream = True
stream = False
@ -404,7 +404,7 @@ class AzureOpenAILargeLanguageModel(_CommonAzureOpenAI, LargeLanguageModel):
]
)
if model.startswith("o1"):
if "o1" in model:
system_message_count = len([m for m in prompt_messages if isinstance(m, SystemPromptMessage)])
if system_message_count > 0:
new_prompt_messages = []
@ -653,7 +653,7 @@ class AzureOpenAILargeLanguageModel(_CommonAzureOpenAI, LargeLanguageModel):
tokens_per_message = 4
# if there's a name, the role is omitted
tokens_per_name = -1
elif model.startswith("gpt-35-turbo") or model.startswith("gpt-4") or model.startswith("o1"):
elif model.startswith("gpt-35-turbo") or model.startswith("gpt-4") or "o1" in model:
tokens_per_message = 3
tokens_per_name = 1
else:

View File

@ -0,0 +1,95 @@
model: Qwen2.5-72B-Instruct
label:
zh_Hans: Qwen2.5-72B-Instruct
en_US: Qwen2.5-72B-Instruct
model_type: llm
features:
- agent-thought
- tool-call
- stream-tool-call
model_properties:
mode: chat
context_size: 32768
parameter_rules:
- name: max_tokens
use_template: max_tokens
label:
en_US: "Max Tokens"
zh_Hans: "最大Token数"
type: int
default: 512
min: 1
required: true
help:
en_US: "The maximum number of tokens that can be generated by the model varies depending on the model."
zh_Hans: "模型可生成的最大 token 个数,不同模型上限不同。"
- name: temperature
use_template: temperature
label:
en_US: "Temperature"
zh_Hans: "采样温度"
type: float
default: 0.7
min: 0.0
max: 1.0
precision: 1
required: true
help:
en_US: "The randomness of the sampling temperature control output. The temperature value is within the range of [0.0, 1.0]. The higher the value, the more random and creative the output; the lower the value, the more stable it is. It is recommended to adjust either top_p or temperature parameters according to your needs to avoid adjusting both at the same time."
zh_Hans: "采样温度控制输出的随机性。温度值在 [0.0, 1.0] 范围内,值越高,输出越随机和创造性;值越低,输出越稳定。建议根据需求调整 top_p 或 temperature 参数,避免同时调整两者。"
- name: top_p
use_template: top_p
label:
en_US: "Top P"
zh_Hans: "Top P"
type: float
default: 0.7
min: 0.0
max: 1.0
precision: 1
required: true
help:
en_US: "The value range of the sampling method is [0.0, 1.0]. The top_p value determines that the model selects tokens from the top p% of candidate words with the highest probability; when top_p is 0, this parameter is invalid. It is recommended to adjust either top_p or temperature parameters according to your needs to avoid adjusting both at the same time."
zh_Hans: "采样方法的取值范围为 [0.0,1.0]。top_p 值确定模型从概率最高的前p%的候选词中选取 tokens当 top_p 为 0 时,此参数无效。建议根据需求调整 top_p 或 temperature 参数,避免同时调整两者。"
- name: top_k
use_template: top_k
label:
en_US: "Top K"
zh_Hans: "Top K"
type: int
default: 50
min: 0
max: 100
required: true
help:
en_US: "The value range is [0,100], which limits the model to only select from the top k words with the highest probability when choosing the next word at each step. The larger the value, the more diverse text generation will be."
zh_Hans: "取值范围为 [0,100],限制模型在每一步选择下一个词时,只从概率最高的前 k 个词中选取。数值越大,文本生成越多样。"
- name: frequency_penalty
use_template: frequency_penalty
label:
en_US: "Frequency Penalty"
zh_Hans: "频率惩罚"
type: float
default: 0
min: -1.0
max: 1.0
precision: 1
required: false
help:
en_US: "Used to adjust the frequency of repeated content in automatically generated text. Positive numbers reduce repetition, while negative numbers increase repetition. After setting this parameter, if a word has already appeared in the text, the model will decrease the probability of choosing that word for subsequent generation."
zh_Hans: "用于调整自动生成文本中重复内容的频率。正数减少重复,负数增加重复。设置此参数后,如果一个词在文本中已经出现过,模型在后续生成中选择该词的概率会降低。"
- name: user
use_template: text
label:
en_US: "User"
zh_Hans: "用户"
type: string
required: false
help:
en_US: "Used to track and differentiate conversation requests from different users."
zh_Hans: "用于追踪和区分不同用户的对话请求。"

View File

@ -1,3 +1,4 @@
- Qwen2.5-72B-Instruct
- Qwen2-7B-Instruct
- Qwen2-72B-Instruct
- Yi-1.5-34B-Chat

View File

@ -6,6 +6,7 @@ from core.model_runtime.entities.message_entities import (
PromptMessage,
PromptMessageTool,
)
from core.model_runtime.entities.model_entities import ModelFeature
from core.model_runtime.model_providers.openai_api_compatible.llm.llm import OAIAPICompatLargeLanguageModel
@ -28,14 +29,13 @@ class GiteeAILargeLanguageModel(OAIAPICompatLargeLanguageModel):
user: Optional[str] = None,
) -> Union[LLMResult, Generator]:
self._add_custom_parameters(credentials, model, model_parameters)
return super()._invoke(model, credentials, prompt_messages, model_parameters, tools, stop, stream)
return super()._invoke(model, credentials, prompt_messages, model_parameters, tools, stop, stream, user)
def validate_credentials(self, model: str, credentials: dict) -> None:
self._add_custom_parameters(credentials, model, None)
super().validate_credentials(model, credentials)
@staticmethod
def _add_custom_parameters(credentials: dict, model: str, model_parameters: dict) -> None:
def _add_custom_parameters(self, credentials: dict, model: str, model_parameters: dict) -> None:
if model is None:
model = "bge-large-zh-v1.5"
@ -45,3 +45,7 @@ class GiteeAILargeLanguageModel(OAIAPICompatLargeLanguageModel):
credentials["mode"] = LLMMode.COMPLETION.value
else:
credentials["mode"] = LLMMode.CHAT.value
schema = self.get_model_schema(model, credentials)
if ModelFeature.TOOL_CALL in schema.features or ModelFeature.MULTI_TOOL_CALL in schema.features:
credentials["function_calling_type"] = "tool_call"

View File

@ -0,0 +1,46 @@
model: abab7-chat-preview
label:
en_US: Abab7-chat-preview
model_type: llm
features:
- agent-thought
- tool-call
- stream-tool-call
model_properties:
mode: chat
context_size: 245760
parameter_rules:
- name: temperature
use_template: temperature
min: 0.01
max: 1
default: 0.1
- name: top_p
use_template: top_p
min: 0.01
max: 1
default: 0.95
- name: max_tokens
use_template: max_tokens
required: true
default: 2048
min: 1
max: 245760
- name: mask_sensitive_info
type: boolean
default: true
label:
zh_Hans: 隐私保护
en_US: Moderate
help:
zh_Hans: 对输出中易涉及隐私问题的文本信息进行打码目前包括但不限于邮箱、域名、链接、证件号、家庭住址等默认true即开启打码
en_US: Mask the sensitive info of the generated content, such as email/domain/link/address/phone/id..
- name: presence_penalty
use_template: presence_penalty
- name: frequency_penalty
use_template: frequency_penalty
pricing:
input: '0.1'
output: '0.1'
unit: '0.001'
currency: RMB

View File

@ -34,6 +34,7 @@ from core.model_runtime.model_providers.minimax.llm.types import MinimaxMessage
class MinimaxLargeLanguageModel(LargeLanguageModel):
model_apis = {
"abab7-chat-preview": MinimaxChatCompletionPro,
"abab6.5s-chat": MinimaxChatCompletionPro,
"abab6.5-chat": MinimaxChatCompletionPro,
"abab6-chat": MinimaxChatCompletionPro,

View File

@ -0,0 +1,84 @@
model: OpenGVLab/InternVL2-26B
label:
en_US: OpenGVLab/InternVL2-26B
model_type: llm
features:
- vision
model_properties:
mode: chat
context_size: 32768
parameter_rules:
- name: temperature
use_template: temperature
type: float
default: 0.3
min: 0.0
max: 2.0
help:
zh_Hans: 用于控制随机性和多样性的程度。具体来说temperature值控制了生成文本时对每个候选词的概率分布进行平滑的程度。较高的temperature值会降低概率分布的峰值使得更多的低概率词被选择生成结果更加多样化而较低的temperature值则会增强概率分布的峰值使得高概率词更容易被选择生成结果更加确定。
en_US: Used to control the degree of randomness and diversity. Specifically, the temperature value controls the degree to which the probability distribution of each candidate word is smoothed when generating text. A higher temperature value will reduce the peak value of the probability distribution, allowing more low-probability words to be selected, and the generated results will be more diverse; while a lower temperature value will enhance the peak value of the probability distribution, making it easier for high-probability words to be selected. , the generated results are more certain.
- name: max_tokens
use_template: max_tokens
type: int
default: 2000
min: 1
max: 2000
help:
zh_Hans: 用于指定模型在生成内容时token的最大数量它定义了生成的上限但不保证每次都会生成到这个数量。
en_US: It is used to specify the maximum number of tokens when the model generates content. It defines the upper limit of generation, but does not guarantee that this number will be generated every time.
- name: top_p
use_template: top_p
type: float
default: 0.8
min: 0.1
max: 0.9
help:
zh_Hans: 生成过程中核采样方法概率阈值例如取值为0.8时仅保留概率加起来大于等于0.8的最可能token的最小集合作为候选集。取值范围为0,1.0),取值越大,生成的随机性越高;取值越低,生成的确定性越高。
en_US: The probability threshold of the kernel sampling method during the generation process. For example, when the value is 0.8, only the smallest set of the most likely tokens with a sum of probabilities greater than or equal to 0.8 is retained as the candidate set. The value range is (0,1.0). The larger the value, the higher the randomness generated; the lower the value, the higher the certainty generated.
- name: top_k
type: int
min: 0
max: 99
label:
zh_Hans: 取样数量
en_US: Top k
help:
zh_Hans: 生成时采样候选集的大小。例如取值为50时仅将单次生成中得分最高的50个token组成随机采样的候选集。取值越大生成的随机性越高取值越小生成的确定性越高。
en_US: The size of the sample candidate set when generated. For example, when the value is 50, only the 50 highest-scoring tokens in a single generation form a randomly sampled candidate set. The larger the value, the higher the randomness generated; the smaller the value, the higher the certainty generated.
- name: seed
required: false
type: int
default: 1234
label:
zh_Hans: 随机种子
en_US: Random seed
help:
zh_Hans: 生成时使用的随机数种子用户控制模型生成内容的随机性。支持无符号64位整数默认值为 1234。在使用seed时模型将尽可能生成相同或相似的结果但目前不保证每次生成的结果完全相同。
en_US: The random number seed used when generating, the user controls the randomness of the content generated by the model. Supports unsigned 64-bit integers, default value is 1234. When using seed, the model will try its best to generate the same or similar results, but there is currently no guarantee that the results will be exactly the same every time.
- name: repetition_penalty
required: false
type: float
default: 1.1
label:
zh_Hans: 重复惩罚
en_US: Repetition penalty
help:
zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。
en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment.
- name: response_format
label:
zh_Hans: 回复格式
en_US: Response Format
type: string
help:
zh_Hans: 指定模型必须输出的格式
en_US: specifying the format that the model must output
required: false
options:
- text
- json_object
pricing:
input: '21'
output: '21'
unit: '0.000001'
currency: RMB

View File

@ -0,0 +1,84 @@
model: Pro/OpenGVLab/InternVL2-8B
label:
en_US: Pro/OpenGVLab/InternVL2-8B
model_type: llm
features:
- vision
model_properties:
mode: chat
context_size: 32768
parameter_rules:
- name: temperature
use_template: temperature
type: float
default: 0.3
min: 0.0
max: 2.0
help:
zh_Hans: 用于控制随机性和多样性的程度。具体来说temperature值控制了生成文本时对每个候选词的概率分布进行平滑的程度。较高的temperature值会降低概率分布的峰值使得更多的低概率词被选择生成结果更加多样化而较低的temperature值则会增强概率分布的峰值使得高概率词更容易被选择生成结果更加确定。
en_US: Used to control the degree of randomness and diversity. Specifically, the temperature value controls the degree to which the probability distribution of each candidate word is smoothed when generating text. A higher temperature value will reduce the peak value of the probability distribution, allowing more low-probability words to be selected, and the generated results will be more diverse; while a lower temperature value will enhance the peak value of the probability distribution, making it easier for high-probability words to be selected. , the generated results are more certain.
- name: max_tokens
use_template: max_tokens
type: int
default: 2000
min: 1
max: 2000
help:
zh_Hans: 用于指定模型在生成内容时token的最大数量它定义了生成的上限但不保证每次都会生成到这个数量。
en_US: It is used to specify the maximum number of tokens when the model generates content. It defines the upper limit of generation, but does not guarantee that this number will be generated every time.
- name: top_p
use_template: top_p
type: float
default: 0.8
min: 0.1
max: 0.9
help:
zh_Hans: 生成过程中核采样方法概率阈值例如取值为0.8时仅保留概率加起来大于等于0.8的最可能token的最小集合作为候选集。取值范围为0,1.0),取值越大,生成的随机性越高;取值越低,生成的确定性越高。
en_US: The probability threshold of the kernel sampling method during the generation process. For example, when the value is 0.8, only the smallest set of the most likely tokens with a sum of probabilities greater than or equal to 0.8 is retained as the candidate set. The value range is (0,1.0). The larger the value, the higher the randomness generated; the lower the value, the higher the certainty generated.
- name: top_k
type: int
min: 0
max: 99
label:
zh_Hans: 取样数量
en_US: Top k
help:
zh_Hans: 生成时采样候选集的大小。例如取值为50时仅将单次生成中得分最高的50个token组成随机采样的候选集。取值越大生成的随机性越高取值越小生成的确定性越高。
en_US: The size of the sample candidate set when generated. For example, when the value is 50, only the 50 highest-scoring tokens in a single generation form a randomly sampled candidate set. The larger the value, the higher the randomness generated; the smaller the value, the higher the certainty generated.
- name: seed
required: false
type: int
default: 1234
label:
zh_Hans: 随机种子
en_US: Random seed
help:
zh_Hans: 生成时使用的随机数种子用户控制模型生成内容的随机性。支持无符号64位整数默认值为 1234。在使用seed时模型将尽可能生成相同或相似的结果但目前不保证每次生成的结果完全相同。
en_US: The random number seed used when generating, the user controls the randomness of the content generated by the model. Supports unsigned 64-bit integers, default value is 1234. When using seed, the model will try its best to generate the same or similar results, but there is currently no guarantee that the results will be exactly the same every time.
- name: repetition_penalty
required: false
type: float
default: 1.1
label:
zh_Hans: 重复惩罚
en_US: Repetition penalty
help:
zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。
en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment.
- name: response_format
label:
zh_Hans: 回复格式
en_US: Response Format
type: string
help:
zh_Hans: 指定模型必须输出的格式
en_US: specifying the format that the model must output
required: false
options:
- text
- json_object
pricing:
input: '21'
output: '21'
unit: '0.000001'
currency: RMB

View File

@ -1,16 +1,18 @@
- Tencent/Hunyuan-A52B-Instruct
- Qwen/Qwen2.5-72B-Instruct
- Qwen/Qwen2.5-32B-Instruct
- Qwen/Qwen2.5-14B-Instruct
- Qwen/Qwen2.5-7B-Instruct
- Qwen/Qwen2.5-Coder-32B-Instruct
- Qwen/Qwen2.5-Coder-7B-Instruct
- Qwen/Qwen2.5-Math-72B-Instruct
- Qwen/Qwen2-72B-Instruct
- Qwen/Qwen2-57B-A14B-Instruct
- Qwen/Qwen2-7B-Instruct
- Qwen/Qwen2-VL-72B-Instruct
- Qwen/Qwen2-1.5B-Instruct
- Pro/Qwen/Qwen2-VL-7B-Instruct
- OpenGVLab/InternVL2-Llama3-76B
- OpenGVLab/InternVL2-26B
- Pro/OpenGVLab/InternVL2-8B
- deepseek-ai/DeepSeek-V2.5
- deepseek-ai/DeepSeek-V2-Chat
- deepseek-ai/DeepSeek-Coder-V2-Instruct
- THUDM/glm-4-9b-chat
- 01-ai/Yi-1.5-34B-Chat-16K
- 01-ai/Yi-1.5-9B-Chat-16K
@ -20,9 +22,6 @@
- meta-llama/Meta-Llama-3.1-405B-Instruct
- meta-llama/Meta-Llama-3.1-70B-Instruct
- meta-llama/Meta-Llama-3.1-8B-Instruct
- meta-llama/Meta-Llama-3-70B-Instruct
- meta-llama/Meta-Llama-3-8B-Instruct
- google/gemma-2-27b-it
- google/gemma-2-9b-it
- mistralai/Mistral-7B-Instruct-v0.2
- mistralai/Mixtral-8x7B-Instruct-v0.1
- deepseek-ai/DeepSeek-V2-Chat

View File

@ -37,3 +37,4 @@ pricing:
output: '1.33'
unit: '0.000001'
currency: RMB
deprecated: true

