mirror of
https://github.com/langgenius/dify.git
synced 2024-11-16 11:42:29 +08:00
fix(api/core/model_runtime/model_providers/baichuan,localai): Parse ToolPromptMessage. #4943 (#5138)
Co-authored-by: -LAN- <laipz8200@outlook.com>
This commit is contained in:
parent
742b08e1d5
commit
adc948e87c
|
@ -7,6 +7,7 @@ from core.model_runtime.entities.message_entities import (
|
|||
PromptMessage,
|
||||
PromptMessageTool,
|
||||
SystemPromptMessage,
|
||||
ToolPromptMessage,
|
||||
UserPromptMessage,
|
||||
)
|
||||
from core.model_runtime.errors.invoke import (
|
||||
|
@ -32,20 +33,21 @@ from core.model_runtime.model_providers.baichuan.llm.baichuan_turbo_errors impor
|
|||
|
||||
|
||||
class BaichuanLarguageModel(LargeLanguageModel):
|
||||
def _invoke(self, model: str, credentials: dict,
|
||||
prompt_messages: list[PromptMessage], model_parameters: dict,
|
||||
tools: list[PromptMessageTool] | None = None, stop: list[str] | None = None,
|
||||
def _invoke(self, model: str, credentials: dict,
|
||||
prompt_messages: list[PromptMessage], model_parameters: dict,
|
||||
tools: list[PromptMessageTool] | None = None, stop: list[str] | None = None,
|
||||
stream: bool = True, user: str | None = None) \
|
||||
-> LLMResult | Generator:
|
||||
return self._generate(model=model, credentials=credentials, prompt_messages=prompt_messages,
|
||||
model_parameters=model_parameters, tools=tools, stop=stop, stream=stream, user=user)
|
||||
model_parameters=model_parameters, tools=tools, stop=stop, stream=stream, user=user)
|
||||
|
||||
def get_num_tokens(self, model: str, credentials: dict, prompt_messages: list[PromptMessage],
|
||||
tools: list[PromptMessageTool] | None = None) -> int:
|
||||
return self._num_tokens_from_messages(prompt_messages)
|
||||
|
||||
def _num_tokens_from_messages(self, messages: list[PromptMessage],) -> int:
|
||||
def _num_tokens_from_messages(self, messages: list[PromptMessage], ) -> int:
|
||||
"""Calculate num tokens for baichuan model"""
|
||||
|
||||
def tokens(text: str):
|
||||
return BaichuanTokenizer._get_num_tokens(text)
|
||||
|
||||
|
@ -85,9 +87,20 @@ class BaichuanLarguageModel(LargeLanguageModel):
|
|||
elif isinstance(message, SystemPromptMessage):
|
||||
message = cast(SystemPromptMessage, message)
|
||||
message_dict = {"role": "user", "content": message.content}
|
||||
elif isinstance(message, ToolPromptMessage):
|
||||
# copy from core/model_runtime/model_providers/anthropic/llm/llm.py
|
||||
message = cast(ToolPromptMessage, message)
|
||||
message_dict = {
|
||||
"role": "user",
|
||||
"content": [{
|
||||
"type": "tool_result",
|
||||
"tool_use_id": message.tool_call_id,
|
||||
"content": message.content
|
||||
}]
|
||||
}
|
||||
else:
|
||||
raise ValueError(f"Unknown message type {type(message)}")
|
||||
|
||||
|
||||
return message_dict
|
||||
|
||||
def validate_credentials(self, model: str, credentials: dict) -> None:
|
||||
|
@ -106,13 +119,13 @@ class BaichuanLarguageModel(LargeLanguageModel):
|
|||
except Exception as e:
|
||||
raise CredentialsValidateFailedError(f"Invalid API key: {e}")
|
||||
|
||||
def _generate(self, model: str, credentials: dict, prompt_messages: list[PromptMessage],
|
||||
model_parameters: dict, tools: list[PromptMessageTool] | None = None,
|
||||
stop: list[str] | None = None, stream: bool = True, user: str | None = None) \
|
||||
def _generate(self, model: str, credentials: dict, prompt_messages: list[PromptMessage],
|
||||
model_parameters: dict, tools: list[PromptMessageTool] | None = None,
|
||||
stop: list[str] | None = None, stream: bool = True, user: str | None = None) \
|
||||
-> LLMResult | Generator:
|
||||
if tools is not None and len(tools) > 0:
|
||||
raise InvokeBadRequestError("Baichuan model doesn't support tools")
|
||||
|
||||
|
||||
instance = BaichuanModel(
|
||||
api_key=credentials['api_key'],
|
||||
