chore: merge main

This commit is contained in:
Joel 2024-09-30 16:43:06 +08:00
commit 944cfd2b68
348 changed files with 11436 additions and 1472 deletions

View File

@ -125,7 +125,7 @@ jobs:
with:
images: ${{ env[matrix.image_name_env] }}
tags: |
type=raw,value=latest,enable=${{ startsWith(github.ref, 'refs/tags/') }}
type=raw,value=latest,enable=${{ startsWith(github.ref, 'refs/tags/') && !contains(github.ref, '-') }}
type=ref,event=branch
type=sha,enable=true,priority=100,prefix=,suffix=,format=long
type=raw,value=${{ github.ref_name }},enable=${{ startsWith(github.ref, 'refs/tags/') }}

View File

@ -162,6 +162,8 @@ PGVECTOR_PORT=5433
PGVECTOR_USER=postgres
PGVECTOR_PASSWORD=postgres
PGVECTOR_DATABASE=postgres
PGVECTOR_MIN_CONNECTION=1
PGVECTOR_MAX_CONNECTION=5
# Tidb Vector configuration
TIDB_VECTOR_HOST=xxx.eu-central-1.xxx.aws.tidbcloud.com

View File

@ -33,3 +33,13 @@ class PGVectorConfig(BaseSettings):
description="Name of the PostgreSQL database to connect to",
default=None,
)
PGVECTOR_MIN_CONNECTION: PositiveInt = Field(
description="Min connection of the PostgreSQL database",
default=1,
)
PGVECTOR_MAX_CONNECTION: PositiveInt = Field(
description="Max connection of the PostgreSQL database",
default=5,
)

View File

@ -37,7 +37,16 @@ from .auth import activate, data_source_bearer_auth, data_source_oauth, forgot_p
from .billing import billing
# Import datasets controllers
from .datasets import data_source, datasets, datasets_document, datasets_segments, file, hit_testing, website
from .datasets import (
data_source,
datasets,
datasets_document,
datasets_segments,
external,
file,
hit_testing,
website,
)
# Import explore controllers
from .explore import (

View File

@ -49,7 +49,7 @@ class DatasetListApi(Resource):
page = request.args.get("page", default=1, type=int)
limit = request.args.get("limit", default=20, type=int)
ids = request.args.getlist("ids")
provider = request.args.get("provider", default="vendor")
# provider = request.args.get("provider", default="vendor")
search = request.args.get("keyword", default=None, type=str)
tag_ids = request.args.getlist("tag_ids")
@ -57,7 +57,7 @@ class DatasetListApi(Resource):
datasets, total = DatasetService.get_datasets_by_ids(ids, current_user.current_tenant_id)
else:
datasets, total = DatasetService.get_datasets(
page, limit, provider, current_user.current_tenant_id, current_user, search, tag_ids
page, limit, current_user.current_tenant_id, current_user, search, tag_ids
)
# check embedding setting
@ -110,6 +110,26 @@ class DatasetListApi(Resource):
nullable=True,
help="Invalid indexing technique.",
)
parser.add_argument(
"external_knowledge_api_id",
type=str,
nullable=True,
required=False,
)
parser.add_argument(
"provider",
type=str,
nullable=True,
choices=Dataset.PROVIDER_LIST,
required=False,
default="vendor",
)
parser.add_argument(
"external_knowledge_id",
type=str,
nullable=True,
required=False,
)
args = parser.parse_args()
# The role of the current user in the ta table must be admin, owner, or editor, or dataset_operator
@ -123,6 +143,9 @@ class DatasetListApi(Resource):
indexing_technique=args["indexing_technique"],
account=current_user,
permission=DatasetPermissionEnum.ONLY_ME,
provider=args["provider"],
external_knowledge_api_id=args["external_knowledge_api_id"],
external_knowledge_id=args["external_knowledge_id"],
)
except services.errors.dataset.DatasetNameDuplicateError:
raise DatasetNameDuplicateError()
@ -211,6 +234,33 @@ class DatasetApi(Resource):
)
parser.add_argument("retrieval_model", type=dict, location="json", help="Invalid retrieval model.")
parser.add_argument("partial_member_list", type=list, location="json", help="Invalid parent user list.")
parser.add_argument(
"external_retrieval_model",
type=dict,
required=False,
nullable=True,
location="json",
help="Invalid external retrieval model.",
)
parser.add_argument(
"external_knowledge_id",
type=str,
required=False,
nullable=True,
location="json",
help="Invalid external knowledge id.",
)
parser.add_argument(
"external_knowledge_api_id",
type=str,
required=False,
nullable=True,
location="json",
help="Invalid external knowledge api id.",
)
args = parser.parse_args()
data = request.get_json()
@ -563,10 +613,10 @@ class DatasetRetrievalSettingApi(Resource):
case (
VectorType.MILVUS
| VectorType.RELYT
| VectorType.PGVECTOR
| VectorType.TIDB_VECTOR
| VectorType.CHROMA
| VectorType.TENCENT
| VectorType.PGVECTO_RS
):
return {"retrieval_method": [RetrievalMethod.SEMANTIC_SEARCH.value]}
case (
@ -577,6 +627,7 @@ class DatasetRetrievalSettingApi(Resource):
| VectorType.MYSCALE
| VectorType.ORACLE
| VectorType.ELASTICSEARCH
| VectorType.PGVECTOR
):
return {
"retrieval_method": [