View File

@ -37,3 +37,4 @@ pricing:
output: '1.33'
unit: '0.000001'
currency: RMB
deprecated: true

View File

@ -4,6 +4,8 @@ label:
model_type: llm
features:
- agent-thought
- tool-call
- stream-tool-call
model_properties:
mode: chat
context_size: 32768
@ -32,6 +34,18 @@ parameter_rules:
required: false
- name: frequency_penalty
use_template: frequency_penalty
- name: response_format
label:
zh_Hans: 回复格式
en_US: Response Format
type: string
help:
zh_Hans: 指定模型必须输出的格式
en_US: specifying the format that the model must output
required: false
options:
- text
- json_object
pricing:
input: '1.33'
output: '1.33'

View File

@ -32,6 +32,18 @@ parameter_rules:
required: false
- name: frequency_penalty
use_template: frequency_penalty
- name: response_format
label:
zh_Hans: 回复格式
en_US: Response Format
type: string
help:
zh_Hans: 指定模型必须输出的格式
en_US: specifying the format that the model must output
required: false
options:
- text
- json_object
pricing:
input: '1.26'
output: '1.26'

View File

@ -32,6 +32,18 @@ parameter_rules:
required: false
- name: frequency_penalty
use_template: frequency_penalty
- name: response_format
label:
zh_Hans: 回复格式
en_US: Response Format
type: string
help:
zh_Hans: 指定模型必须输出的格式
en_US: specifying the format that the model must output
required: false
options:
- text
- json_object
pricing:
input: '0'
output: '0'

View File

@ -32,6 +32,18 @@ parameter_rules:
required: false
- name: frequency_penalty
use_template: frequency_penalty
- name: response_format
label:
zh_Hans: 回复格式
en_US: Response Format
type: string
help:
zh_Hans: 指定模型必须输出的格式
en_US: specifying the format that the model must output
required: false
options:
- text
- json_object
pricing:
input: '0'
output: '0'

View File

@ -0,0 +1,84 @@
model: Tencent/Hunyuan-A52B-Instruct
label:
en_US: Tencent/Hunyuan-A52B-Instruct
model_type: llm
features:
- agent-thought
model_properties:
mode: chat
context_size: 32768
parameter_rules:
- name: temperature
use_template: temperature
type: float
default: 0.3
min: 0.0
max: 2.0
help:
zh_Hans: 用于控制随机性和多样性的程度。具体来说temperature值控制了生成文本时对每个候选词的概率分布进行平滑的程度。较高的temperature值会降低概率分布的峰值使得更多的低概率词被选择生成结果更加多样化而较低的temperature值则会增强概率分布的峰值使得高概率词更容易被选择生成结果更加确定。
en_US: Used to control the degree of randomness and diversity. Specifically, the temperature value controls the degree to which the probability distribution of each candidate word is smoothed when generating text. A higher temperature value will reduce the peak value of the probability distribution, allowing more low-probability words to be selected, and the generated results will be more diverse; while a lower temperature value will enhance the peak value of the probability distribution, making it easier for high-probability words to be selected. , the generated results are more certain.
- name: max_tokens
use_template: max_tokens
type: int
default: 2000
min: 1
max: 2000
help:
zh_Hans: 用于指定模型在生成内容时token的最大数量它定义了生成的上限但不保证每次都会生成到这个数量。
en_US: It is used to specify the maximum number of tokens when the model generates content. It defines the upper limit of generation, but does not guarantee that this number will be generated every time.
- name: top_p
use_template: top_p
type: float
default: 0.8
min: 0.1
max: 0.9
help:
zh_Hans: 生成过程中核采样方法概率阈值例如取值为0.8时仅保留概率加起来大于等于0.8的最可能token的最小集合作为候选集。取值范围为0,1.0),取值越大,生成的随机性越高;取值越低,生成的确定性越高。
en_US: The probability threshold of the kernel sampling method during the generation process. For example, when the value is 0.8, only the smallest set of the most likely tokens with a sum of probabilities greater than or equal to 0.8 is retained as the candidate set. The value range is (0,1.0). The larger the value, the higher the randomness generated; the lower the value, the higher the certainty generated.
- name: top_k
type: int
min: 0
max: 99
label:
zh_Hans: 取样数量
en_US: Top k
help:
zh_Hans: 生成时采样候选集的大小。例如取值为50时仅将单次生成中得分最高的50个token组成随机采样的候选集。取值越大生成的随机性越高取值越小生成的确定性越高。
en_US: The size of the sample candidate set when generated. For example, when the value is 50, only the 50 highest-scoring tokens in a single generation form a randomly sampled candidate set. The larger the value, the higher the randomness generated; the smaller the value, the higher the certainty generated.
- name: seed
required: false
type: int
default: 1234
label:
zh_Hans: 随机种子
en_US: Random seed
help:
zh_Hans: 生成时使用的随机数种子用户控制模型生成内容的随机性。支持无符号64位整数默认值为 1234。在使用seed时模型将尽可能生成相同或相似的结果但目前不保证每次生成的结果完全相同。
en_US: The random number seed used when generating, the user controls the randomness of the content generated by the model. Supports unsigned 64-bit integers, default value is 1234. When using seed, the model will try its best to generate the same or similar results, but there is currently no guarantee that the results will be exactly the same every time.
- name: repetition_penalty
required: false
type: float
default: 1.1
label:
zh_Hans: 重复惩罚
en_US: Repetition penalty
help:
zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。
en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment.
- name: response_format
label:
zh_Hans: 回复格式
en_US: Response Format
type: string
help:
zh_Hans: 指定模型必须输出的格式
en_US: specifying the format that the model must output
required: false
options:
- text
- json_object
pricing:
input: '21'
output: '21'
unit: '0.000001'
currency: RMB

View File

@ -32,6 +32,18 @@ parameter_rules:
required: false
- name: frequency_penalty
use_template: frequency_penalty
- name: response_format
label:
zh_Hans: 回复格式
en_US: Response Format
type: string
help:
zh_Hans: 指定模型必须输出的格式
en_US: specifying the format that the model must output
required: false
options:
- text
- json_object
pricing:
input: '1'
output: '1'

View File

@ -32,6 +32,18 @@ parameter_rules:
required: false
- name: frequency_penalty
use_template: frequency_penalty
- name: response_format
label:
zh_Hans: 回复格式
en_US: Response Format
type: string
help:
zh_Hans: 指定模型必须输出的格式
en_US: specifying the format that the model must output
required: false
options:
- text
- json_object
pricing:
input: '0'
output: '0'

View File

@ -0,0 +1,84 @@
model: OpenGVLab/InternVL2-Llama3-76B
label:
en_US: OpenGVLab/InternVL2-Llama3-76B
model_type: llm
features:
- vision
model_properties:
mode: chat
context_size: 8192
parameter_rules:
- name: temperature
use_template: temperature
type: float
default: 0.3
min: 0.0
max: 2.0
help:
zh_Hans: 用于控制随机性和多样性的程度。具体来说temperature值控制了生成文本时对每个候选词的概率分布进行平滑的程度。较高的temperature值会降低概率分布的峰值使得更多的低概率词被选择生成结果更加多样化而较低的temperature值则会增强概率分布的峰值使得高概率词更容易被选择生成结果更加确定。
en_US: Used to control the degree of randomness and diversity. Specifically, the temperature value controls the degree to which the probability distribution of each candidate word is smoothed when generating text. A higher temperature value will reduce the peak value of the probability distribution, allowing more low-probability words to be selected, and the generated results will be more diverse; while a lower temperature value will enhance the peak value of the probability distribution, making it easier for high-probability words to be selected. , the generated results are more certain.
- name: max_tokens
use_template: max_tokens
type: int
default: 2000
min: 1
max: 2000
help:
zh_Hans: 用于指定模型在生成内容时token的最大数量它定义了生成的上限但不保证每次都会生成到这个数量。
en_US: It is used to specify the maximum number of tokens when the model generates content. It defines the upper limit of generation, but does not guarantee that this number will be generated every time.
- name: top_p
use_template: top_p
type: float
default: 0.8
min: 0.1
max: 0.9
help:
zh_Hans: 生成过程中核采样方法概率阈值例如取值为0.8时仅保留概率加起来大于等于0.8的最可能token的最小集合作为候选集。取值范围为0,1.0),取值越大,生成的随机性越高;取值越低,生成的确定性越高。
en_US: The probability threshold of the kernel sampling method during the generation process. For example, when the value is 0.8, only the smallest set of the most likely tokens with a sum of probabilities greater than or equal to 0.8 is retained as the candidate set. The value range is (0,1.0). The larger the value, the higher the randomness generated; the lower the value, the higher the certainty generated.
- name: top_k
type: int
min: 0
max: 99
label:
zh_Hans: 取样数量
en_US: Top k
help:
zh_Hans: 生成时采样候选集的大小。例如取值为50时仅将单次生成中得分最高的50个token组成随机采样的候选集。取值越大生成的随机性越高取值越小生成的确定性越高。
en_US: The size of the sample candidate set when generated. For example, when the value is 50, only the 50 highest-scoring tokens in a single generation form a randomly sampled candidate set. The larger the value, the higher the randomness generated; the smaller the value, the higher the certainty generated.
- name: seed
required: false
type: int
default: 1234
label:
zh_Hans: 随机种子
en_US: Random seed
help:
zh_Hans: 生成时使用的随机数种子用户控制模型生成内容的随机性。支持无符号64位整数默认值为 1234。在使用seed时模型将尽可能生成相同或相似的结果但目前不保证每次生成的结果完全相同。
en_US: The random number seed used when generating, the user controls the randomness of the content generated by the model. Supports unsigned 64-bit integers, default value is 1234. When using seed, the model will try its best to generate the same or similar results, but there is currently no guarantee that the results will be exactly the same every time.
- name: repetition_penalty
required: false
type: float
default: 1.1
label:
zh_Hans: 重复惩罚
en_US: Repetition penalty
help:
zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。
en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment.
- name: response_format
label:
zh_Hans: 回复格式
en_US: Response Format
type: string
help:
zh_Hans: 指定模型必须输出的格式
en_US: specifying the format that the model must output
required: false
options:
- text
- json_object
pricing:
input: '21'
output: '21'
unit: '0.000001'
currency: RMB

View File

@ -29,6 +29,9 @@ class SiliconflowLargeLanguageModel(OAIAPICompatLargeLanguageModel):
user: Optional[str] = None,
) -> Union[LLMResult, Generator]:
self._add_custom_parameters(credentials)
# {"response_format": "json_object"} need convert to {"response_format": {"type": "json_object"}}
if "response_format" in model_parameters:
model_parameters["response_format"] = {"type": model_parameters.get("response_format")}
return super()._invoke(model, credentials, prompt_messages, model_parameters, tools, stop, stream)
def validate_credentials(self, model: str, credentials: dict) -> None:

View File

@ -37,3 +37,4 @@ pricing:
output: '4.13'
unit: '0.000001'
currency: RMB
deprecated: true

View File

@ -37,3 +37,4 @@ pricing:
output: '0'
unit: '0.000001'
currency: RMB
deprecated: true

View File

@ -32,6 +32,18 @@ parameter_rules:
required: false
- name: frequency_penalty
use_template: frequency_penalty
- name: response_format
label:
zh_Hans: 回复格式
en_US: Response Format
type: string
help:
zh_Hans: 指定模型必须输出的格式
en_US: specifying the format that the model must output
required: false
options:
- text
- json_object
pricing:
input: '21'
output: '21'

View File

@ -6,7 +6,7 @@ features:
- agent-thought
model_properties:
mode: chat
context_size: 32768
context_size: 8192
parameter_rules:
- name: temperature
use_template: temperature
@ -32,6 +32,18 @@ parameter_rules:
required: false
- name: frequency_penalty
use_template: frequency_penalty
- name: response_format
label:
zh_Hans: 回复格式
en_US: Response Format
type: string
help:
zh_Hans: 指定模型必须输出的格式
en_US: specifying the format that the model must output
required: false
options:
- text
- json_object
pricing:
input: '4.13'
output: '4.13'

View File

@ -32,6 +32,18 @@ parameter_rules:
required: false
- name: frequency_penalty
use_template: frequency_penalty
- name: response_format
label:
zh_Hans: 回复格式
en_US: Response Format
type: string
help:
zh_Hans: 指定模型必须输出的格式
en_US: specifying the format that the model must output
required: false
options:
- text
- json_object
pricing:
input: '0'
output: '0'

View File

@ -37,3 +37,4 @@ pricing:
output: '1.26'
unit: '0.000001'
currency: RMB
deprecated: true

View File

@ -37,3 +37,4 @@ pricing:
output: '4.13'
unit: '0.000001'
currency: RMB
deprecated: true

View File

@ -37,3 +37,4 @@ pricing:
output: '0'
unit: '0.000001'
currency: RMB
deprecated: true

View File

@ -0,0 +1,84 @@
model: Qwen/Qwen2-VL-72B-Instruct
label:
en_US: Qwen/Qwen2-VL-72B-Instruct
model_type: llm
features:
- vision
model_properties:
mode: chat
context_size: 32768
parameter_rules:
- name: temperature
use_template: temperature
type: float
default: 0.3
min: 0.0
max: 2.0
help:
zh_Hans: 用于控制随机性和多样性的程度。具体来说temperature值控制了生成文本时对每个候选词的概率分布进行平滑的程度。较高的temperature值会降低概率分布的峰值使得更多的低概率词被选择生成结果更加多样化而较低的temperature值则会增强概率分布的峰值使得高概率词更容易被选择生成结果更加确定。
en_US: Used to control the degree of randomness and diversity. Specifically, the temperature value controls the degree to which the probability distribution of each candidate word is smoothed when generating text. A higher temperature value will reduce the peak value of the probability distribution, allowing more low-probability words to be selected, and the generated results will be more diverse; while a lower temperature value will enhance the peak value of the probability distribution, making it easier for high-probability words to be selected. , the generated results are more certain.
- name: max_tokens
use_template: max_tokens
type: int
default: 2000
min: 1
max: 2000
help:
zh_Hans: 用于指定模型在生成内容时token的最大数量它定义了生成的上限但不保证每次都会生成到这个数量。
en_US: It is used to specify the maximum number of tokens when the model generates content. It defines the upper limit of generation, but does not guarantee that this number will be generated every time.
- name: top_p
use_template: top_p
type: float
default: 0.8
min: 0.1
max: 0.9
help:
zh_Hans: 生成过程中核采样方法概率阈值例如取值为0.8时仅保留概率加起来大于等于0.8的最可能token的最小集合作为候选集。取值范围为0,1.0),取值越大,生成的随机性越高;取值越低,生成的确定性越高。
en_US: The probability threshold of the kernel sampling method during the generation process. For example, when the value is 0.8, only the smallest set of the most likely tokens with a sum of probabilities greater than or equal to 0.8 is retained as the candidate set. The value range is (0,1.0). The larger the value, the higher the randomness generated; the lower the value, the higher the certainty generated.
- name: top_k
type: int
min: 0
max: 99
label:
zh_Hans: 取样数量
en_US: Top k
help:
zh_Hans: 生成时采样候选集的大小。例如取值为50时仅将单次生成中得分最高的50个token组成随机采样的候选集。取值越大生成的随机性越高取值越小生成的确定性越高。
en_US: The size of the sample candidate set when generated. For example, when the value is 50, only the 50 highest-scoring tokens in a single generation form a randomly sampled candidate set. The larger the value, the higher the randomness generated; the smaller the value, the higher the certainty generated.
- name: seed
required: false
type: int
default: 1234
label:
zh_Hans: 随机种子
en_US: Random seed
help:
zh_Hans: 生成时使用的随机数种子用户控制模型生成内容的随机性。支持无符号64位整数默认值为 1234。在使用seed时模型将尽可能生成相同或相似的结果但目前不保证每次生成的结果完全相同。
en_US: The random number seed used when generating, the user controls the randomness of the content generated by the model. Supports unsigned 64-bit integers, default value is 1234. When using seed, the model will try its best to generate the same or similar results, but there is currently no guarantee that the results will be exactly the same every time.
- name: repetition_penalty
required: false
type: float
default: 1.1
label:
zh_Hans: 重复惩罚
en_US: Repetition penalty
help:
zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。
en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment.
- name: response_format
label:
zh_Hans: 回复格式
en_US: Response Format
type: string
help:
zh_Hans: 指定模型必须输出的格式
en_US: specifying the format that the model must output
required: false
options:
- text
- json_object
pricing:
input: '21'
output: '21'
unit: '0.000001'
currency: RMB