secret_key=credentials.get('secret_key', '')
|
||||
|
@ -129,11 +142,12 @@ class BaichuanLarguageModel(LargeLanguageModel):
|
|||
]
|
||||
|
||||
# invoke model
|
||||
response = instance.generate(model=model, stream=stream, messages=messages, parameters=model_parameters, timeout=60)
|
||||
response = instance.generate(model=model, stream=stream, messages=messages, parameters=model_parameters,
|
||||
timeout=60)
|
||||
|
||||
if stream:
|
||||
return self._handle_chat_generate_stream_response(model, prompt_messages, credentials, response)
|
||||
|
||||
|
||||
return self._handle_chat_generate_response(model, prompt_messages, credentials, response)
|
||||
|
||||
def _handle_chat_generate_response(self, model: str,
|
||||
|
@ -141,7 +155,9 @@ class BaichuanLarguageModel(LargeLanguageModel):
|
|||
credentials: dict,
|
||||
response: BaichuanMessage) -> LLMResult:
|
||||
# convert baichuan message to llm result
|
||||
usage = self._calc_response_usage(model=model, credentials=credentials, prompt_tokens=response.usage['prompt_tokens'], completion_tokens=response.usage['completion_tokens'])
|
||||
usage = self._calc_response_usage(model=model, credentials=credentials,
|
||||
prompt_tokens=response.usage['prompt_tokens'],
|
||||
completion_tokens=response.usage['completion_tokens'])
|
||||
return LLMResult(
|
||||
model=model,
|
||||
prompt_messages=prompt_messages,
|
||||
|
@ -158,7 +174,9 @@ class BaichuanLarguageModel(LargeLanguageModel):
|
|||
response: Generator[BaichuanMessage, None, None]) -> Generator:
|
||||
for message in response:
|
||||
if message.usage:
|
||||
usage = self._calc_response_usage(model=model, credentials=credentials, prompt_tokens=message.usage['prompt_tokens'], completion_tokens=message.usage['completion_tokens'])
|
||||
usage = self._calc_response_usage(model=model, credentials=credentials,
|
||||
prompt_tokens=message.usage['prompt_tokens'],
|
||||
completion_tokens=message.usage['completion_tokens'])
|
||||
yield LLMResultChunk(
|
||||
model=model,
|
||||
prompt_messages=prompt_messages,
|
||||
|
|
|
@ -27,6 +27,7 @@ from core.model_runtime.entities.message_entities import (
|
|||
PromptMessage,
|
||||
PromptMessageTool,
|
||||
SystemPromptMessage,
|
||||
ToolPromptMessage,
|
||||
UserPromptMessage,
|
||||
)
|
||||
from core.model_runtime.entities.model_entities import (
|
||||
|
@ -51,13 +52,13 @@ from core.model_runtime.utils import helper
|
|||
|
||||
|
||||
class LocalAILanguageModel(LargeLanguageModel):
|
||||
def _invoke(self, model: str, credentials: dict,
|
||||
prompt_messages: list[PromptMessage], model_parameters: dict,
|
||||
tools: list[PromptMessageTool] | None = None, stop: list[str] | None = None,
|
||||
def _invoke(self, model: str, credentials: dict,
|
||||
prompt_messages: list[PromptMessage], model_parameters: dict,
|
||||
tools: list[PromptMessageTool] | None = None, stop: list[str] | None = None,
|
||||
stream: bool = True, user: str | None = None) \
|
||||
-> LLMResult | Generator:
|
||||
return self._generate(model=model, credentials=credentials, prompt_messages=prompt_messages,
|
||||
model_parameters=model_parameters, tools=tools, stop=stop, stream=stream, user=user)
|
||||
model_parameters=model_parameters, tools=tools, stop=stop, stream=stream, user=user)
|
||||
|
||||
def get_num_tokens(self, model: str, credentials: dict, prompt_messages: list[PromptMessage],
|
||||
tools: list[PromptMessageTool] | None = None) -> int:
|
||||
|
@ -67,8 +68,9 @@ class LocalAILanguageModel(LargeLanguageModel):
|
|||
def _num_tokens_from_messages(self, messages: list[PromptMessage], tools: list[PromptMessageTool]) -> int:
|
||||
"""
|
||||
Calculate num tokens for baichuan model
|
||||
LocalAI does not supports
|
||||
LocalAI does not supports
|
||||
"""
|
||||
|
||||
def tokens(text: str):
|
||||
"""
|
||||
We cloud not determine which tokenizer to use, cause the model is customized.
