mirror of
https://github.com/langgenius/dify.git
synced 2024-11-16 11:42:29 +08:00
feat: optimize hf inference endpoint (#975)
This commit is contained in:
parent
1fc57d7358
commit
a76fde3d23
|
@ -1,16 +1,14 @@
|
|||
import decimal
|
||||
from functools import wraps
|
||||
from typing import List, Optional, Any
|
||||
|
||||
from langchain import HuggingFaceHub
|
||||
from langchain.callbacks.manager import Callbacks
|
||||
from langchain.llms import HuggingFaceEndpoint
|
||||
from langchain.schema import LLMResult
|
||||
|
||||
from core.model_providers.error import LLMBadRequestError
|
||||
from core.model_providers.models.llm.base import BaseLLM
|
||||
from core.model_providers.models.entity.message import PromptMessage, MessageType
|
||||
from core.model_providers.models.entity.message import PromptMessage
|
||||
from core.model_providers.models.entity.model_params import ModelMode, ModelKwargs
|
||||
from core.third_party.langchain.llms.huggingface_endpoint_llm import HuggingFaceEndpointLLM
|
||||
|
||||
|
||||
class HuggingfaceHubModel(BaseLLM):
|
||||
|
@ -19,12 +17,12 @@ class HuggingfaceHubModel(BaseLLM):
|
|||
def _init_client(self) -> Any:
|
||||
provider_model_kwargs = self._to_model_kwargs_input(self.model_rules, self.model_kwargs)
|
||||
if self.credentials['huggingfacehub_api_type'] == 'inference_endpoints':
|
||||
client = HuggingFaceEndpoint(
|
||||
client = HuggingFaceEndpointLLM(
|
||||
endpoint_url=self.credentials['huggingfacehub_endpoint_url'],
|
||||
task='text2text-generation',
|
||||
task=self.credentials['task_type'],
|
||||
model_kwargs=provider_model_kwargs,
|
||||
huggingfacehub_api_token=self.credentials['huggingfacehub_api_token'],
|
||||
callbacks=self.callbacks,
|
||||
callbacks=self.callbacks
|
||||
)
|
||||
else:
|
||||
client = HuggingFaceHub(
|
||||
|
|
|
@ -2,7 +2,6 @@ import json
|
|||
from typing import Type
|
||||
|
||||
from huggingface_hub import HfApi
|
||||
from langchain.llms import HuggingFaceEndpoint
|
||||
|
||||
from core.helper import encrypter
|
||||
from core.model_providers.models.entity.model_params import KwargRule, ModelKwargsRules, ModelType
|
||||
|
@ -10,6 +9,7 @@ from core.model_providers.models.llm.huggingface_hub_model import HuggingfaceHub
|
|||
from core.model_providers.providers.base import BaseModelProvider, CredentialsValidateFailedError
|
||||
|
||||
from core.model_providers.models.base import BaseProviderModel
|
||||
from core.third_party.langchain.llms.huggingface_endpoint_llm import HuggingFaceEndpointLLM
|
||||
from models.provider import ProviderType
|
||||
|
||||
|
||||
|
@ -85,10 +85,16 @@ class HuggingfaceHubProvider(BaseModelProvider):
|
|||
if 'huggingfacehub_endpoint_url' not in credentials:
|
||||
raise CredentialsValidateFailedError('Hugging Face Hub Endpoint URL must be provided.')
|
||||
|
||||
if 'task_type' not in credentials:
|
||||
raise CredentialsValidateFailedError('Task Type must be provided.')
|
||||
|
||||
if credentials['task_type'] not in ("text2text-generation", "text-generation", "summarization"):
|
||||
raise CredentialsValidateFailedError('Task Type must be one of text2text-generation, text-generation, summarization.')
|
||||
|
||||
try:
|
||||
llm = HuggingFaceEndpoint(
|
||||
llm = HuggingFaceEndpointLLM(
|
||||
endpoint_url=credentials['huggingfacehub_endpoint_url'],
|
||||
task="text2text-generation",
|
||||
task=credentials['task_type'],
|
||||
model_kwargs={"temperature": 0.5, "max_new_tokens": 200},
|
||||
huggingfacehub_api_token=credentials['huggingfacehub_api_token']
|
||||
)
|
||||
|
@ -160,6 +166,10 @@ class HuggingfaceHubProvider(BaseModelProvider):
|
|||
}
|
||||
|
||||
credentials = json.loads(provider_model.encrypted_config)
|
||||
|
||||
if 'task_type' not in credentials:
|
||||
credentials['task_type'] = 'text-generation'
|
||||
|
||||
if credentials['huggingfacehub_api_token']:
|
||||
credentials['huggingfacehub_api_token'] = encrypter.decrypt_token(
|
||||
self.provider.tenant_id,
|
||||
|
|
39
api/core/third_party/langchain/llms/huggingface_endpoint_llm.py
vendored
Normal file
39
api/core/third_party/langchain/llms/huggingface_endpoint_llm.py
vendored
Normal file
|
@ -0,0 +1,39 @@
|
|||
from typing import Dict
|
||||
|
||||
from langchain.llms import HuggingFaceEndpoint
|
||||
from pydantic import Extra, root_validator
|
||||
|
||||
from langchain.utils import get_from_dict_or_env
|
||||
|
||||
|
||||
class HuggingFaceEndpointLLM(HuggingFaceEndpoint):
|
||||
"""HuggingFace Endpoint models.
|
||||
|
||||
To use, you should have the ``huggingface_hub`` python package installed, and the
|
||||
environment variable ``HUGGINGFACEHUB_API_TOKEN`` set with your API token, or pass
|
||||
it as a named parameter to the constructor.
|
||||
|
||||
Only supports `text-generation` and `text2text-generation` for now.
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain.llms import HuggingFaceEndpoint
|
||||
endpoint_url = (
|
||||
"https://abcdefghijklmnop.us-east-1.aws.endpoints.huggingface.cloud"
|
||||
)
|
||||
hf = HuggingFaceEndpoint(
|
||||
endpoint_url=endpoint_url,
|
||||
huggingfacehub_api_token="my-api-key"
|
||||
)
|
||||
"""
|
||||
|
||||
@root_validator(allow_reuse=True)
|
||||
def validate_environment(cls, values: Dict) -> Dict:
|
||||
"""Validate that api key and python package exists in environment."""
|
||||
huggingfacehub_api_token = get_from_dict_or_env(
|
||||
values, "huggingfacehub_api_token", "HUGGINGFACEHUB_API_TOKEN"
|
||||
)
|
||||
|
||||
values["huggingfacehub_api_token"] = huggingfacehub_api_token
|
||||
return values
|
|
@ -17,7 +17,8 @@ HOSTED_INFERENCE_API_VALIDATE_CREDENTIAL = {
|
|||
INFERENCE_ENDPOINTS_VALIDATE_CREDENTIAL = {
|
||||
'huggingfacehub_api_type': 'inference_endpoints',
|
||||
'huggingfacehub_api_token': 'valid_key',
|
||||
'huggingfacehub_endpoint_url': 'valid_url'
|
||||
'huggingfacehub_endpoint_url': 'valid_url',
|
||||
'task_type': 'text-generation'
|
||||
}
|
||||
|
||||
def encrypt_side_effect(tenant_id, encrypt_key):
|
||||
|
|
Loading…
Reference in New Issue
Block a user