View File

@ -0,0 +1,84 @@
model: Pro/Qwen/Qwen2-VL-7B-Instruct
label:
en_US: Pro/Qwen/Qwen2-VL-7B-Instruct
model_type: llm
features:
- vision
model_properties:
mode: chat
context_size: 32768
parameter_rules:
- name: temperature
use_template: temperature
type: float
default: 0.3
min: 0.0
max: 2.0
help:
zh_Hans: 用于控制随机性和多样性的程度。具体来说temperature值控制了生成文本时对每个候选词的概率分布进行平滑的程度。较高的temperature值会降低概率分布的峰值使得更多的低概率词被选择生成结果更加多样化而较低的temperature值则会增强概率分布的峰值使得高概率词更容易被选择生成结果更加确定。
en_US: Used to control the degree of randomness and diversity. Specifically, the temperature value controls the degree to which the probability distribution of each candidate word is smoothed when generating text. A higher temperature value will reduce the peak value of the probability distribution, allowing more low-probability words to be selected, and the generated results will be more diverse; while a lower temperature value will enhance the peak value of the probability distribution, making it easier for high-probability words to be selected. , the generated results are more certain.
- name: max_tokens
use_template: max_tokens
type: int
default: 2000
min: 1
max: 2000
help:
zh_Hans: 用于指定模型在生成内容时token的最大数量它定义了生成的上限但不保证每次都会生成到这个数量。
en_US: It is used to specify the maximum number of tokens when the model generates content. It defines the upper limit of generation, but does not guarantee that this number will be generated every time.
- name: top_p
use_template: top_p
type: float
default: 0.8
min: 0.1
max: 0.9
help:
zh_Hans: 生成过程中核采样方法概率阈值例如取值为0.8时仅保留概率加起来大于等于0.8的最可能token的最小集合作为候选集。取值范围为0,1.0),取值越大,生成的随机性越高;取值越低,生成的确定性越高。
en_US: The probability threshold of the kernel sampling method during the generation process. For example, when the value is 0.8, only the smallest set of the most likely tokens with a sum of probabilities greater than or equal to 0.8 is retained as the candidate set. The value range is (0,1.0). The larger the value, the higher the randomness generated; the lower the value, the higher the certainty generated.
- name: top_k
type: int
min: 0
max: 99
label:
zh_Hans: 取样数量
en_US: Top k
help:
zh_Hans: 生成时采样候选集的大小。例如取值为50时仅将单次生成中得分最高的50个token组成随机采样的候选集。取值越大生成的随机性越高取值越小生成的确定性越高。
en_US: The size of the sample candidate set when generated. For example, when the value is 50, only the 50 highest-scoring tokens in a single generation form a randomly sampled candidate set. The larger the value, the higher the randomness generated; the smaller the value, the higher the certainty generated.
- name: seed
required: false
type: int
default: 1234
label:
zh_Hans: 随机种子
en_US: Random seed
help:
zh_Hans: 生成时使用的随机数种子用户控制模型生成内容的随机性。支持无符号64位整数默认值为 1234。在使用seed时模型将尽可能生成相同或相似的结果但目前不保证每次生成的结果完全相同。
en_US: The random number seed used when generating, the user controls the randomness of the content generated by the model. Supports unsigned 64-bit integers, default value is 1234. When using seed, the model will try its best to generate the same or similar results, but there is currently no guarantee that the results will be exactly the same every time.
- name: repetition_penalty
required: false
type: float
default: 1.1
label:
zh_Hans: 重复惩罚
en_US: Repetition penalty
help:
zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。
en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment.
- name: response_format
label:
zh_Hans: 回复格式
en_US: Response Format
type: string
help:
zh_Hans: 指定模型必须输出的格式
en_US: specifying the format that the model must output
required: false
options:
- text
- json_object
pricing:
input: '21'
output: '21'
unit: '0.000001'
currency: RMB

View File

@ -32,6 +32,18 @@ parameter_rules:
required: false
- name: frequency_penalty
use_template: frequency_penalty
- name: response_format
label:
zh_Hans: 回复格式
en_US: Response Format
type: string
help:
zh_Hans: 指定模型必须输出的格式
en_US: specifying the format that the model must output
required: false
options:
- text
- json_object
pricing:
input: '0.7'
output: '0.7'

View File

@ -32,6 +32,18 @@ parameter_rules:
required: false
- name: frequency_penalty
use_template: frequency_penalty
- name: response_format
label:
zh_Hans: 回复格式
en_US: Response Format
type: string
help:
zh_Hans: 指定模型必须输出的格式
en_US: specifying the format that the model must output
required: false
options:
- text
- json_object
pricing:
input: '1.26'
output: '1.26'

View File

@ -32,6 +32,18 @@ parameter_rules:
required: false
- name: frequency_penalty
use_template: frequency_penalty
- name: response_format
label:
zh_Hans: 回复格式
en_US: Response Format
type: string
help:
zh_Hans: 指定模型必须输出的格式
en_US: specifying the format that the model must output
required: false
options:
- text
- json_object
pricing:
input: '4.13'
output: '4.13'

View File

@ -32,6 +32,18 @@ parameter_rules:
required: false
- name: frequency_penalty
use_template: frequency_penalty
- name: response_format
label:
zh_Hans: 回复格式
en_US: Response Format
type: string
help:
zh_Hans: 指定模型必须输出的格式
en_US: specifying the format that the model must output
required: false
options:
- text
- json_object
pricing:
input: '0'
output: '0'

View File

@ -0,0 +1,84 @@
model: Qwen/Qwen2.5-Coder-32B-Instruct
label:
en_US: Qwen/Qwen2.5-Coder-32B-Instruct
model_type: llm
features:
- agent-thought
model_properties:
mode: chat
context_size: 32768
parameter_rules:
- name: temperature
use_template: temperature
type: float
default: 0.3
min: 0.0
max: 2.0
help:
zh_Hans: 用于控制随机性和多样性的程度。具体来说temperature值控制了生成文本时对每个候选词的概率分布进行平滑的程度。较高的temperature值会降低概率分布的峰值使得更多的低概率词被选择生成结果更加多样化而较低的temperature值则会增强概率分布的峰值使得高概率词更容易被选择生成结果更加确定。
en_US: Used to control the degree of randomness and diversity. Specifically, the temperature value controls the degree to which the probability distribution of each candidate word is smoothed when generating text. A higher temperature value will reduce the peak value of the probability distribution, allowing more low-probability words to be selected, and the generated results will be more diverse; while a lower temperature value will enhance the peak value of the probability distribution, making it easier for high-probability words to be selected. , the generated results are more certain.
- name: max_tokens
use_template: max_tokens
type: int
default: 8192
min: 1
max: 8192
help:
zh_Hans: 用于指定模型在生成内容时token的最大数量它定义了生成的上限但不保证每次都会生成到这个数量。
en_US: It is used to specify the maximum number of tokens when the model generates content. It defines the upper limit of generation, but does not guarantee that this number will be generated every time.
- name: top_p
use_template: top_p
type: float
default: 0.8
min: 0.1
max: 0.9
help:
zh_Hans: 生成过程中核采样方法概率阈值例如取值为0.8时仅保留概率加起来大于等于0.8的最可能token的最小集合作为候选集。取值范围为0,1.0),取值越大,生成的随机性越高;取值越低,生成的确定性越高。
en_US: The probability threshold of the kernel sampling method during the generation process. For example, when the value is 0.8, only the smallest set of the most likely tokens with a sum of probabilities greater than or equal to 0.8 is retained as the candidate set. The value range is (0,1.0). The larger the value, the higher the randomness generated; the lower the value, the higher the certainty generated.
- name: top_k
type: int
min: 0
max: 99
label:
zh_Hans: 取样数量
en_US: Top k
help:
zh_Hans: 生成时采样候选集的大小。例如取值为50时仅将单次生成中得分最高的50个token组成随机采样的候选集。取值越大生成的随机性越高取值越小生成的确定性越高。
en_US: The size of the sample candidate set when generated. For example, when the value is 50, only the 50 highest-scoring tokens in a single generation form a randomly sampled candidate set. The larger the value, the higher the randomness generated; the smaller the value, the higher the certainty generated.
- name: seed
required: false
type: int
default: 1234
label:
zh_Hans: 随机种子
en_US: Random seed
help:
zh_Hans: 生成时使用的随机数种子用户控制模型生成内容的随机性。支持无符号64位整数默认值为 1234。在使用seed时模型将尽可能生成相同或相似的结果但目前不保证每次生成的结果完全相同。
en_US: The random number seed used when generating, the user controls the randomness of the content generated by the model. Supports unsigned 64-bit integers, default value is 1234. When using seed, the model will try its best to generate the same or similar results, but there is currently no guarantee that the results will be exactly the same every time.
- name: repetition_penalty
required: false
type: float
default: 1.1
label:
zh_Hans: 重复惩罚
en_US: Repetition penalty
help:
zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。
en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment.
- name: response_format
label:
zh_Hans: 回复格式
en_US: Response Format
type: string
help:
zh_Hans: 指定模型必须输出的格式
en_US: specifying the format that the model must output
required: false
options:
- text
- json_object
pricing:
input: '1.26'
output: '1.26'
unit: '0.000001'
currency: RMB

View File

@ -66,7 +66,17 @@ parameter_rules:
zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。
en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment.
- name: response_format
use_template: response_format
label:
zh_Hans: 回复格式
en_US: Response Format
type: string
help:
zh_Hans: 指定模型必须输出的格式
en_US: specifying the format that the model must output
required: false
options:
- text
- json_object
pricing:
input: '0'
output: '0'

View File

@ -66,7 +66,17 @@ parameter_rules:
zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。
en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment.
- name: response_format
use_template: response_format
label:
zh_Hans: 回复格式
en_US: Response Format
type: string
help:
zh_Hans: 指定模型必须输出的格式
en_US: specifying the format that the model must output
required: false
options:
- text
- json_object
pricing:
input: '4.13'
output: '4.13'

View File

@ -0,0 +1,5 @@
model: FunAudioLLM/SenseVoiceSmall
model_type: speech2text
model_properties:
file_upload_limit: 1
supported_file_extensions: mp3,wav

View File

@ -3,3 +3,4 @@ model_type: speech2text
model_properties:
file_upload_limit: 1
supported_file_extensions: mp3,wav
deprecated: true

View File

@ -1,5 +1,6 @@
import json
import random
from collections import UserDict
from datetime import datetime
@ -10,9 +11,9 @@ class ChatRole:
FUNCTION = "function"
class _Dict(dict):
__setattr__ = dict.__setitem__
__getattr__ = dict.__getitem__
class _Dict(UserDict):
__setattr__ = UserDict.__setitem__
__getattr__ = UserDict.__getitem__
def __missing__(self, key):
return None

View File

@ -178,6 +178,7 @@ class ElasticSearchVector(BaseVector):
Field.VECTOR.value: { # Make sure the dimension is correct here
"type": "dense_vector",
"dims": dim,
"index": True,
"similarity": "cosine",
},
Field.METADATA_KEY.value: {

View File

@ -78,3 +78,4 @@
- regex
- trello
- vanna
- fal

View File

@ -0,0 +1,3 @@
<svg xmlns="http://www.w3.org/2000/svg" width="200" height="200" viewBox="0 0 200 200" fill="none">
<path d="M167.358 102.395C167.358 117.174 157.246 129.18 144.61 131.027H137.861C125.225 129.18 115.113 117.174 115.113 102.395H100.792C100.792 123.637 115.118 142.106 133.653 145.801V164.276H147.139V145.801C165.674 142.106 180 124.558 180 102.4H167.358V102.395ZM154.717 62.677C154.717 53.4397 147.979 46.9765 140.396 46.9765C138.523 46.9446 136.663 47.3273 134.924 48.1024C133.185 48.8775 131.603 50.0294 130.27 51.4909C128.936 52.9524 127.878 54.6943 127.157 56.6148C126.436 58.5354 126.066 60.5962 126.07 62.677V78.3775H154.717V70.4478V62.677ZM126.07 102.395C126.07 111.632 132.813 118.095 140.396 118.095C142.269 118.127 144.13 117.744 145.868 116.969C147.607 116.194 149.189 115.042 150.523 113.581C151.856 112.119 152.914 110.377 153.635 108.457C154.356 106.536 154.726 104.475 154.722 102.395V86.694H126.07V102.395ZM92.1297 45.8938L70.4796 21.7595L69.4235 20.5865L59.604 20L68.3674 20.5865L67.3113 21.7654L64.1429 25.2961L63.6149 25.8826L64.1429 27.0614L66.2552 29.4133L77.8723 42.3631H54.1099C35.1 43.5361 20.3146 61.1896 20.3146 81.7874V83.5527H28.2354V81.7932C28.2354 65.8992 39.8525 52.3628 54.1099 51.1899H77.8723L66.2552 64.1338L64.671 65.8992L64.1429 67.0722L63.6149 67.6645L64.1429 68.251L68.3674 72.9606L68.8954 73.5471L69.4235 72.9606L74.1759 67.6645L92.1297 47.6591L92.6578 47.0727L92.1297 45.8938ZM20 95.8496V118.213H30.033V107.034H50.099V168.821H40.066V180H70.165V168.821H60.132V107.034H80.198V118.213H90.231V95.8496H20Z" fill="#FF0099"/>
</svg>

After

Width:  |  Height:  |  Size: 1.5 KiB

View File

@ -0,0 +1,6 @@
from core.tools.provider.builtin_tool_provider import BuiltinToolProviderController
class AudioToolProvider(BuiltinToolProviderController):
def _validate_credentials(self, credentials: dict) -> None:
pass

View File

@ -0,0 +1,11 @@
identity:
author: hjlarry
name: audio
label:
en_US: Audio
description:
en_US: A tool for tts and asr.
zh_Hans: 一个用于文本转语音和语音转文本的工具。
icon: icon.svg
tags:
- utilities

View File

@ -0,0 +1,69 @@
import io
from typing import Any
from core.file.enums import FileType
from core.file.file_manager import download
from core.model_manager import ModelManager
from core.model_runtime.entities.model_entities import ModelType
from core.tools.entities.common_entities import I18nObject
from core.tools.entities.tool_entities import ToolInvokeMessage, ToolParameter, ToolParameterOption
from core.tools.tool.builtin_tool import BuiltinTool
from services.model_provider_service import ModelProviderService
class ASRTool(BuiltinTool):
def _invoke(self, user_id: str, tool_parameters: dict[str, Any]) -> list[ToolInvokeMessage]:
file = tool_parameters.get("audio_file")
if file.type != FileType.AUDIO:
return [self.create_text_message("not a valid audio file")]
audio_binary = io.BytesIO(download(file))
audio_binary.name = "temp.mp3"
provider, model = tool_parameters.get("model").split("#")
model_manager = ModelManager()
model_instance = model_manager.get_model_instance(
tenant_id=self.runtime.tenant_id,
provider=provider,
model_type=ModelType.SPEECH2TEXT,
model=model,
)
text = model_instance.invoke_speech2text(
file=audio_binary,
user=user_id,
)
return [self.create_text_message(text)]
def get_available_models(self) -> list[tuple[str, str]]:
model_provider_service = ModelProviderService()
models = model_provider_service.get_models_by_model_type(
tenant_id=self.runtime.tenant_id, model_type="speech2text"
)
items = []
for provider_model in models:
provider = provider_model.provider
for model in provider_model.models:
items.append((provider, model.model))
return items
def get_runtime_parameters(self) -> list[ToolParameter]:
parameters = []
options = []
for provider, model in self.get_available_models():
option = ToolParameterOption(value=f"{provider}#{model}", label=I18nObject(en_US=f"{model}({provider})"))
options.append(option)
parameters.append(
ToolParameter(
name="model",
label=I18nObject(en_US="Model", zh_Hans="Model"),
human_description=I18nObject(
en_US="All available ASR models. You can config model in the Model Provider of Settings.",
zh_Hans="所有可用的 ASR 模型。你可以在设置中的模型供应商里配置。",
),
type=ToolParameter.ToolParameterType.SELECT,
form=ToolParameter.ToolParameterForm.FORM,
required=True,
options=options,
)
)
return parameters

View File

@ -0,0 +1,22 @@
identity:
name: asr
author: hjlarry
label:
en_US: Speech To Text
description:
human:
en_US: Convert audio file to text.
zh_Hans: 将音频文件转换为文本。
llm: Convert audio file to text.
parameters:
- name: audio_file
type: file
required: true
label:
en_US: Audio File
zh_Hans: 音频文件
human_description:
en_US: The audio file to be converted.
zh_Hans: 要转换的音频文件。
llm_description: The audio file to be converted.
form: llm

View File

@ -0,0 +1,89 @@
import io
from typing import Any
from core.model_manager import ModelManager
from core.model_runtime.entities.model_entities import ModelPropertyKey, ModelType
from core.tools.entities.common_entities import I18nObject
from core.tools.entities.tool_entities import ToolInvokeMessage, ToolParameter, ToolParameterOption
from core.tools.tool.builtin_tool import BuiltinTool
from services.model_provider_service import ModelProviderService
class TTSTool(BuiltinTool):
def _invoke(self, user_id: str, tool_parameters: dict[str, Any]) -> list[ToolInvokeMessage]:
provider, model = tool_parameters.get("model").split("#")
voice = tool_parameters.get(f"voice#{provider}#{model}")
model_manager = ModelManager()
model_instance = model_manager.get_model_instance(
tenant_id=self.runtime.tenant_id,
provider=provider,
model_type=ModelType.TTS,
model=model,
)
tts = model_instance.invoke_tts(
content_text=tool_parameters.get("text"),
user=user_id,
tenant_id=self.runtime.tenant_id,
voice=voice,
)
buffer = io.BytesIO()
for chunk in tts:
buffer.write(chunk)
wav_bytes = buffer.getvalue()
return [
self.create_text_message("Audio generated successfully"),
self.create_blob_message(
blob=wav_bytes,
meta={"mime_type": "audio/x-wav"},
save_as=self.VariableKey.AUDIO,
),
]
def get_available_models(self) -> list[tuple[str, str, list[Any]]]:
model_provider_service = ModelProviderService()
models = model_provider_service.get_models_by_model_type(tenant_id=self.runtime.tenant_id, model_type="tts")
items = []
for provider_model in models:
provider = provider_model.provider
for model in provider_model.models:
voices = model.model_properties.get(ModelPropertyKey.VOICES, [])
items.append((provider, model.model, voices))
return items
def get_runtime_parameters(self) -> list[ToolParameter]:
parameters = []
options = []
for provider, model, voices in self.get_available_models():
option = ToolParameterOption(value=f"{provider}#{model}", label=I18nObject(en_US=f"{model}({provider})"))
options.append(option)
parameters.append(
ToolParameter(
name=f"voice#{provider}#{model}",
label=I18nObject(en_US=f"Voice of {model}({provider})"),
type=ToolParameter.ToolParameterType.SELECT,
form=ToolParameter.ToolParameterForm.FORM,
options=[
ToolParameterOption(value=voice.get("mode"), label=I18nObject(en_US=voice.get("name")))
for voice in voices
],
)
)
parameters.insert(
0,
ToolParameter(
name="model",
label=I18nObject(en_US="Model", zh_Hans="Model"),
human_description=I18nObject(
en_US="All available TTS models. You can config model in the Model Provider of Settings.",
zh_Hans="所有可用的 TTS 模型。你可以在设置中的模型供应商里配置。",
),
type=ToolParameter.ToolParameterType.SELECT,
form=ToolParameter.ToolParameterForm.FORM,
required=True,
options=options,
),
)
return parameters