|
||||
|
@ -124,7 +126,7 @@ class LocalAILanguageModel(LargeLanguageModel):
|
|||
num_tokens += self._num_tokens_for_tools(tools)
|
||||
|
||||
return num_tokens
|
||||
|
||||
|
||||
def _num_tokens_for_tools(self, tools: list[PromptMessageTool]) -> int:
|
||||
"""
|
||||
Calculate num tokens for tool calling
|
||||
|
@ -133,6 +135,7 @@ class LocalAILanguageModel(LargeLanguageModel):
|
|||
:param tools: tools for tool calling
|
||||
:return: number of tokens
|
||||
"""
|
||||
|
||||
def tokens(text: str):
|
||||
return self._get_num_tokens_by_gpt2(text)
|
||||
|
||||
|
@ -193,7 +196,7 @@ class LocalAILanguageModel(LargeLanguageModel):
|
|||
completion_model = LLMMode.COMPLETION.value
|
||||
else:
|
||||
raise ValueError(f"Unknown completion type {credentials['completion_type']}")
|
||||
|
||||
|
||||
rules = [
|
||||
ParameterRule(
|
||||
name='temperature',
|
||||
|
@ -227,7 +230,7 @@ class LocalAILanguageModel(LargeLanguageModel):
|
|||
)
|
||||
]
|
||||
|
||||
model_properties = {
|
||||
model_properties = {
|
||||
ModelPropertyKey.MODE: completion_model,
|
||||
} if completion_model else {}
|
||||
|
||||
|
@ -246,11 +249,11 @@ class LocalAILanguageModel(LargeLanguageModel):
|
|||
|
||||
return entity
|
||||
|
||||
def _generate(self, model: str, credentials: dict, prompt_messages: list[PromptMessage],
|
||||
model_parameters: dict, tools: list[PromptMessageTool] | None = None,
|
||||
stop: list[str] | None = None, stream: bool = True, user: str | None = None) \
|
||||
def _generate(self, model: str, credentials: dict, prompt_messages: list[PromptMessage],
|
||||
model_parameters: dict, tools: list[PromptMessageTool] | None = None,
|
||||
stop: list[str] | None = None, stream: bool = True, user: str | None = None) \
|
||||
-> LLMResult | Generator:
|
||||
|
||||
|
||||
kwargs = self._to_client_kwargs(credentials)
|
||||
# init model client
|
||||
client = OpenAI(**kwargs)
|
||||
|
@ -271,7 +274,7 @@ class LocalAILanguageModel(LargeLanguageModel):
|
|||
extra_model_kwargs['functions'] = [
|
||||
helper.dump_model(tool) for tool in tools
|
||||
]
|
||||
|
||||
|
||||
if completion_type == 'chat_completion':
|
||||
result = client.chat.completions.create(
|
||||
messages=[self._convert_prompt_message_to_dict(m) for m in prompt_messages],
|
||||
|
@ -294,24 +297,24 @@ class LocalAILanguageModel(LargeLanguageModel):
|
|||
if stream:
|
||||
if completion_type == 'completion':
|
||||
return self._handle_completion_generate_stream_response(
|
||||
model=model, credentials=credentials, response=result, tools=tools,
|
||||
model=model, credentials=credentials, response=result, tools=tools,
|
||||
prompt_messages=prompt_messages
|
||||
)
|
||||
return self._handle_chat_generate_stream_response(
|
||||
model=model, credentials=credentials, response=result, tools=tools,
|
||||
model=model, credentials=credentials, response=result, tools=tools,
|
||||
prompt_messages=prompt_messages
|
||||
)
|
||||
|
||||
|
||||
if completion_type == 'completion':
|
||||
return self._handle_completion_generate_response(
|
||||
model=model, credentials=credentials, response=result,
|
||||
model=model, credentials=credentials, response=result,
|
||||
prompt_messages=prompt_messages
|
||||
)
|
||||
return self._handle_chat_generate_response(
|
||||
model=model, credentials=credentials, response=result, tools=tools,
|
||||
model=model, credentials=credentials, response=result, tools=tools,
|
||||
prompt_messages=prompt_messages
|
||||
)
|
||||
|
||||
|
||||
def _to_client_kwargs(self, credentials: dict) -> dict:
|
||||
"""
|
||||
Convert invoke kwargs to client kwargs
|
||||
|
@ -321,7 +324,7 @@ class LocalAILanguageModel(LargeLanguageModel):
|
|||
"""
|
||||
if not credentials['server_url'].endswith('/'):
|
||||
credentials['server_url'] += '/'
|
||||
|
||||
|
||||
client_kwargs = {
|
||||
"timeout": Timeout(315.0, read=300.0, write=10.0, connect=5.0),
|
||||
"api_key": "1",
|
||||
|
@ -351,9 +354,20 @@ class LocalAILanguageModel(LargeLanguageModel):
|
|||
elif isinstance(message, SystemPromptMessage):
|
||||
message = cast(SystemPromptMessage, message)
|
||||
message_dict = {"role": "system", "content": message.content}
|
||||
elif isinstance(message, ToolPromptMessage):
|
||||
# copy from core/model_runtime/model_providers/anthropic/llm/llm.py
|
||||
message = cast(ToolPromptMessage, message)
|
||||
message_dict = {
|
||||
"role": "user",
|
||||
"content": [{
|
||||
"type": "tool_result",
|
||||
"tool_use_id": message.tool_call_id,
|
||||
"content": message.content
|
||||
}]
|
||||
}
|
||||
else:
|
||||
raise ValueError(f"Unknown message type {type(message)}")
|
||||
|
||||
|
||||
return message_dict
|
||||
|
||||
def _convert_prompt_message_to_completion_prompts(self, messages: list[PromptMessage]) -> str:
|
||||
|
@ -373,14 +387,14 @@ class LocalAILanguageModel(LargeLanguageModel):
|
|||
prompts += f'{message.content}\n'
|
||||
else:
|
||||
raise ValueError(f"Unknown message type {type(message)}")
|
||||
|
||||
|
||||
return prompts
|
||||
|
||||
def _handle_completion_generate_response(self, model: str,
|
||||
prompt_messages: list[PromptMessage],
|
||||
credentials: dict,
|
||||
response: Completion,
|
||||
) -> LLMResult:
|
||||
prompt_messages: list[PromptMessage],
|
||||
credentials: dict,
|
||||
response: Completion,
|
||||
) -> LLMResult:
|
||||
"""
|
||||
Handle llm chat response
|
||||
|
||||
|
@ -393,7 +407,7 @@ class LocalAILanguageModel(LargeLanguageModel):
|
|||
"""
|
||||
if len(response.choices) == 0:
|
||||
raise InvokeServerUnavailableError("Empty response")
|
||||
|
||||
|
||||
assistant_message = response.choices[0].text
|
||||
|
||||
# transform assistant message to prompt message
|
||||
|
@ -407,7 +421,8 @@ class LocalAILanguageModel(LargeLanguageModel):
|
|||
)
|
||||
completion_tokens = self._num_tokens_from_messages(messages=[assistant_prompt_message], tools=[])
|
||||
|
||||
usage = self._calc_response_usage(model=model, credentials=credentials, prompt_tokens=prompt_tokens, completion_tokens=completion_tokens)
|
||||
usage = self._calc_response_usage(model=model, credentials=credentials, prompt_tokens=prompt_tokens,
|
||||
completion_tokens=completion_tokens)
|
||||
|
||||
response = LLMResult(
|
||||
model=model,
|
||||
|
@ -436,7 +451,7 @@ class LocalAILanguageModel(LargeLanguageModel):
|
|||
"""
|
||||
if len(response.choices) == 0:
|
||||