View File

@ -0,0 +1,22 @@
identity:
name: tts
author: hjlarry
label:
en_US: Text To Speech
description:
human:
en_US: Convert text to audio file.
zh_Hans: 将文本转换为音频文件。
llm: Convert text to audio file.
parameters:
- name: text
type: string
required: true
label:
en_US: Text
zh_Hans: 文本
human_description:
en_US: The text to be converted.
zh_Hans: 要转换的文本。
llm_description: The text to be converted.
form: llm

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 11 KiB

View File

@ -0,0 +1,7 @@
from core.tools.provider.builtin.email.tools.send_mail import SendMailTool
from core.tools.provider.builtin_tool_provider import BuiltinToolProviderController
class SmtpProvider(BuiltinToolProviderController):
def _validate_credentials(self, credentials: dict) -> None:
SendMailTool()

View File

@ -0,0 +1,83 @@
identity:
author: wakaka6
name: email
label:
en_US: email
zh_Hans: 电子邮件
description:
en_US: send email through smtp protocol
zh_Hans: 通过smtp协议发送电子邮件
icon: icon.svg
tags:
- utilities
credentials_for_provider:
email_account:
type: text-input
required: true
label:
en_US: email account
zh_Hans: 邮件账号
placeholder:
en_US: input you email account
zh_Hans: 输入你的邮箱账号
help:
en_US: email account
zh_Hans: 邮件账号
email_password:
type: secret-input
required: true
label:
en_US: email password
zh_Hans: 邮件密码
placeholder:
en_US: email password
zh_Hans: 邮件密码
help:
en_US: email password
zh_Hans: 邮件密码
smtp_server:
type: text-input
required: true
label:
en_US: smtp server
zh_Hans: 发信smtp服务器地址
placeholder:
en_US: smtp server
zh_Hans: 发信smtp服务器地址
help:
en_US: smtp server
zh_Hans: 发信smtp服务器地址
smtp_port:
type: text-input
required: true
label:
en_US: smtp server port
zh_Hans: 发信smtp服务器端口
placeholder:
en_US: smtp server port
zh_Hans: 发信smtp服务器端口
help:
en_US: smtp server port
zh_Hans: 发信smtp服务器端口
encrypt_method:
type: select
required: true
options:
- value: NONE
label:
en_US: NONE
zh_Hans: 无加密
- value: SSL
label:
en_US: SSL
zh_Hans: SSL加密
- value: TLS
label:
en_US: START TLS
zh_Hans: START TLS加密
label:
en_US: encrypt method
zh_Hans: 加密方式
help:
en_US: smtp server encrypt method
zh_Hans: 发信smtp服务器加密方式

View File

@ -0,0 +1,53 @@
import logging
import smtplib
import ssl
from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText
from pydantic import BaseModel
class SendEmailToolParameters(BaseModel):
smtp_server: str
smtp_port: int
email_account: str
email_password: str
sender_to: str
subject: str
email_content: str
encrypt_method: str
def send_mail(parmas: SendEmailToolParameters):
timeout = 60
msg = MIMEMultipart("alternative")
msg["From"] = parmas.email_account
msg["To"] = parmas.sender_to
msg["Subject"] = parmas.subject
msg.attach(MIMEText(parmas.email_content, "plain"))
msg.attach(MIMEText(parmas.email_content, "html"))
ctx = ssl.create_default_context()
if parmas.encrypt_method.upper() == "SSL":
try:
with smtplib.SMTP_SSL(parmas.smtp_server, parmas.smtp_port, context=ctx, timeout=timeout) as server:
server.login(parmas.email_account, parmas.email_password)
server.sendmail(parmas.email_account, parmas.sender_to, msg.as_string())
return True
except Exception as e:
logging.exception("send email failed: %s", e)
return False
else: # NONE or TLS
try:
with smtplib.SMTP(parmas.smtp_server, parmas.smtp_port, timeout=timeout) as server:
if parmas.encrypt_method.upper() == "TLS":
server.starttls(context=ctx)
server.login(parmas.email_account, parmas.email_password)
server.sendmail(parmas.email_account, parmas.sender_to, msg.as_string())
return True
except Exception as e:
logging.exception("send email failed: %s", e)
return False

View File

@ -0,0 +1,66 @@
import re
from typing import Any, Union
from core.tools.entities.tool_entities import ToolInvokeMessage
from core.tools.provider.builtin.email.tools.send import (
SendEmailToolParameters,
send_mail,
)
from core.tools.tool.builtin_tool import BuiltinTool
class SendMailTool(BuiltinTool):
def _invoke(
self, user_id: str, tool_parameters: dict[str, Any]
) -> Union[ToolInvokeMessage, list[ToolInvokeMessage]]:
"""
invoke tools
"""
sender = self.runtime.credentials.get("email_account", "")
email_rgx = re.compile(r"^[a-zA-Z0-9_-]+@[a-zA-Z0-9_-]+(\.[a-zA-Z0-9_-]+)+$")
password = self.runtime.credentials.get("email_password", "")
smtp_server = self.runtime.credentials.get("smtp_server", "")
if not smtp_server:
return self.create_text_message("please input smtp server")
smtp_port = self.runtime.credentials.get("smtp_port", "")
try:
smtp_port = int(smtp_port)
except ValueError:
return self.create_text_message("Invalid parameter smtp_port(should be int)")
if not sender:
return self.create_text_message("please input sender")
if not email_rgx.match(sender):
return self.create_text_message("Invalid parameter userid, the sender is not a mailbox")
receiver_email = tool_parameters["send_to"]
if not receiver_email:
return self.create_text_message("please input receiver email")
if not email_rgx.match(receiver_email):
return self.create_text_message("Invalid parameter receiver email, the receiver email is not a mailbox")
email_content = tool_parameters.get("email_content", "")
if not email_content:
return self.create_text_message("please input email content")
subject = tool_parameters.get("subject", "")
if not subject:
return self.create_text_message("please input email subject")
encrypt_method = self.runtime.credentials.get("encrypt_method", "")
if not encrypt_method:
return self.create_text_message("please input encrypt method")
send_email_params = SendEmailToolParameters(
smtp_server=smtp_server,
smtp_port=smtp_port,
email_account=sender,
email_password=password,
sender_to=receiver_email,
subject=subject,
email_content=email_content,
encrypt_method=encrypt_method,
)
if send_mail(send_email_params):
return self.create_text_message("send email success")
return self.create_text_message("send email failed")

View File

@ -0,0 +1,46 @@
identity:
name: send_mail
author: wakaka6
label:
en_US: send email
zh_Hans: 发送邮件
icon: icon.svg
description:
human:
en_US: A tool for sending email
zh_Hans: 用于发送邮件
llm: A tool for sending email
parameters:
- name: send_to
type: string
required: true
label:
en_US: Recipient email account
zh_Hans: 收件人邮箱账号
human_description:
en_US: Recipient email account
zh_Hans: 收件人邮箱账号
llm_description: Recipient email account
form: llm
- name: subject
type: string
required: true
label:
en_US: email subject
zh_Hans: 邮件主题
human_description:
en_US: email subject
zh_Hans: 邮件主题
llm_description: email subject
form: llm
- name: email_content
type: string
required: true
label:
en_US: email content
zh_Hans: 邮件内容
human_description:
en_US: email content
zh_Hans: 邮件内容
llm_description: email content
form: llm

View File

@ -0,0 +1,75 @@
import json
import re
from typing import Any, Union
from core.tools.entities.tool_entities import ToolInvokeMessage
from core.tools.provider.builtin.email.tools.send import (
SendEmailToolParameters,
send_mail,
)
from core.tools.tool.builtin_tool import BuiltinTool
class SendMailTool(BuiltinTool):
def _invoke(
self, user_id: str, tool_parameters: dict[str, Any]
) -> Union[ToolInvokeMessage, list[ToolInvokeMessage]]:
"""
invoke tools
"""
sender = self.runtime.credentials.get("email_account", "")
email_rgx = re.compile(r"^[a-zA-Z0-9_-]+@[a-zA-Z0-9_-]+(\.[a-zA-Z0-9_-]+)+$")
password = self.runtime.credentials.get("email_password", "")
smtp_server = self.runtime.credentials.get("smtp_server", "")
if not smtp_server:
return self.create_text_message("please input smtp server")
smtp_port = self.runtime.credentials.get("smtp_port", "")
try:
smtp_port = int(smtp_port)
except ValueError:
return self.create_text_message("Invalid parameter smtp_port(should be int)")
if not sender:
return self.create_text_message("please input sender")
if not email_rgx.match(sender):
return self.create_text_message("Invalid parameter userid, the sender is not a mailbox")
receivers_email = tool_parameters["send_to"]
if not receivers_email:
return self.create_text_message("please input receiver email")
receivers_email = json.loads(receivers_email)
for receiver in receivers_email:
if not email_rgx.match(receiver):
return self.create_text_message(
f"Invalid parameter receiver email, the receiver email({receiver}) is not a mailbox"
)
email_content = tool_parameters.get("email_content", "")
if not email_content:
return self.create_text_message("please input email content")
subject = tool_parameters.get("subject", "")
if not subject:
return self.create_text_message("please input email subject")
encrypt_method = self.runtime.credentials.get("encrypt_method", "")
if not encrypt_method:
return self.create_text_message("please input encrypt method")
msg = {}
for receiver in receivers_email:
send_email_params = SendEmailToolParameters(
smtp_server=smtp_server,
smtp_port=smtp_port,
email_account=sender,
email_password=password,
sender_to=receiver,
subject=subject,
email_content=email_content,
encrypt_method=encrypt_method,
)
if send_mail(send_email_params):
msg[receiver] = "send email success"
else:
msg[receiver] = "send email failed"
return self.create_text_message(json.dumps(msg))

View File

@ -0,0 +1,46 @@
identity:
name: send_mail_batch
author: wakaka6
label:
en_US: send email to multiple recipients
zh_Hans: 发送邮件给多个收件人
icon: icon.svg
description:
human:
en_US: A tool for sending email to multiple recipients
zh_Hans: 用于发送邮件给多个收件人的工具
llm: A tool for sending email to multiple recipients
parameters:
- name: send_to
type: string
required: true
label:
en_US: Recipient email account(json list)
zh_Hans: 收件人邮箱账号(json list)
human_description:
en_US: Recipient email account
zh_Hans: 收件人邮箱账号
llm_description: A list of recipient email account(json format)
form: llm
- name: subject
type: string
required: true
label:
en_US: email subject
zh_Hans: 邮件主题
human_description:
en_US: email subject
zh_Hans: 邮件主题
llm_description: email subject
form: llm
- name: email_content
type: string
required: true
label:
en_US: email content
zh_Hans: 邮件内容
human_description:
en_US: email content
zh_Hans: 邮件内容
llm_description: email content
form: llm

View File

@ -0,0 +1,4 @@
<?xml version="1.0" encoding="UTF-8"?>
<svg version="1.1" xmlns="http://www.w3.org/2000/svg" width="32" height="32">
<path d="M0 0 C3.96 0 7.92 0 12 0 C12.4125 0.928125 12.825 1.85625 13.25 2.8125 C15.56104487 7.02190315 17.49701732 8.49900577 22 10 C22 13.96 22 17.92 22 22 C21.071875 22.4125 20.14375 22.825 19.1875 23.25 C14.97809685 25.56104487 13.50099423 27.49701732 12 32 C8.04 32 4.08 32 0 32 C-0.4125 31.071875 -0.825 30.14375 -1.25 29.1875 C-3.56104487 24.97809685 -5.49701732 23.50099423 -10 22 C-10 18.04 -10 14.08 -10 10 C-9.071875 9.5875 -8.14375 9.175 -7.1875 8.75 C-2.97809685 6.43895513 -1.50099423 4.50298268 0 0 Z M-2 11 C-3.42662219 13.85324437 -3.31033868 15.83454549 -3 19 C-1.20006226 21.69990662 0.083773 23.5418865 3 25 C7.1364408 25.56406011 8.76045933 25.14638597 12.375 22.9375 C15.26054626 20.20817124 15.26054626 20.20817124 15.6875 16.5625 C14.76325283 11.77321919 13.68514918 10.2147046 10 7 C4.54838272 6.02649691 1.87056683 7.12943317 -2 11 Z " fill="#EC0648" transform="translate(10,0)"/>
</svg>

After

Width:  |  Height:  |  Size: 1.0 KiB

View File

@ -0,0 +1,20 @@
import requests
from core.tools.errors import ToolProviderCredentialValidationError
from core.tools.provider.builtin_tool_provider import BuiltinToolProviderController
class FalProvider(BuiltinToolProviderController):
def _validate_credentials(self, credentials: dict) -> None:
url = "https://fal.run/fal-ai/flux/dev"
headers = {
"Authorization": f"Key {credentials.get('fal_api_key')}",
"Content-Type": "application/json",
}
data = {"prompt": "Cat"}
response = requests.post(url, json=data, headers=headers)
if response.status_code == 401:
raise ToolProviderCredentialValidationError("FAL API key is invalid")
elif response.status_code != 200:
raise ToolProviderCredentialValidationError(f"FAL API key validation failed: {response.text}")

View File

@ -0,0 +1,21 @@
identity:
author: Kalo Chin
name: fal
label:
en_US: FAL
zh_CN: FAL
description:
en_US: The image generation API provided by FAL.
zh_CN: FAL 提供的图像生成 API。
icon: icon.svg
tags:
- image
credentials_for_provider:
fal_api_key:
type: secret-input
required: true
label:
en_US: FAL API Key
placeholder:
en_US: Please input your FAL API key
url: https://fal.ai/dashboard/keys

View File

@ -0,0 +1,46 @@
from typing import Any, Union
import requests
from core.tools.entities.tool_entities import ToolInvokeMessage
from core.tools.tool.builtin_tool import BuiltinTool
class Flux11ProTool(BuiltinTool):
def _invoke(
self, user_id: str, tool_parameters: dict[str, Any]
) -> Union[ToolInvokeMessage, list[ToolInvokeMessage]]:
headers = {
"Authorization": f"Key {self.runtime.credentials['fal_api_key']}",
"Content-Type": "application/json",
}
prompt = tool_parameters.get("prompt", "")
sanitized_prompt = prompt.replace("\\", "") # Remove backslashes from the prompt which may cause errors
payload = {
"prompt": sanitized_prompt,
"image_size": tool_parameters.get("image_size", "landscape_4_3"),
"seed": tool_parameters.get("seed"),
"sync_mode": tool_parameters.get("sync_mode", False),
"num_images": tool_parameters.get("num_images", 1),
"enable_safety_checker": tool_parameters.get("enable_safety_checker", True),
"safety_tolerance": tool_parameters.get("safety_tolerance", "2"),
}
url = "https://fal.run/fal-ai/flux-pro/v1.1"
response = requests.post(url, json=payload, headers=headers)
if response.status_code != 200:
return self.create_text_message(f"Got Error Response: {response.text}")
res = response.json()
result = [self.create_json_message(res)]
for image_info in res.get("images", []):
image_url = image_info.get("url")
if image_url:
result.append(self.create_image_message(image=image_url, save_as=self.VariableKey.IMAGE.value))
return result

View File

@ -0,0 +1,147 @@
identity:
name: flux_1_1_pro
author: Kalo Chin
label:
en_US: FLUX 1.1 [pro]
zh_Hans: FLUX 1.1 [pro]
icon: icon.svg
description:
human:
en_US: FLUX 1.1 [pro] is an enhanced version of FLUX.1 [pro], improved image generation capabilities, delivering superior composition, detail, and artistic fidelity compared to its predecessor.
zh_Hans: FLUX 1.1 [pro] 是 FLUX.1 [pro] 的增强版,改进了图像生成能力,与其前身相比,提供了更出色的构图、细节和艺术保真度。
llm: This tool generates images from prompts using FAL's FLUX 1.1 [pro] model.
parameters:
- name: prompt
type: string
required: true
label:
en_US: Prompt
zh_Hans: 提示词
human_description:
en_US: The text prompt used to generate the image.
zh_Hans: 用于生成图片的文字提示词。
llm_description: This prompt text will be used to generate the image.
form: llm
- name: image_size
type: select
required: false
options:
- value: square_hd
label:
en_US: Square HD
zh_Hans: 方形高清
- value: square
label:
en_US: Square
zh_Hans: 方形
- value: portrait_4_3
label:
en_US: Portrait 4:3
zh_Hans: 竖屏 4:3
- value: portrait_16_9
label:
en_US: Portrait 16:9
zh_Hans: 竖屏 16:9
- value: landscape_4_3
label:
en_US: Landscape 4:3
zh_Hans: 横屏 4:3
- value: landscape_16_9
label:
en_US: Landscape 16:9
zh_Hans: 横屏 16:9
default: landscape_4_3
label:
en_US: Image Size
zh_Hans: 图片大小
human_description:
en_US: The size of the generated image.
zh_Hans: 生成图像的尺寸。
form: form
- name: num_images
type: number
required: false
default: 1
min: 1
max: 1
label:
en_US: Number of Images
zh_Hans: 图片数量
human_description:
en_US: The number of images to generate.
zh_Hans: 要生成的图片数量。
form: form
- name: safety_tolerance
type: select
required: false
options:
- value: "1"
label:
en_US: "1 (Most strict)"
zh_Hans: "1最严格"
- value: "2"
label:
en_US: "2"
zh_Hans: "2"
- value: "3"
label:
en_US: "3"
zh_Hans: "3"
- value: "4"
label:
en_US: "4"
zh_Hans: "4"
- value: "5"
label:
en_US: "5"
zh_Hans: "5"
- value: "6"
label:
en_US: "6 (Most permissive)"
zh_Hans: "6最宽松"
default: "2"
label:
en_US: Safety Tolerance
zh_Hans: 安全容忍度
human_description:
en_US: The safety tolerance level for the generated image. 1 being the most strict and 6 being the most permissive.
zh_Hans: 生成图像的安全容忍级别1 为最严格6 为最宽松。
form: form
- name: seed
type: number
required: false
min: 0
max: 9999999999
label:
en_US: Seed
zh_Hans: 种子
human_description:
en_US: The same seed and prompt can produce similar images.
zh_Hans: 相同的种子和提示词可以产生相似的图像。
form: form
- name: enable_safety_checker
type: boolean
required: false
default: true
label:
en_US: Enable Safety Checker
zh_Hans: 启用安全检查器
human_description:
en_US: Enable or disable the safety checker.
zh_Hans: 启用或禁用安全检查器。
form: form
- name: sync_mode
type: boolean
required: false
default: false
label:
en_US: Sync Mode
zh_Hans: 同步模式
human_description:
en_US: >
If set to true, the function will wait for the image to be generated and uploaded before returning the response.
This will increase the latency but allows you to get the image directly in the response without going through the CDN.
zh_Hans: >
如果设置为 true函数将在生成并上传图像后再返回响应。
这将增加函数的延迟,但可以让您直接在响应中获取图像,而无需通过 CDN。
form: form

View File

@ -0,0 +1,47 @@
from typing import Any, Union
import requests
from core.tools.entities.tool_entities import ToolInvokeMessage
from core.tools.tool.builtin_tool import BuiltinTool
class Flux11ProUltraTool(BuiltinTool):
def _invoke(
self, user_id: str, tool_parameters: dict[str, Any]
) -> Union[ToolInvokeMessage, list[ToolInvokeMessage]]:
headers = {
"Authorization": f"Key {self.runtime.credentials['fal_api_key']}",
"Content-Type": "application/json",
}
prompt = tool_parameters.get("prompt", "")
sanitized_prompt = prompt.replace("\\", "") # Remove backslashes from the prompt which may cause errors
payload = {
"prompt": sanitized_prompt,
"seed": tool_parameters.get("seed"),
"sync_mode": tool_parameters.get("sync_mode", False),
"num_images": tool_parameters.get("num_images", 1),
"enable_safety_checker": tool_parameters.get("enable_safety_checker", True),
"safety_tolerance": str(tool_parameters.get("safety_tolerance", "2")),
"aspect_ratio": tool_parameters.get("aspect_ratio", "16:9"),
"raw": tool_parameters.get("raw", False),
}
url = "https://fal.run/fal-ai/flux-pro/v1.1-ultra"
response = requests.post(url, json=payload, headers=headers)
if response.status_code != 200:
return self.create_text_message(f"Got Error Response: {response.text}")
res = response.json()
result = [self.create_json_message(res)]
for image_info in res.get("images", []):
image_url = image_info.get("url")
if image_url:
result.append(self.create_image_message(image=image_url, save_as=self.VariableKey.IMAGE.value))
return result

View File

@ -0,0 +1,162 @@
identity:
name: flux_1_1_pro_ultra
author: Kalo Chin
label:
en_US: FLUX 1.1 [pro] ultra
zh_Hans: FLUX 1.1 [pro] ultra
icon: icon.svg
description:
human:
en_US: FLUX 1.1 [pro] ultra is the newest version of FLUX 1.1 [pro], maintaining professional-grade image quality while delivering up to 2K resolution with improved photo realism.
zh_Hans: FLUX 1.1 [pro] ultra 是 FLUX 1.1 [pro] 的最新版本,保持了专业级的图像质量,同时以改进的照片真实感提供高达 2K 的分辨率。
llm: This tool generates images from prompts using FAL's FLUX 1.1 [pro] ultra model.
parameters:
- name: prompt
type: string
required: true
label:
en_US: Prompt
zh_Hans: 提示词
human_description:
en_US: The text prompt used to generate the image.
zh_Hans: 用于生成图像的文本提示。
llm_description: This prompt text will be used to generate the image.
form: llm
- name: aspect_ratio
type: select
required: false
options:
- value: '21:9'
label:
en_US: '21:9'
zh_Hans: '21:9'
- value: '16:9'
label:
en_US: '16:9'
zh_Hans: '16:9'
- value: '4:3'
label:
en_US: '4:3'
zh_Hans: '4:3'
- value: '1:1'
label:
en_US: '1:1'
zh_Hans: '1:1'
- value: '3:4'
label:
en_US: '3:4'
zh_Hans: '3:4'
- value: '9:16'
label:
en_US: '9:16'
zh_Hans: '9:16'
- value: '9:21'
label:
en_US: '9:21'
zh_Hans: '9:21'
default: '16:9'
label:
en_US: Aspect Ratio
zh_Hans: 纵横比
human_description:
en_US: The aspect ratio of the generated image.
zh_Hans: 生成图像的宽高比。
form: form
- name: num_images
type: number
required: false
default: 1
min: 1
max: 1
label:
en_US: Number of Images
zh_Hans: 图片数量
human_description:
en_US: The number of images to generate.
zh_Hans: 要生成的图像数量。
form: form
- name: safety_tolerance
type: select
required: false
options:
- value: "1"
label:
en_US: "1 (Most strict)"
zh_Hans: "1最严格"
- value: "2"
label:
en_US: "2"
zh_Hans: "2"
- value: "3"
label:
en_US: "3"
zh_Hans: "3"
- value: "4"
label:
en_US: "4"
zh_Hans: "4"
- value: "5"
label:
en_US: "5"
zh_Hans: "5"
- value: "6"
label:
en_US: "6 (Most permissive)"
zh_Hans: "6最宽松"
default: '2'
label:
en_US: Safety Tolerance
zh_Hans: 安全容忍度
human_description:
en_US: The safety tolerance level for the generated image. 1 being the most strict and 6 being the most permissive.
zh_Hans: 生成图像的安全容忍级别1 为最严格6 为最宽松。
form: form
- name: seed
type: number
required: false
min: 0
max: 9999999999
label:
en_US: Seed
zh_Hans: 种子
human_description:
en_US: The same seed and prompt can produce similar images.
zh_Hans: 相同的种子和提示词可以生成相似的图像。
form: form
- name: raw
type: boolean
required: false
default: false
label:
en_US: Raw Mode
zh_Hans: 原始模式
human_description:
en_US: Generate less processed, more natural-looking images.
zh_Hans: 生成较少处理、更自然的图像。
form: form
- name: enable_safety_checker
type: boolean
required: false
default: true
label:
en_US: Enable Safety Checker
zh_Hans: 启用安全检查器
human_description:
en_US: Enable or disable the safety checker.
zh_Hans: 启用或禁用安全检查器。
form: form
- name: sync_mode
type: boolean
required: false
default: false
label:
en_US: Sync Mode
zh_Hans: 同步模式
human_description:
en_US: >
If set to true, the function will wait for the image to be generated and uploaded before returning the response.
This will increase the latency but allows you to get the image directly in the response without going through the CDN.
zh_Hans: >
如果设置为 true函数将在生成并上传图像后才返回响应。
这将增加延迟,但允许您直接在响应中获取图像,而无需通过 CDN。
form: form

View File

@ -0,0 +1,47 @@
from typing import Any, Union
import requests
from core.tools.entities.tool_entities import ToolInvokeMessage
from core.tools.tool.builtin_tool import BuiltinTool
class Flux1DevTool(BuiltinTool):
def _invoke(
self, user_id: str, tool_parameters: dict[str, Any]
) -> Union[ToolInvokeMessage, list[ToolInvokeMessage]]:
headers = {
"Authorization": f"Key {self.runtime.credentials['fal_api_key']}",
"Content-Type": "application/json",
}
prompt = tool_parameters.get("prompt", "")
sanitized_prompt = prompt.replace("\\", "") # Remove backslashes from the prompt which may cause errors
payload = {
"prompt": sanitized_prompt,
"image_size": tool_parameters.get("image_size", "landscape_4_3"),
"num_inference_steps": tool_parameters.get("num_inference_steps", 28),
"guidance_scale": tool_parameters.get("guidance_scale", 3.5),
"seed": tool_parameters.get("seed"),
"num_images": tool_parameters.get("num_images", 1),
"enable_safety_checker": tool_parameters.get("enable_safety_checker", True),
"sync_mode": tool_parameters.get("sync_mode", False),
}
url = "https://fal.run/fal-ai/flux/dev"
response = requests.post(url, json=payload, headers=headers)
if response.status_code != 200:
return self.create_text_message(f"Got Error Response: {response.text}")
res = response.json()
result = [self.create_json_message(res)]
for image_info in res.get("images", []):
image_url = image_info.get("url")
if image_url:
result.append(self.create_image_message(image=image_url, save_as=self.VariableKey.IMAGE.value))
return result

View File

@ -0,0 +1,137 @@
identity:
name: flux_1_dev
author: Kalo Chin
label:
en_US: FLUX.1 [dev]
zh_Hans: FLUX.1 [dev]
icon: icon.svg
description:
human:
en_US: FLUX.1 [dev] is a 12 billion parameter flow transformer that generates high-quality images from text. It is suitable for personal and commercial use.
zh_Hans: FLUX.1 [dev] 是一个拥有120亿参数的流动变换模型可以从文本生成高质量的图像。适用于个人和商业用途。
llm: This tool generates images from prompts using FAL's FLUX.1 [dev] model.
parameters:
- name: prompt
type: string
required: true
label:
en_US: Prompt
zh_Hans: 提示词
human_description:
en_US: The text prompt used to generate the image.
zh_Hans: 用于生成图片的文字提示词。
llm_description: This prompt text will be used to generate the image.
form: llm
- name: image_size
type: select
required: false
options:
- value: square_hd
label:
en_US: Square HD
zh_Hans: 方形高清
- value: square
label:
en_US: Square
zh_Hans: 方形
- value: portrait_4_3
label:
en_US: Portrait 4:3
zh_Hans: 竖屏 4:3
- value: portrait_16_9
label:
en_US: Portrait 16:9
zh_Hans: 竖屏 16:9
- value: landscape_4_3
label:
en_US: Landscape 4:3
zh_Hans: 横屏 4:3
- value: landscape_16_9
label:
en_US: Landscape 16:9
zh_Hans: 横屏 16:9
default: landscape_4_3
label:
en_US: Image Size
zh_Hans: 图片大小
human_description:
en_US: The size of the generated image.
zh_Hans: 生成图像的尺寸。
form: form
- name: num_images
type: number
required: false
default: 1
min: 1
max: 4
label:
en_US: Number of Images
zh_Hans: 图片数量
human_description:
en_US: The number of images to generate.
zh_Hans: 要生成的图片数量。
form: form
- name: num_inference_steps
type: number
required: false
default: 28
min: 1
max: 50
label:
en_US: Num Inference Steps
zh_Hans: 推理步数
human_description:
en_US: The number of inference steps to perform. More steps produce higher quality but take longer.
zh_Hans: 执行的推理步骤数量。更多的步骤可以产生更高质量的结果,但需要更长的时间。
form: form
- name: guidance_scale
type: number
required: false
default: 3.5
min: 0
max: 20
label:
en_US: Guidance Scale
zh_Hans: 指导强度
human_description:
en_US: How closely the model should follow the prompt.
zh_Hans: 模型对提示词的遵循程度。
form: form
- name: seed
type: number
required: false
min: 0
max: 9999999999
label:
en_US: Seed
zh_Hans: 种子
human_description:
en_US: The same seed and prompt can produce similar images.
zh_Hans: 相同的种子和提示可以产生相似的图像。
form: form
- name: enable_safety_checker
type: boolean
required: false
default: true
label:
en_US: Enable Safety Checker
zh_Hans: 启用安全检查器
human_description:
en_US: Enable or disable the safety checker.
zh_Hans: 启用或禁用安全检查器。
form: form
- name: sync_mode
type: boolean
required: false
default: false
label:
en_US: Sync Mode
zh_Hans: 同步模式
human_description:
en_US: >
If set to true, the function will wait for the image to be generated and uploaded before returning the response.
This will increase the latency but allows you to get the image directly in the response without going through the CDN.
zh_Hans: >
如果设置为 true函数将在生成并上传图像后再返回响应。
这将增加函数的延迟,但可以让您直接在响应中获取图像,而无需通过 CDN。
form: form

View File

@ -0,0 +1,47 @@
from typing import Any, Union
import requests
from core.tools.entities.tool_entities import ToolInvokeMessage
from core.tools.tool.builtin_tool import BuiltinTool
class Flux1ProNewTool(BuiltinTool):
def _invoke(
self, user_id: str, tool_parameters: dict[str, Any]
) -> Union[ToolInvokeMessage, list[ToolInvokeMessage]]:
headers = {
"Authorization": f"Key {self.runtime.credentials['fal_api_key']}",
"Content-Type": "application/json",
}
prompt = tool_parameters.get("prompt", "")
sanitized_prompt = prompt.replace("\\", "") # Remove backslashes that may cause errors
payload = {
"prompt": sanitized_prompt,
"image_size": tool_parameters.get("image_size", "landscape_4_3"),
"num_inference_steps": tool_parameters.get("num_inference_steps", 28),
"guidance_scale": tool_parameters.get("guidance_scale", 3.5),
"seed": tool_parameters.get("seed"),
"num_images": tool_parameters.get("num_images", 1),
"safety_tolerance": tool_parameters.get("safety_tolerance", "2"),
"sync_mode": tool_parameters.get("sync_mode", False),
}
url = "https://fal.run/fal-ai/flux-pro/new"
response = requests.post(url, json=payload, headers=headers)
if response.status_code != 200:
return self.create_text_message(f"Got Error Response: {response.text}")
res = response.json()
result = [self.create_json_message(res)]
for image_info in res.get("images", []):
image_url = image_info.get("url")
if image_url:
result.append(self.create_image_message(image=image_url, save_as=self.VariableKey.IMAGE.value))
return result