raise InvokeServerUnavailableError("Empty response")
|
||||
|
||||
|
||||
assistant_message = response.choices[0].message
|
||||
|
||||
# convert function call to tool call
|
||||
|
@ -452,7 +467,8 @@ class LocalAILanguageModel(LargeLanguageModel):
|
|||
prompt_tokens = self._num_tokens_from_messages(messages=prompt_messages, tools=tools)
|
||||
completion_tokens = self._num_tokens_from_messages(messages=[assistant_prompt_message], tools=tools)
|
||||
|
||||
usage = self._calc_response_usage(model=model, credentials=credentials, prompt_tokens=prompt_tokens, completion_tokens=completion_tokens)
|
||||
usage = self._calc_response_usage(model=model, credentials=credentials, prompt_tokens=prompt_tokens,
|
||||
completion_tokens=completion_tokens)
|
||||
|
||||
response = LLMResult(
|
||||
model=model,
|
||||
|
@ -465,10 +481,10 @@ class LocalAILanguageModel(LargeLanguageModel):
|
|||
return response
|
||||
|
||||
def _handle_completion_generate_stream_response(self, model: str,
|
||||
prompt_messages: list[PromptMessage],
|
||||
credentials: dict,
|
||||
response: Stream[Completion],
|
||||
tools: list[PromptMessageTool]) -> Generator:
|
||||
prompt_messages: list[PromptMessage],
|
||||
credentials: dict,
|
||||
response: Stream[Completion],
|
||||
tools: list[PromptMessageTool]) -> Generator:
|
||||
full_response = ''
|
||||
|
||||
for chunk in response:
|
||||
|
@ -496,9 +512,9 @@ class LocalAILanguageModel(LargeLanguageModel):
|
|||
|
||||
completion_tokens = self._num_tokens_from_messages(messages=[temp_assistant_prompt_message], tools=[])
|
||||
|
||||
usage = self._calc_response_usage(model=model, credentials=credentials,
|
||||
usage = self._calc_response_usage(model=model, credentials=credentials,
|
||||
prompt_tokens=prompt_tokens, completion_tokens=completion_tokens)
|
||||
|
||||
|
||||
yield LLMResultChunk(
|
||||
model=model,
|
||||
prompt_messages=prompt_messages,
|
||||
|
@ -538,7 +554,7 @@ class LocalAILanguageModel(LargeLanguageModel):
|
|||
|
||||
if delta.finish_reason is None and (delta.delta.content is None or delta.delta.content == ''):
|
||||
continue
|
||||
|
||||
|
||||
# check if there is a tool call in the response
|
||||
function_calls = None
|
||||
if delta.delta.function_call:
|
||||
|
@ -562,9 +578,9 @@ class LocalAILanguageModel(LargeLanguageModel):
|
|||
prompt_tokens = self._num_tokens_from_messages(messages=prompt_messages, tools=tools)
|
||||
completion_tokens = self._num_tokens_from_messages(messages=[temp_assistant_prompt_message], tools=[])
|
||||
|
||||
usage = self._calc_response_usage(model=model, credentials=credentials,
|
||||
usage = self._calc_response_usage(model=model, credentials=credentials,
|
||||
prompt_tokens=prompt_tokens, completion_tokens=completion_tokens)
|
||||
|
||||
|
||||
yield LLMResultChunk(
|
||||
model=model,
|
||||
prompt_messages=prompt_messages,
|
||||
|
@ -613,7 +629,7 @@ class LocalAILanguageModel(LargeLanguageModel):
|
|||
)
|
||||
tool_calls.append(tool_call)
|
||||
|
||||
return tool_calls
|
||||
return tool_calls
|
||||
|
||||
@property
|
||||
def _invoke_error_mapping(self) -> dict[type[InvokeError], list[type[Exception]]]:
|
||||
|
|
Loading…
Reference in New Issue
Block a user