View File

@ -0,0 +1,164 @@
identity:
name: flux_1_pro_new
author: Kalo Chin
label:
en_US: FLUX.1 [pro] new
zh_Hans: FLUX.1 [pro] new
icon: icon.svg
description:
human:
en_US: FLUX.1 [pro] new is an accelerated version of FLUX.1 [pro], maintaining professional-grade image quality while delivering significantly faster generation speeds.
zh_Hans: FLUX.1 [pro] new 是 FLUX.1 [pro] 的加速版本,在保持专业级图像质量的同时,大大提高了生成速度。
llm: This tool generates images from prompts using FAL's FLUX.1 [pro] new model.
parameters:
- name: prompt
type: string
required: true
label:
en_US: Prompt
zh_Hans: 提示词
human_description:
en_US: The text prompt used to generate the image.
zh_Hans: 用于生成图像的文本提示。
llm_description: This prompt text will be used to generate the image.
form: llm
- name: image_size
type: select
required: false
options:
- value: square_hd
label:
en_US: Square HD
zh_Hans: 正方形高清
- value: square
label:
en_US: Square
zh_Hans: 正方形
- value: portrait_4_3
label:
en_US: Portrait 4:3
zh_Hans: 竖屏 4:3
- value: portrait_16_9
label:
en_US: Portrait 16:9
zh_Hans: 竖屏 16:9
- value: landscape_4_3
label:
en_US: Landscape 4:3
zh_Hans: 横屏 4:3
- value: landscape_16_9
label:
en_US: Landscape 16:9
zh_Hans: 横屏 16:9
default: landscape_4_3
label:
en_US: Image Size
zh_Hans: 图像尺寸
human_description:
en_US: The size of the generated image.
zh_Hans: 生成图像的尺寸。
form: form
- name: num_images
type: number
required: false
default: 1
min: 1
max: 1
label:
en_US: Number of Images
zh_Hans: 图像数量
human_description:
en_US: The number of images to generate.
zh_Hans: 要生成的图像数量。
form: form
- name: num_inference_steps
type: number
required: false
default: 28
min: 1
max: 50
label:
en_US: Num Inference Steps
zh_Hans: 推理步数
human_description:
en_US: The number of inference steps to perform. More steps produce higher quality but take longer.
zh_Hans: 执行的推理步数。步数越多,质量越高,但所需时间也更长。
form: form
- name: guidance_scale
type: number
required: false
default: 3.5
min: 0
max: 20
label:
en_US: Guidance Scale
zh_Hans: 指导强度
human_description:
en_US: How closely the model should follow the prompt.
zh_Hans: 模型对提示词的遵循程度。
form: form
- name: safety_tolerance
type: select
required: false
options:
- value: "1"
label:
en_US: "1 (Most strict)"
zh_Hans: "1最严格"
- value: "2"
label:
en_US: "2"
zh_Hans: "2"
- value: "3"
label:
en_US: "3"
zh_Hans: "3"
- value: "4"
label:
en_US: "4"
zh_Hans: "4"
- value: "5"
label:
en_US: "5"
zh_Hans: "5"
- value: "6"
label:
en_US: "6 (Most permissive)"
zh_Hans: "6最宽松"
default: "2"
label:
en_US: Safety Tolerance
zh_Hans: 安全容忍度
human_description:
en_US: >
The safety tolerance level for the generated image. 1 being the most strict and 5 being the most permissive.
zh_Hans: >
生成图像的安全容忍级别。1 是最严格6 是最宽松。
form: form
- name: seed
type: number
required: false
min: 0
max: 9999999999
label:
en_US: Seed
zh_Hans: 种子
human_description:
en_US: The same seed and prompt can produce similar images.
zh_Hans: 相同的种子和提示词可以生成相似的图像。
form: form
- name: sync_mode
type: boolean
required: false
default: false
label:
en_US: Sync Mode
zh_Hans: 同步模式
human_description:
en_US: >
If set to true, the function will wait for the image to be generated and uploaded before returning the response.
This will increase the latency but allows you to get the image directly in the response without going through the CDN.
zh_Hans: >
如果设置为 true函数将在生成并上传图像后才返回响应。
这将增加延迟,但允许您直接在响应中获取图像,而无需通过 CDN。
form: form

View File

@ -0,0 +1,52 @@
import io
import os
from typing import Any
import fal_client
from core.file.enums import FileAttribute, FileType
from core.file.file_manager import download, get_attr
from core.tools.entities.tool_entities import ToolInvokeMessage
from core.tools.tool.builtin_tool import BuiltinTool
class WizperTool(BuiltinTool):
def _invoke(self, user_id: str, tool_parameters: dict[str, Any]) -> ToolInvokeMessage:
audio_file = tool_parameters.get("audio_file")
task = tool_parameters.get("task", "transcribe")
language = tool_parameters.get("language", "en")
chunk_level = tool_parameters.get("chunk_level", "segment")
version = tool_parameters.get("version", "3")
if audio_file.type != FileType.AUDIO:
return [self.create_text_message("Not a valid audio file.")]
api_key = self.runtime.credentials["fal_api_key"]
os.environ["FAL_KEY"] = api_key
audio_binary = io.BytesIO(download(audio_file))
mime_type = get_attr(file=audio_file, attr=FileAttribute.MIME_TYPE)
file_data = audio_binary.getvalue()
try:
audio_url = fal_client.upload(file_data, mime_type)
except Exception as e:
return [self.create_text_message(f"Error uploading audio file: {str(e)}")]
arguments = {
"audio_url": audio_url,
"task": task,
"language": language,
"chunk_level": chunk_level,
"version": version,
}
result = fal_client.subscribe(
"fal-ai/wizper",
arguments=arguments,
with_logs=False,
)
return self.create_json_message(result)

View File

@ -0,0 +1,489 @@
identity:
name: wizper
author: Kalo Chin
label:
en_US: Wizper
zh_Hans: Wizper
description:
human:
en_US: Transcribe an audio file using the Whisper model.
zh_Hans: 使用 Whisper 模型转录音频文件。
llm: Transcribe an audio file using the Whisper model.
parameters:
- name: audio_file
type: file
required: true
label:
en_US: Audio File
zh_Hans: 音频文件
human_description:
en_US: "Upload an audio file to transcribe. Supports mp3, mp4, mpeg, mpga, m4a, wav, or webm formats."
zh_Hans: "上传要转录的音频文件。支持 mp3、mp4、mpeg、mpga、m4a、wav 或 webm 格式。"
llm_description: "Audio file to transcribe. Supported formats: mp3, mp4, mpeg, mpga, m4a, wav, or webm."
form: llm
- name: task
type: select
required: true
label:
en_US: Task
zh_Hans: 任务
human_description:
en_US: "Choose whether to transcribe the audio in its original language or translate it to English"
zh_Hans: "选择是以原始语言转录音频还是将其翻译成英语"
llm_description: "Task to perform on the audio file. Either transcribe or translate. Default value: 'transcribe'. If 'translate' is selected as the task, the audio will be translated to English, regardless of the language selected."
form: form
default: transcribe
options:
- value: transcribe
label:
en_US: Transcribe
zh_Hans: 转录
- value: translate
label:
en_US: Translate
zh_Hans: 翻译
- name: language
type: select
required: true
label:
en_US: Language
zh_Hans: 语言
human_description:
en_US: "Select the primary language spoken in the audio file"
zh_Hans: "选择音频文件中使用的主要语言"
llm_description: "Language of the audio file."
form: form
default: en
options:
- value: af
label:
en_US: Afrikaans
zh_Hans: 南非语
- value: am
label:
en_US: Amharic
zh_Hans: 阿姆哈拉语
- value: ar
label:
en_US: Arabic
zh_Hans: 阿拉伯语
- value: as
label:
en_US: Assamese
zh_Hans: 阿萨姆语
- value: az
label:
en_US: Azerbaijani
zh_Hans: 阿塞拜疆语
- value: ba
label:
en_US: Bashkir
zh_Hans: 巴什基尔语
- value: be
label:
en_US: Belarusian
zh_Hans: 白俄罗斯语
- value: bg
label:
en_US: Bulgarian
zh_Hans: 保加利亚语
- value: bn
label:
en_US: Bengali
zh_Hans: 孟加拉语
- value: bo
label:
en_US: Tibetan
zh_Hans: 藏语
- value: br
label:
en_US: Breton
zh_Hans: 布列塔尼语
- value: bs
label:
en_US: Bosnian
zh_Hans: 波斯尼亚语
- value: ca
label:
en_US: Catalan
zh_Hans: 加泰罗尼亚语
- value: cs
label:
en_US: Czech
zh_Hans: 捷克语
- value: cy
label:
en_US: Welsh
zh_Hans: 威尔士语
- value: da
label:
en_US: Danish
zh_Hans: 丹麦语
- value: de
label:
en_US: German
zh_Hans: 德语
- value: el
label:
en_US: Greek
zh_Hans: 希腊语
- value: en
label:
en_US: English
zh_Hans: 英语
- value: es
label:
en_US: Spanish
zh_Hans: 西班牙语
- value: et
label:
en_US: Estonian
zh_Hans: 爱沙尼亚语
- value: eu
label:
en_US: Basque
zh_Hans: 巴斯克语
- value: fa
label:
en_US: Persian
zh_Hans: 波斯语
- value: fi
label:
en_US: Finnish
zh_Hans: 芬兰语
- value: fo
label:
en_US: Faroese
zh_Hans: 法罗语
- value: fr
label:
en_US: French
zh_Hans: 法语
- value: gl
label:
en_US: Galician
zh_Hans: 加利西亚语
- value: gu
label:
en_US: Gujarati
zh_Hans: 古吉拉特语
- value: ha
label:
en_US: Hausa
zh_Hans: 毫萨语
- value: haw
label:
en_US: Hawaiian
zh_Hans: 夏威夷语
- value: he
label:
en_US: Hebrew
zh_Hans: 希伯来语
- value: hi
label:
en_US: Hindi
zh_Hans: 印地语
- value: hr
label:
en_US: Croatian
zh_Hans: 克罗地亚语
- value: ht
label:
en_US: Haitian Creole
zh_Hans: 海地克里奥尔语
- value: hu
label:
en_US: Hungarian
zh_Hans: 匈牙利语
- value: hy
label:
en_US: Armenian
zh_Hans: 亚美尼亚语
- value: id
label:
en_US: Indonesian
zh_Hans: 印度尼西亚语
- value: is
label:
en_US: Icelandic
zh_Hans: 冰岛语
- value: it
label:
en_US: Italian
zh_Hans: 意大利语
- value: ja
label:
en_US: Japanese
zh_Hans: 日语
- value: jw
label:
en_US: Javanese
zh_Hans: 爪哇语
- value: ka
label:
en_US: Georgian
zh_Hans: 格鲁吉亚语
- value: kk
label:
en_US: Kazakh
zh_Hans: 哈萨克语
- value: km
label:
en_US: Khmer
zh_Hans: 高棉语
- value: kn
label:
en_US: Kannada
zh_Hans: 卡纳达语
- value: ko
label:
en_US: Korean
zh_Hans: 韩语
- value: la
label:
en_US: Latin
zh_Hans: 拉丁语
- value: lb
label:
en_US: Luxembourgish
zh_Hans: 卢森堡语
- value: ln
label:
en_US: Lingala
zh_Hans: 林加拉语
- value: lo
label:
en_US: Lao
zh_Hans: 老挝语
- value: lt
label:
en_US: Lithuanian
zh_Hans: 立陶宛语
- value: lv
label:
en_US: Latvian
zh_Hans: 拉脱维亚语
- value: mg
label:
en_US: Malagasy
zh_Hans: 马尔加什语
- value: mi
label:
en_US: Maori
zh_Hans: 毛利语
- value: mk
label:
en_US: Macedonian
zh_Hans: 马其顿语
- value: ml
label:
en_US: Malayalam
zh_Hans: 马拉雅拉姆语
- value: mn
label:
en_US: Mongolian
zh_Hans: 蒙古语
- value: mr
label:
en_US: Marathi
zh_Hans: 马拉地语
- value: ms
label:
en_US: Malay
zh_Hans: 马来语
- value: mt
label:
en_US: Maltese
zh_Hans: 马耳他语
- value: my
label:
en_US: Burmese
zh_Hans: 缅甸语
- value: ne
label:
en_US: Nepali
zh_Hans: 尼泊尔语
- value: nl
label:
en_US: Dutch
zh_Hans: 荷兰语
- value: nn
label:
en_US: Norwegian Nynorsk
zh_Hans: 新挪威语
- value: no
label:
en_US: Norwegian
zh_Hans: 挪威语
- value: oc
label:
en_US: Occitan
zh_Hans: 奥克语
- value: pa
label:
en_US: Punjabi
zh_Hans: 旁遮普语
- value: pl
label:
en_US: Polish
zh_Hans: 波兰语
- value: ps
label:
en_US: Pashto
zh_Hans: 普什图语
- value: pt
label:
en_US: Portuguese
zh_Hans: 葡萄牙语
- value: ro
label:
en_US: Romanian
zh_Hans: 罗马尼亚语
- value: ru
label:
en_US: Russian
zh_Hans: 俄语
- value: sa
label:
en_US: Sanskrit
zh_Hans: 梵语
- value: sd
label:
en_US: Sindhi
zh_Hans: 信德语
- value: si
label:
en_US: Sinhala
zh_Hans: 僧伽罗语
- value: sk
label:
en_US: Slovak
zh_Hans: 斯洛伐克语
- value: sl
label:
en_US: Slovenian
zh_Hans: 斯洛文尼亚语
- value: sn
label:
en_US: Shona
zh_Hans: 修纳语
- value: so
label:
en_US: Somali
zh_Hans: 索马里语
- value: sq
label:
en_US: Albanian
zh_Hans: 阿尔巴尼亚语
- value: sr
label:
en_US: Serbian
zh_Hans: 塞尔维亚语
- value: su
label:
en_US: Sundanese
zh_Hans: 巽他语
- value: sv
label:
en_US: Swedish
zh_Hans: 瑞典语
- value: sw
label:
en_US: Swahili
zh_Hans: 斯瓦希里语
- value: ta
label:
en_US: Tamil
zh_Hans: 泰米尔语
- value: te
label:
en_US: Telugu
zh_Hans: 泰卢固语
- value: tg
label:
en_US: Tajik
zh_Hans: 塔吉克语
- value: th
label:
en_US: Thai
zh_Hans: 泰语
- value: tk
label:
en_US: Turkmen
zh_Hans: 土库曼语
- value: tl
label:
en_US: Tagalog
zh_Hans: 他加禄语
- value: tr
label:
en_US: Turkish
zh_Hans: 土耳其语
- value: tt
label:
en_US: Tatar
zh_Hans: 鞑靼语
- value: uk
label:
en_US: Ukrainian
zh_Hans: 乌克兰语
- value: ur
label:
en_US: Urdu
zh_Hans: 乌尔都语
- value: uz
label:
en_US: Uzbek
zh_Hans: 乌兹别克语
- value: vi
label:
en_US: Vietnamese
zh_Hans: 越南语
- value: yi
label:
en_US: Yiddish
zh_Hans: 意第绪语
- value: yo
label:
en_US: Yoruba
zh_Hans: 约鲁巴语
- value: yue
label:
en_US: Cantonese
zh_Hans: 粤语
- value: zh
label:
en_US: Chinese
zh_Hans: 中文
- name: chunk_level
type: select
label:
en_US: Chunk Level
zh_Hans: 分块级别
human_description:
en_US: "Choose how the transcription should be divided into chunks"
zh_Hans: "选择如何将转录内容分成块"
llm_description: "Level of the chunks to return."
form: form
default: segment
options:
- value: segment
label:
en_US: Segment
zh_Hans:
- name: version
type: select
label:
en_US: Version
zh_Hans: 版本
human_description:
en_US: "Select which version of the Whisper large model to use"
zh_Hans: "选择要使用的 Whisper large 模型版本"
llm_description: "Version of the model to use. All of the models are the Whisper large variant."
form: form
default: "3"
options:
- value: "3"
label:
en_US: Version 3
zh_Hans: 版本 3

View File

@ -1,6 +1,7 @@
from typing import Any
import openai
from yarl import URL
from core.tools.errors import ToolProviderCredentialValidationError
from core.tools.provider.builtin_tool_provider import BuiltinToolProviderController
@ -10,6 +11,7 @@ class PodcastGeneratorProvider(BuiltinToolProviderController):
def _validate_credentials(self, credentials: dict[str, Any]) -> None:
tts_service = credentials.get("tts_service")
api_key = credentials.get("api_key")
base_url = credentials.get("openai_base_url")
if not tts_service:
raise ToolProviderCredentialValidationError("TTS service is not specified")
@ -17,13 +19,16 @@ class PodcastGeneratorProvider(BuiltinToolProviderController):
if not api_key:
raise ToolProviderCredentialValidationError("API key is missing")
if base_url:
base_url = str(URL(base_url) / "v1")
if tts_service == "openai":
self._validate_openai_credentials(api_key)
self._validate_openai_credentials(api_key, base_url)
else:
raise ToolProviderCredentialValidationError(f"Unsupported TTS service: {tts_service}")
def _validate_openai_credentials(self, api_key: str) -> None:
client = openai.OpenAI(api_key=api_key)
def _validate_openai_credentials(self, api_key: str, base_url: str | None) -> None:
client = openai.OpenAI(api_key=api_key, base_url=base_url)
try:
# We're using a simple API call to validate the credentials
client.models.list()

View File

@ -17,6 +17,7 @@ from .segments import (
from .types import SegmentType
from .variables import (
ArrayAnyVariable,
ArrayFileVariable,
ArrayNumberVariable,
ArrayObjectVariable,
ArrayStringVariable,
@ -58,4 +59,5 @@ __all__ = [
"ArrayStringSegment",
"FileSegment",
"FileVariable",
"ArrayFileVariable",
]

View File

@ -1,9 +1,13 @@
from collections.abc import Sequence
from uuid import uuid4
from pydantic import Field
from core.helper import encrypter
from .segments import (
ArrayAnySegment,
ArrayFileSegment,
ArrayNumberSegment,
ArrayObjectSegment,
ArrayStringSegment,
@ -24,11 +28,12 @@ class Variable(Segment):
"""
id: str = Field(
default="",
description="Unique identity for variable. It's only used by environment variables now.",
default=lambda _: str(uuid4()),
description="Unique identity for variable.",
)
name: str
description: str = Field(default="", description="Description of the variable.")
selector: Sequence[str] = Field(default_factory=list)
class StringVariable(StringSegment, Variable):
@ -78,3 +83,7 @@ class NoneVariable(NoneSegment, Variable):
class FileVariable(FileSegment, Variable):
pass
class ArrayFileVariable(ArrayFileSegment, Variable):
pass

View File

@ -95,13 +95,16 @@ class VariablePool(BaseModel):
if len(selector) < 2:
raise ValueError("Invalid selector")
if isinstance(value, Variable):
variable = value
if isinstance(value, Segment):
v = value
variable = variable_factory.segment_to_variable(segment=value, selector=selector)
else:
v = variable_factory.build_segment(value)
segment = variable_factory.build_segment(value)
variable = variable_factory.segment_to_variable(segment=segment, selector=selector)
hash_key = hash(tuple(selector[1:]))
self.variable_dictionary[selector[0]][hash_key] = v
self.variable_dictionary[selector[0]][hash_key] = variable
def get(self, selector: Sequence[str], /) -> Segment | None:
"""

View File

@ -143,14 +143,14 @@ def _extract_text_by_file_extension(*, file_content: bytes, file_extension: str)
def _extract_text_from_plain_text(file_content: bytes) -> str:
try:
return file_content.decode("utf-8")
return file_content.decode("utf-8", "ignore")
except UnicodeDecodeError as e:
raise TextExtractionError("Failed to decode plain text file") from e
def _extract_text_from_json(file_content: bytes) -> str:
try:
json_data = json.loads(file_content.decode("utf-8"))
json_data = json.loads(file_content.decode("utf-8", "ignore"))
return json.dumps(json_data, indent=2, ensure_ascii=False)
except (UnicodeDecodeError, json.JSONDecodeError) as e:
raise TextExtractionError(f"Failed to decode or parse JSON file: {e}") from e
@ -159,7 +159,7 @@ def _extract_text_from_json(file_content: bytes) -> str:
def _extract_text_from_yaml(file_content: bytes) -> str:
"""Extract the content from yaml file"""
try:
yaml_data = yaml.safe_load_all(file_content.decode("utf-8"))
yaml_data = yaml.safe_load_all(file_content.decode("utf-8", "ignore"))
return yaml.dump_all(yaml_data, allow_unicode=True, sort_keys=False)
except (UnicodeDecodeError, yaml.YAMLError) as e:
raise TextExtractionError(f"Failed to decode or parse YAML file: {e}") from e
@ -217,7 +217,7 @@ def _extract_text_from_file(file: File):
def _extract_text_from_csv(file_content: bytes) -> str:
try:
csv_file = io.StringIO(file_content.decode("utf-8"))
csv_file = io.StringIO(file_content.decode("utf-8", "ignore"))
csv_reader = csv.reader(csv_file)
rows = list(csv_reader)

View File

@ -1,5 +1,4 @@
from collections.abc import Mapping, Sequence
from os import path
from typing import Any
from sqlalchemy import select
@ -182,7 +181,6 @@ class ToolNode(BaseNode[ToolNodeData]):
for response in tool_response:
if response.type in {ToolInvokeMessage.MessageType.IMAGE_LINK, ToolInvokeMessage.MessageType.IMAGE}:
url = str(response.message) if response.message else None
ext = path.splitext(url)[1] if url else ".bin"
tool_file_id = str(url).split("/")[-1].split(".")[0]
transfer_method = response.meta.get("transfer_method", FileTransferMethod.TOOL_FILE)
@ -204,7 +202,6 @@ class ToolNode(BaseNode[ToolNodeData]):
)
result.append(file)
elif response.type == ToolInvokeMessage.MessageType.BLOB:
# get tool file id
tool_file_id = str(response.message).split("/")[-1].split(".")[0]
with Session(db.engine) as session:
stmt = select(ToolFile).where(ToolFile.id == tool_file_id)
@ -213,7 +210,6 @@ class ToolNode(BaseNode[ToolNodeData]):
raise ValueError(f"tool file {tool_file_id} not exists")
mapping = {
"tool_file_id": tool_file_id,
"type": FileType.IMAGE,
"transfer_method": FileTransferMethod.TOOL_FILE,
}
file = file_factory.build_from_mapping(
@ -230,13 +226,8 @@ class ToolNode(BaseNode[ToolNodeData]):
tool_file = session.scalar(stmt)
if tool_file is None:
raise ToolFileError(f"Tool file {tool_file_id} does not exist")
if "." in url:
extension = "." + url.split("/")[-1].split(".")[1]
else:
extension = ".bin"
mapping = {
"tool_file_id": tool_file_id,
"type": FileType.IMAGE,
"transfer_method": transfer_method,
"url": url,
}

View File

@ -21,7 +21,7 @@ if [[ "${MODE}" == "worker" ]]; then
fi
exec celery -A app.celery worker -P ${CELERY_WORKER_CLASS:-gevent} $CONCURRENCY_OPTION --loglevel ${LOG_LEVEL} \
-Q ${CELERY_QUEUES:-dataset,generation,mail,ops_trace,app_deletion}
-Q ${CELERY_QUEUES:-dataset,mail,ops_trace,app_deletion}
elif [[ "${MODE}" == "beat" ]]; then
exec celery -A app.celery beat --loglevel ${LOG_LEVEL}

View File

@ -180,6 +180,20 @@ def _get_remote_file_info(url: str):
return mime_type, filename, file_size
def _get_file_type_by_mimetype(mime_type: str) -> FileType:
if "image" in mime_type:
file_type = FileType.IMAGE
elif "video" in mime_type:
file_type = FileType.VIDEO
elif "audio" in mime_type:
file_type = FileType.AUDIO
elif "text" in mime_type or "pdf" in mime_type:
file_type = FileType.DOCUMENT
else:
file_type = FileType.CUSTOM
return file_type
def _build_from_tool_file(
*,
mapping: Mapping[str, Any],
@ -199,12 +213,13 @@ def _build_from_tool_file(
raise ValueError(f"ToolFile {mapping.get('tool_file_id')} not found")
extension = "." + tool_file.file_key.split(".")[-1] if "." in tool_file.file_key else ".bin"
file_type = mapping.get("type", _get_file_type_by_mimetype(tool_file.mimetype))
return File(
id=mapping.get("id"),
tenant_id=tenant_id,
filename=tool_file.name,
type=FileType.value_of(mapping.get("type")),
type=file_type,
transfer_method=transfer_method,
remote_url=tool_file.original_url,
related_id=tool_file.id,

View File

@ -1,34 +1,65 @@
from collections.abc import Mapping
from collections.abc import Mapping, Sequence
from typing import Any
from uuid import uuid4
from configs import dify_config
from core.file import File
from core.variables import (
from core.variables.exc import VariableError
from core.variables.segments import (
ArrayAnySegment,
ArrayFileSegment,
ArrayNumberSegment,
ArrayNumberVariable,
ArrayObjectSegment,
ArrayObjectVariable,
ArraySegment,
ArrayStringSegment,
ArrayStringVariable,
FileSegment,
FloatSegment,
FloatVariable,
IntegerSegment,
IntegerVariable,
NoneSegment,
ObjectSegment,
Segment,
StringSegment,
)
from core.variables.types import SegmentType
from core.variables.variables import (
ArrayAnyVariable,
ArrayFileVariable,
ArrayNumberVariable,
ArrayObjectVariable,
ArrayStringVariable,
FileVariable,
FloatVariable,
IntegerVariable,
NoneVariable,
ObjectVariable,
SecretVariable,
Segment,
SegmentType,
StringSegment,
StringVariable,
Variable,
)
from core.variables.exc import VariableError
class InvalidSelectorError(ValueError):
pass
class UnsupportedSegmentTypeError(Exception):
pass
# Define the constant
SEGMENT_TO_VARIABLE_MAP = {
StringSegment: StringVariable,
IntegerSegment: IntegerVariable,
FloatSegment: FloatVariable,
ObjectSegment: ObjectVariable,
FileSegment: FileVariable,
ArrayStringSegment: ArrayStringVariable,
ArrayNumberSegment: ArrayNumberVariable,
ArrayObjectSegment: ArrayObjectVariable,
ArrayFileSegment: ArrayFileVariable,
ArrayAnySegment: ArrayAnyVariable,
NoneSegment: NoneVariable,
}
def build_variable_from_mapping(mapping: Mapping[str, Any], /) -> Variable:
@ -96,3 +127,30 @@ def build_segment(value: Any, /) -> Segment:
case _:
raise ValueError(f"not supported value {value}")
raise ValueError(f"not supported value {value}")
def segment_to_variable(
*,
segment: Segment,
selector: Sequence[str],
id: str | None = None,
name: str | None = None,
description: str = "",
) -> Variable:
if isinstance(segment, Variable):
return segment
name = name or selector[-1]
id = id or str(uuid4())
segment_type = type(segment)
if segment_type not in SEGMENT_TO_VARIABLE_MAP:
raise UnsupportedSegmentTypeError(f"not supported segment type {segment_type}")
variable_class = SEGMENT_TO_VARIABLE_MAP[segment_type]
return variable_class(
id=id,
name=name,
description=description,
value=segment.value,
selector=selector,
)

115
api/poetry.lock generated
View File

@ -1,4 +1,4 @@
# This file is automatically @generated by Poetry 1.8.3 and should not be changed by hand.
# This file is automatically @generated by Poetry 1.8.4 and should not be changed by hand.
[[package]]
name = "aiohappyeyeballs"
@ -932,6 +932,10 @@ files = [
{file = "Brotli-1.1.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:a37b8f0391212d29b3a91a799c8e4a2855e0576911cdfb2515487e30e322253d"},
{file = "Brotli-1.1.0-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:e84799f09591700a4154154cab9787452925578841a94321d5ee8fb9a9a328f0"},
{file = "Brotli-1.1.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:f66b5337fa213f1da0d9000bc8dc0cb5b896b726eefd9c6046f699b169c41b9e"},
{file = "Brotli-1.1.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:5dab0844f2cf82be357a0eb11a9087f70c5430b2c241493fc122bb6f2bb0917c"},
{file = "Brotli-1.1.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:e4fe605b917c70283db7dfe5ada75e04561479075761a0b3866c081d035b01c1"},
{file = "Brotli-1.1.0-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:1e9a65b5736232e7a7f91ff3d02277f11d339bf34099a56cdab6a8b3410a02b2"},
{file = "Brotli-1.1.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:58d4b711689366d4a03ac7957ab8c28890415e267f9b6589969e74b6e42225ec"},
{file = "Brotli-1.1.0-cp310-cp310-win32.whl", hash = "sha256:be36e3d172dc816333f33520154d708a2657ea63762ec16b62ece02ab5e4daf2"},
{file = "Brotli-1.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:0c6244521dda65ea562d5a69b9a26120769b7a9fb3db2fe9545935ed6735b128"},
{file = "Brotli-1.1.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:a3daabb76a78f829cafc365531c972016e4aa8d5b4bf60660ad8ecee19df7ccc"},
@ -944,8 +948,14 @@ files = [
{file = "Brotli-1.1.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:19c116e796420b0cee3da1ccec3b764ed2952ccfcc298b55a10e5610ad7885f9"},
{file = "Brotli-1.1.0-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:510b5b1bfbe20e1a7b3baf5fed9e9451873559a976c1a78eebaa3b86c57b4265"},
{file = "Brotli-1.1.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:a1fd8a29719ccce974d523580987b7f8229aeace506952fa9ce1d53a033873c8"},
{file = "Brotli-1.1.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:c247dd99d39e0338a604f8c2b3bc7061d5c2e9e2ac7ba9cc1be5a69cb6cd832f"},
{file = "Brotli-1.1.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:1b2c248cd517c222d89e74669a4adfa5577e06ab68771a529060cf5a156e9757"},
{file = "Brotli-1.1.0-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:2a24c50840d89ded6c9a8fdc7b6ed3692ed4e86f1c4a4a938e1e92def92933e0"},
{file = "Brotli-1.1.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:f31859074d57b4639318523d6ffdca586ace54271a73ad23ad021acd807eb14b"},
{file = "Brotli-1.1.0-cp311-cp311-win32.whl", hash = "sha256:39da8adedf6942d76dc3e46653e52df937a3c4d6d18fdc94a7c29d263b1f5b50"},
{file = "Brotli-1.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:aac0411d20e345dc0920bdec5548e438e999ff68d77564d5e9463a7ca9d3e7b1"},
{file = "Brotli-1.1.0-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:32d95b80260d79926f5fab3c41701dbb818fde1c9da590e77e571eefd14abe28"},
{file = "Brotli-1.1.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:b760c65308ff1e462f65d69c12e4ae085cff3b332d894637f6273a12a482d09f"},
{file = "Brotli-1.1.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:316cc9b17edf613ac76b1f1f305d2a748f1b976b033b049a6ecdfd5612c70409"},
{file = "Brotli-1.1.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:caf9ee9a5775f3111642d33b86237b05808dafcd6268faa492250e9b78046eb2"},
{file = "Brotli-1.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:70051525001750221daa10907c77830bc889cb6d865cc0b813d9db7fefc21451"},
@ -956,8 +966,24 @@ files = [
{file = "Brotli-1.1.0-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:4093c631e96fdd49e0377a9c167bfd75b6d0bad2ace734c6eb20b348bc3ea180"},
{file = "Brotli-1.1.0-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:7e4c4629ddad63006efa0ef968c8e4751c5868ff0b1c5c40f76524e894c50248"},
{file = "Brotli-1.1.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:861bf317735688269936f755fa136a99d1ed526883859f86e41a5d43c61d8966"},
{file = "Brotli-1.1.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:87a3044c3a35055527ac75e419dfa9f4f3667a1e887ee80360589eb8c90aabb9"},
{file = "Brotli-1.1.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:c5529b34c1c9d937168297f2c1fde7ebe9ebdd5e121297ff9c043bdb2ae3d6fb"},
{file = "Brotli-1.1.0-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:ca63e1890ede90b2e4454f9a65135a4d387a4585ff8282bb72964fab893f2111"},
{file = "Brotli-1.1.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:e79e6520141d792237c70bcd7a3b122d00f2613769ae0cb61c52e89fd3443839"},
{file = "Brotli-1.1.0-cp312-cp312-win32.whl", hash = "sha256:5f4d5ea15c9382135076d2fb28dde923352fe02951e66935a9efaac8f10e81b0"},
{file = "Brotli-1.1.0-cp312-cp312-win_amd64.whl", hash = "sha256:906bc3a79de8c4ae5b86d3d75a8b77e44404b0f4261714306e3ad248d8ab0951"},
{file = "Brotli-1.1.0-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:8bf32b98b75c13ec7cf774164172683d6e7891088f6316e54425fde1efc276d5"},
{file = "Brotli-1.1.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:7bc37c4d6b87fb1017ea28c9508b36bbcb0c3d18b4260fcdf08b200c74a6aee8"},
{file = "Brotli-1.1.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3c0ef38c7a7014ffac184db9e04debe495d317cc9c6fb10071f7fefd93100a4f"},
{file = "Brotli-1.1.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:91d7cc2a76b5567591d12c01f019dd7afce6ba8cba6571187e21e2fc418ae648"},
{file = "Brotli-1.1.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a93dde851926f4f2678e704fadeb39e16c35d8baebd5252c9fd94ce8ce68c4a0"},
{file = "Brotli-1.1.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f0db75f47be8b8abc8d9e31bc7aad0547ca26f24a54e6fd10231d623f183d089"},
{file = "Brotli-1.1.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:6967ced6730aed543b8673008b5a391c3b1076d834ca438bbd70635c73775368"},
{file = "Brotli-1.1.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:7eedaa5d036d9336c95915035fb57422054014ebdeb6f3b42eac809928e40d0c"},
{file = "Brotli-1.1.0-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:d487f5432bf35b60ed625d7e1b448e2dc855422e87469e3f450aa5552b0eb284"},
{file = "Brotli-1.1.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:832436e59afb93e1836081a20f324cb185836c617659b07b129141a8426973c7"},
{file = "Brotli-1.1.0-cp313-cp313-win32.whl", hash = "sha256:43395e90523f9c23a3d5bdf004733246fba087f2948f87ab28015f12359ca6a0"},
{file = "Brotli-1.1.0-cp313-cp313-win_amd64.whl", hash = "sha256:9011560a466d2eb3f5a6e4929cf4a09be405c64154e12df0dd72713f6500e32b"},
{file = "Brotli-1.1.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:a090ca607cbb6a34b0391776f0cb48062081f5f60ddcce5d11838e67a01928d1"},
{file = "Brotli-1.1.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2de9d02f5bda03d27ede52e8cfe7b865b066fa49258cbab568720aa5be80a47d"},
{file = "Brotli-1.1.0-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:2333e30a5e00fe0fe55903c8832e08ee9c3b1382aacf4db26664a16528d51b4b"},
@ -967,6 +993,10 @@ files = [
{file = "Brotli-1.1.0-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:fd5f17ff8f14003595ab414e45fce13d073e0762394f957182e69035c9f3d7c2"},
{file = "Brotli-1.1.0-cp36-cp36m-musllinux_1_1_ppc64le.whl", hash = "sha256:069a121ac97412d1fe506da790b3e69f52254b9df4eb665cd42460c837193354"},
{file = "Brotli-1.1.0-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:e93dfc1a1165e385cc8239fab7c036fb2cd8093728cbd85097b284d7b99249a2"},
{file = "Brotli-1.1.0-cp36-cp36m-musllinux_1_2_aarch64.whl", hash = "sha256:aea440a510e14e818e67bfc4027880e2fb500c2ccb20ab21c7a7c8b5b4703d75"},
{file = "Brotli-1.1.0-cp36-cp36m-musllinux_1_2_i686.whl", hash = "sha256:6974f52a02321b36847cd19d1b8e381bf39939c21efd6ee2fc13a28b0d99348c"},
{file = "Brotli-1.1.0-cp36-cp36m-musllinux_1_2_ppc64le.whl", hash = "sha256:a7e53012d2853a07a4a79c00643832161a910674a893d296c9f1259859a289d2"},
{file = "Brotli-1.1.0-cp36-cp36m-musllinux_1_2_x86_64.whl", hash = "sha256:d7702622a8b40c49bffb46e1e3ba2e81268d5c04a34f460978c6b5517a34dd52"},
{file = "Brotli-1.1.0-cp36-cp36m-win32.whl", hash = "sha256:a599669fd7c47233438a56936988a2478685e74854088ef5293802123b5b2460"},
{file = "Brotli-1.1.0-cp36-cp36m-win_amd64.whl", hash = "sha256:d143fd47fad1db3d7c27a1b1d66162e855b5d50a89666af46e1679c496e8e579"},
{file = "Brotli-1.1.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:11d00ed0a83fa22d29bc6b64ef636c4552ebafcef57154b4ddd132f5638fbd1c"},
@ -978,6 +1008,10 @@ files = [
{file = "Brotli-1.1.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:919e32f147ae93a09fe064d77d5ebf4e35502a8df75c29fb05788528e330fe74"},
{file = "Brotli-1.1.0-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:23032ae55523cc7bccb4f6a0bf368cd25ad9bcdcc1990b64a647e7bbcce9cb5b"},
{file = "Brotli-1.1.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:224e57f6eac61cc449f498cc5f0e1725ba2071a3d4f48d5d9dffba42db196438"},
{file = "Brotli-1.1.0-cp37-cp37m-musllinux_1_2_aarch64.whl", hash = "sha256:cb1dac1770878ade83f2ccdf7d25e494f05c9165f5246b46a621cc849341dc01"},
{file = "Brotli-1.1.0-cp37-cp37m-musllinux_1_2_i686.whl", hash = "sha256:3ee8a80d67a4334482d9712b8e83ca6b1d9bc7e351931252ebef5d8f7335a547"},
{file = "Brotli-1.1.0-cp37-cp37m-musllinux_1_2_ppc64le.whl", hash = "sha256:5e55da2c8724191e5b557f8e18943b1b4839b8efc3ef60d65985bcf6f587dd38"},
{file = "Brotli-1.1.0-cp37-cp37m-musllinux_1_2_x86_64.whl", hash = "sha256:d342778ef319e1026af243ed0a07c97acf3bad33b9f29e7ae6a1f68fd083e90c"},
{file = "Brotli-1.1.0-cp37-cp37m-win32.whl", hash = "sha256:587ca6d3cef6e4e868102672d3bd9dc9698c309ba56d41c2b9c85bbb903cdb95"},
{file = "Brotli-1.1.0-cp37-cp37m-win_amd64.whl", hash = "sha256:2954c1c23f81c2eaf0b0717d9380bd348578a94161a65b3a2afc62c86467dd68"},
{file = "Brotli-1.1.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:efa8b278894b14d6da122a72fefcebc28445f2d3f880ac59d46c90f4c13be9a3"},
@ -990,6 +1024,10 @@ files = [
{file = "Brotli-1.1.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:1ab4fbee0b2d9098c74f3057b2bc055a8bd92ccf02f65944a241b4349229185a"},
{file = "Brotli-1.1.0-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:141bd4d93984070e097521ed07e2575b46f817d08f9fa42b16b9b5f27b5ac088"},
{file = "Brotli-1.1.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:fce1473f3ccc4187f75b4690cfc922628aed4d3dd013d047f95a9b3919a86596"},
{file = "Brotli-1.1.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:d2b35ca2c7f81d173d2fadc2f4f31e88cc5f7a39ae5b6db5513cf3383b0e0ec7"},
{file = "Brotli-1.1.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:af6fa6817889314555aede9a919612b23739395ce767fe7fcbea9a80bf140fe5"},
{file = "Brotli-1.1.0-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:2feb1d960f760a575dbc5ab3b1c00504b24caaf6986e2dc2b01c09c87866a943"},
{file = "Brotli-1.1.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:4410f84b33374409552ac9b6903507cdb31cd30d2501fc5ca13d18f73548444a"},
{file = "Brotli-1.1.0-cp38-cp38-win32.whl", hash = "sha256:db85ecf4e609a48f4b29055f1e144231b90edc90af7481aa731ba2d059226b1b"},
{file = "Brotli-1.1.0-cp38-cp38-win_amd64.whl", hash = "sha256:3d7954194c36e304e1523f55d7042c59dc53ec20dd4e9ea9d151f1b62b4415c0"},
{file = "Brotli-1.1.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:5fb2ce4b8045c78ebbc7b8f3c15062e435d47e7393cc57c25115cfd49883747a"},
@ -1002,6 +1040,10 @@ files = [
{file = "Brotli-1.1.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:949f3b7c29912693cee0afcf09acd6ebc04c57af949d9bf77d6101ebb61e388c"},
{file = "Brotli-1.1.0-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:89f4988c7203739d48c6f806f1e87a1d96e0806d44f0fba61dba81392c9e474d"},
{file = "Brotli-1.1.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:de6551e370ef19f8de1807d0a9aa2cdfdce2e85ce88b122fe9f6b2b076837e59"},
{file = "Brotli-1.1.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:0737ddb3068957cf1b054899b0883830bb1fec522ec76b1098f9b6e0f02d9419"},
{file = "Brotli-1.1.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:4f3607b129417e111e30637af1b56f24f7a49e64763253bbc275c75fa887d4b2"},
{file = "Brotli-1.1.0-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:6c6e0c425f22c1c719c42670d561ad682f7bfeeef918edea971a79ac5252437f"},
{file = "Brotli-1.1.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:494994f807ba0b92092a163a0a283961369a65f6cbe01e8891132b7a320e61eb"},
{file = "Brotli-1.1.0-cp39-cp39-win32.whl", hash = "sha256:f0d8a7a6b5983c2496e364b969f0e526647a06b075d034f3297dc66f3b360c64"},
{file = "Brotli-1.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:cdad5b9014d83ca68c25d2e9444e28e967ef16e80f6b436918c700c117a85467"},
{file = "Brotli-1.1.0.tar.gz", hash = "sha256:81de08ac11bcb85841e440c13611c00b67d3bf82698314928d0b676362546724"},
@ -2411,6 +2453,26 @@ files = [
[package.extras]
test = ["pytest (>=6)"]
[[package]]
name = "fal-client"
version = "0.5.6"
description = "Python client for fal.ai"
optional = false
python-versions = ">=3.8"
files = [
{file = "fal_client-0.5.6-py3-none-any.whl", hash = "sha256:631fd857a3c44753ee46a2eea1e7276471453aca58faac9c3702f744c7c84050"},
{file = "fal_client-0.5.6.tar.gz", hash = "sha256:d3afc4b6250023d0ee8437ec504558231d3b106d7aabc12cda8c39883faddecb"},
]
[package.dependencies]
httpx = ">=0.21.0,<1"
httpx-sse = ">=0.4.0,<0.5"
[package.extras]
dev = ["fal-client[docs,test]"]
docs = ["sphinx", "sphinx-autodoc-typehints", "sphinx-rtd-theme"]
test = ["pillow", "pytest", "pytest-asyncio"]
[[package]]
name = "fastapi"
version = "0.115.4"
@ -4049,6 +4111,17 @@ http2 = ["h2 (>=3,<5)"]
socks = ["socksio (==1.*)"]
zstd = ["zstandard (>=0.18.0)"]
[[package]]
name = "httpx-sse"
version = "0.4.0"
description = "Consume Server-Sent Event (SSE) messages with HTTPX."
optional = false
python-versions = ">=3.8"
files = [
{file = "httpx-sse-0.4.0.tar.gz", hash = "sha256:1e81a3a3070ce322add1d3529ed42eb5f70817f45ed6ec915ab753f961139721"},
{file = "httpx_sse-0.4.0-py3-none-any.whl", hash = "sha256:f329af6eae57eaa2bdfd962b42524764af68075ea87370a2de920af5341e318f"},
]
[[package]]
name = "huggingface-hub"
version = "0.16.4"
@ -8466,29 +8539,29 @@ pyasn1 = ">=0.1.3"
[[package]]
name = "ruff"
version = "0.6.9"
version = "0.7.3"
description = "An extremely fast Python linter and code formatter, written in Rust."
optional = false
python-versions = ">=3.7"
files = [
{file = "ruff-0.6.9-py3-none-linux_armv6l.whl", hash = "sha256:064df58d84ccc0ac0fcd63bc3090b251d90e2a372558c0f057c3f75ed73e1ccd"},
{file = "ruff-0.6.9-py3-none-macosx_10_12_x86_64.whl", hash = "sha256:140d4b5c9f5fc7a7b074908a78ab8d384dd7f6510402267bc76c37195c02a7ec"},
{file = "ruff-0.6.9-py3-none-macosx_11_0_arm64.whl", hash = "sha256:53fd8ca5e82bdee8da7f506d7b03a261f24cd43d090ea9db9a1dc59d9313914c"},
{file = "ruff-0.6.9-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:645d7d8761f915e48a00d4ecc3686969761df69fb561dd914a773c1a8266e14e"},
{file = "ruff-0.6.9-py3-none-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:eae02b700763e3847595b9d2891488989cac00214da7f845f4bcf2989007d577"},
{file = "ruff-0.6.9-py3-none-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7d5ccc9e58112441de8ad4b29dcb7a86dc25c5f770e3c06a9d57e0e5eba48829"},
{file = "ruff-0.6.9-py3-none-manylinux_2_17_ppc64.manylinux2014_ppc64.whl", hash = "sha256:417b81aa1c9b60b2f8edc463c58363075412866ae4e2b9ab0f690dc1e87ac1b5"},
{file = "ruff-0.6.9-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3c866b631f5fbce896a74a6e4383407ba7507b815ccc52bcedabb6810fdb3ef7"},
{file = "ruff-0.6.9-py3-none-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7b118afbb3202f5911486ad52da86d1d52305b59e7ef2031cea3425142b97d6f"},
{file = "ruff-0.6.9-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a67267654edc23c97335586774790cde402fb6bbdb3c2314f1fc087dee320bfa"},
{file = "ruff-0.6.9-py3-none-musllinux_1_2_aarch64.whl", hash = "sha256:3ef0cc774b00fec123f635ce5c547dac263f6ee9fb9cc83437c5904183b55ceb"},
{file = "ruff-0.6.9-py3-none-musllinux_1_2_armv7l.whl", hash = "sha256:12edd2af0c60fa61ff31cefb90aef4288ac4d372b4962c2864aeea3a1a2460c0"},
{file = "ruff-0.6.9-py3-none-musllinux_1_2_i686.whl", hash = "sha256:55bb01caeaf3a60b2b2bba07308a02fca6ab56233302406ed5245180a05c5625"},
{file = "ruff-0.6.9-py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:925d26471fa24b0ce5a6cdfab1bb526fb4159952385f386bdcc643813d472039"},
{file = "ruff-0.6.9-py3-none-win32.whl", hash = "sha256:eb61ec9bdb2506cffd492e05ac40e5bc6284873aceb605503d8494180d6fc84d"},
{file = "ruff-0.6.9-py3-none-win_amd64.whl", hash = "sha256:785d31851c1ae91f45b3d8fe23b8ae4b5170089021fbb42402d811135f0b7117"},
{file = "ruff-0.6.9-py3-none-win_arm64.whl", hash = "sha256:a9641e31476d601f83cd602608739a0840e348bda93fec9f1ee816f8b6798b93"},
{file = "ruff-0.6.9.tar.gz", hash = "sha256:b076ef717a8e5bc819514ee1d602bbdca5b4420ae13a9cf61a0c0a4f53a2baa2"},
{file = "ruff-0.7.3-py3-none-linux_armv6l.whl", hash = "sha256:34f2339dc22687ec7e7002792d1f50712bf84a13d5152e75712ac08be565d344"},
{file = "ruff-0.7.3-py3-none-macosx_10_12_x86_64.whl", hash = "sha256:fb397332a1879b9764a3455a0bb1087bda876c2db8aca3a3cbb67b3dbce8cda0"},
{file = "ruff-0.7.3-py3-none-macosx_11_0_arm64.whl", hash = "sha256:37d0b619546103274e7f62643d14e1adcbccb242efda4e4bdb9544d7764782e9"},
{file = "ruff-0.7.3-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5d59f0c3ee4d1a6787614e7135b72e21024875266101142a09a61439cb6e38a5"},
{file = "ruff-0.7.3-py3-none-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:44eb93c2499a169d49fafd07bc62ac89b1bc800b197e50ff4633aed212569299"},
{file = "ruff-0.7.3-py3-none-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6d0242ce53f3a576c35ee32d907475a8d569944c0407f91d207c8af5be5dae4e"},
{file = "ruff-0.7.3-py3-none-manylinux_2_17_ppc64.manylinux2014_ppc64.whl", hash = "sha256:6b6224af8b5e09772c2ecb8dc9f3f344c1aa48201c7f07e7315367f6dd90ac29"},
{file = "ruff-0.7.3-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c50f95a82b94421c964fae4c27c0242890a20fe67d203d127e84fbb8013855f5"},
{file = "ruff-0.7.3-py3-none-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7f3eff9961b5d2644bcf1616c606e93baa2d6b349e8aa8b035f654df252c8c67"},
{file = "ruff-0.7.3-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b8963cab06d130c4df2fd52c84e9f10d297826d2e8169ae0c798b6221be1d1d2"},
{file = "ruff-0.7.3-py3-none-musllinux_1_2_aarch64.whl", hash = "sha256:61b46049d6edc0e4317fb14b33bd693245281a3007288b68a3f5b74a22a0746d"},
{file = "ruff-0.7.3-py3-none-musllinux_1_2_armv7l.whl", hash = "sha256:10ebce7696afe4644e8c1a23b3cf8c0f2193a310c18387c06e583ae9ef284de2"},
{file = "ruff-0.7.3-py3-none-musllinux_1_2_i686.whl", hash = "sha256:3f36d56326b3aef8eeee150b700e519880d1aab92f471eefdef656fd57492aa2"},
{file = "ruff-0.7.3-py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:5d024301109a0007b78d57ab0ba190087b43dce852e552734ebf0b0b85e4fb16"},
{file = "ruff-0.7.3-py3-none-win32.whl", hash = "sha256:4ba81a5f0c5478aa61674c5a2194de8b02652f17addf8dfc40c8937e6e7d79fc"},
{file = "ruff-0.7.3-py3-none-win_amd64.whl", hash = "sha256:588a9ff2fecf01025ed065fe28809cd5a53b43505f48b69a1ac7707b1b7e4088"},
{file = "ruff-0.7.3-py3-none-win_arm64.whl", hash = "sha256:1713e2c5545863cdbfe2cbce21f69ffaf37b813bfd1fb3b90dc9a6f1963f5a8c"},
{file = "ruff-0.7.3.tar.gz", hash = "sha256:e1d1ba2e40b6e71a61b063354d04be669ab0d39c352461f3d789cac68b54a313"},
]
[[package]]
@ -11005,4 +11078,4 @@ cffi = ["cffi (>=1.11)"]
[metadata]
lock-version = "2.0"
python-versions = ">=3.10,<3.13"
content-hash = "f20bd678044926913dbbc24bd0cf22503a75817aa55f59457ff7822032139b77"
content-hash = "2ba4b464eebc26598f290fa94713acc44c588f902176e6efa80622911d40f0ac"

View File

@ -122,6 +122,7 @@ celery = "~5.4.0"
chardet = "~5.1.0"
cohere = "~5.2.4"
dashscope = { version = "~1.17.0", extras = ["tokenizer"] }
fal-client = "0.5.6"
flask = "~3.0.1"
flask-compress = "~1.14"
flask-cors = "~4.0.0"
@ -278,4 +279,4 @@ pytest-mock = "~3.14.0"
optional = true
[tool.poetry.group.lint.dependencies]
dotenv-linter = "~0.5.0"
ruff = "~0.6.9"
ruff = "~0.7.3"

View File

@ -1458,6 +1458,7 @@ class SegmentService:
pre_segment_data_list = []
segment_data_list = []
keywords_list = []
position = max_position + 1 if max_position else 1
for segment_item in segments:
content = segment_item["content"]
doc_id = str(uuid.uuid4())
@ -1475,7 +1476,7 @@ class SegmentService:
document_id=document.id,
index_node_id=doc_id,
index_node_hash=segment_hash,
position=max_position + 1 if max_position else 1,
position=position,
content=content,
word_count=len(content),
tokens=tokens,
@ -1490,6 +1491,7 @@ class SegmentService:
increment_word_count += segment_document.word_count
db.session.add(segment_document)
segment_data_list.append(segment_document)
position += 1
pre_segment_data_list.append(segment_document)
if "keywords" in segment_item:

View File

@ -25,7 +25,9 @@ def document_indexing_task(dataset_id: str, document_ids: list):
start_at = time.perf_counter()
dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
if not dataset:
logging.info(click.style("Dataset is not found: {}".format(dataset_id), fg="yellow"))
return
# check document limit
features = FeatureService.get_features(dataset.tenant_id)
try:

View File

@ -1,4 +1,5 @@
import os
from collections import UserDict
from unittest.mock import MagicMock
import pytest
@ -11,7 +12,7 @@ from pymochow.model.table import Table
from requests.adapters import HTTPAdapter
class AttrDict(dict):
class AttrDict(UserDict):
def __getattr__(self, item):
return self.get(item)

Some files were not shown because too many files have changed in this diff Show More