View File

@ -0,0 +1,239 @@
from flask import request
from flask_login import current_user
from flask_restful import Resource, marshal, reqparse
from werkzeug.exceptions import Forbidden, InternalServerError, NotFound
import services
from controllers.console import api
from controllers.console.datasets.error import DatasetNameDuplicateError
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from fields.dataset_fields import dataset_detail_fields
from libs.login import login_required
from services.dataset_service import DatasetService
from services.external_knowledge_service import ExternalDatasetService
from services.hit_testing_service import HitTestingService
def _validate_name(name):
if not name or len(name) < 1 or len(name) > 100:
raise ValueError("Name must be between 1 to 100 characters.")
return name
def _validate_description_length(description):
if description and len(description) > 400:
raise ValueError("Description cannot exceed 400 characters.")
return description
class ExternalApiTemplateListApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self):
page = request.args.get("page", default=1, type=int)
limit = request.args.get("limit", default=20, type=int)
search = request.args.get("keyword", default=None, type=str)
external_knowledge_apis, total = ExternalDatasetService.get_external_knowledge_apis(
page, limit, current_user.current_tenant_id, search
)
response = {
"data": [item.to_dict() for item in external_knowledge_apis],
"has_more": len(external_knowledge_apis) == limit,
"limit": limit,
"total": total,
"page": page,
}
return response, 200
@setup_required
@login_required
@account_initialization_required
def post(self):
parser = reqparse.RequestParser()
parser.add_argument(
"name",
nullable=False,
required=True,
help="Name is required. Name must be between 1 to 100 characters.",
type=_validate_name,
)
parser.add_argument(
"settings",
type=dict,
location="json",
nullable=False,
required=True,
)
args = parser.parse_args()
ExternalDatasetService.validate_api_list(args["settings"])
# The role of the current user in the ta table must be admin, owner, or editor, or dataset_operator
if not current_user.is_dataset_editor:
raise Forbidden()
try:
external_knowledge_api = ExternalDatasetService.create_external_knowledge_api(
tenant_id=current_user.current_tenant_id, user_id=current_user.id, args=args
)
except services.errors.dataset.DatasetNameDuplicateError:
raise DatasetNameDuplicateError()
return external_knowledge_api.to_dict(), 201
class ExternalApiTemplateApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self, external_knowledge_api_id):
external_knowledge_api_id = str(external_knowledge_api_id)
external_knowledge_api = ExternalDatasetService.get_external_knowledge_api(external_knowledge_api_id)
if external_knowledge_api is None:
raise NotFound("API template not found.")
return external_knowledge_api.to_dict(), 200
@setup_required
@login_required
@account_initialization_required
def patch(self, external_knowledge_api_id):
external_knowledge_api_id = str(external_knowledge_api_id)
parser = reqparse.RequestParser()
parser.add_argument(
"name",
nullable=False,
required=True,
help="type is required. Name must be between 1 to 100 characters.",
type=_validate_name,
)
parser.add_argument(
"settings",
type=dict,
location="json",
nullable=False,
required=True,
)
args = parser.parse_args()
ExternalDatasetService.validate_api_list(args["settings"])
external_knowledge_api = ExternalDatasetService.update_external_knowledge_api(
tenant_id=current_user.current_tenant_id,
user_id=current_user.id,
external_knowledge_api_id=external_knowledge_api_id,
args=args,
)
return external_knowledge_api.to_dict(), 200
@setup_required
@login_required
@account_initialization_required
def delete(self, external_knowledge_api_id):
external_knowledge_api_id = str(external_knowledge_api_id)
# The role of the current user in the ta table must be admin, owner, or editor
if not current_user.is_editor or current_user.is_dataset_operator:
raise Forbidden()
ExternalDatasetService.delete_external_knowledge_api(current_user.current_tenant_id, external_knowledge_api_id)
return {"result": "success"}, 200
class ExternalApiUseCheckApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self, external_knowledge_api_id):
external_knowledge_api_id = str(external_knowledge_api_id)
external_knowledge_api_is_using, count = ExternalDatasetService.external_knowledge_api_use_check(
external_knowledge_api_id
)
return {"is_using": external_knowledge_api_is_using, "count": count}, 200
class ExternalDatasetCreateApi(Resource):
@setup_required
@login_required
@account_initialization_required
def post(self):
# The role of the current user in the ta table must be admin, owner, or editor
if not current_user.is_editor:
raise Forbidden()
parser = reqparse.RequestParser()
parser.add_argument("external_knowledge_api_id", type=str, required=True, nullable=False, location="json")
parser.add_argument("external_knowledge_id", type=str, required=True, nullable=False, location="json")
parser.add_argument(
"name",
nullable=False,
required=True,
help="name is required. Name must be between 1 to 100 characters.",
type=_validate_name,
)
parser.add_argument("description", type=str, required=False, nullable=True, location="json")
parser.add_argument("external_retrieval_model", type=dict, required=False, location="json")
args = parser.parse_args()
# The role of the current user in the ta table must be admin, owner, or editor, or dataset_operator
if not current_user.is_dataset_editor:
raise Forbidden()
try:
dataset = ExternalDatasetService.create_external_dataset(
tenant_id=current_user.current_tenant_id,
user_id=current_user.id,
args=args,
)
except services.errors.dataset.DatasetNameDuplicateError:
raise DatasetNameDuplicateError()
return marshal(dataset, dataset_detail_fields), 201
class ExternalKnowledgeHitTestingApi(Resource):
@setup_required
@login_required
@account_initialization_required
def post(self, dataset_id):
dataset_id_str = str(dataset_id)
dataset = DatasetService.get_dataset(dataset_id_str)
if dataset is None:
raise NotFound("Dataset not found.")
try:
DatasetService.check_dataset_permission(dataset, current_user)
except services.errors.account.NoPermissionError as e:
raise Forbidden(str(e))
parser = reqparse.RequestParser()
parser.add_argument("query", type=str, location="json")
parser.add_argument("external_retrieval_model", type=dict, required=False, location="json")
args = parser.parse_args()
HitTestingService.hit_testing_args_check(args)
try:
response = HitTestingService.external_retrieve(
dataset=dataset,
query=args["query"],
account=current_user,
external_retrieval_model=args["external_retrieval_model"],
)
return response
except Exception as e:
raise InternalServerError(str(e))
api.add_resource(ExternalKnowledgeHitTestingApi, "/datasets/<uuid:dataset_id>/external-hit-testing")
api.add_resource(ExternalDatasetCreateApi, "/datasets/external")
api.add_resource(ExternalApiTemplateListApi, "/datasets/external-knowledge-api")
api.add_resource(ExternalApiTemplateApi, "/datasets/external-knowledge-api/<uuid:external_knowledge_api_id>")
api.add_resource(ExternalApiUseCheckApi, "/datasets/external-knowledge-api/<uuid:external_knowledge_api_id>/use-check")

View File

@ -47,6 +47,7 @@ class HitTestingApi(Resource):
parser = reqparse.RequestParser()
parser.add_argument("query", type=str, location="json")
parser.add_argument("retrieval_model", type=dict, required=False, location="json")
parser.add_argument("external_retrieval_model", type=dict, required=False, location="json")
args = parser.parse_args()
HitTestingService.hit_testing_args_check(args)
@ -57,6 +58,7 @@ class HitTestingApi(Resource):
query=args["query"],
account=current_user,
retrieval_model=args["retrieval_model"],
external_retrieval_model=args["external_retrieval_model"],
limit=10,
)

View File

@ -14,7 +14,9 @@ class WebsiteCrawlApi(Resource):
@account_initialization_required
def post(self):
parser = reqparse.RequestParser()
parser.add_argument("provider", type=str, choices=["firecrawl"], required=True, nullable=True, location="json")
parser.add_argument(
"provider", type=str, choices=["firecrawl", "jinareader"], required=True, nullable=True, location="json"
)
parser.add_argument("url", type=str, required=True, nullable=True, location="json")
parser.add_argument("options", type=dict, required=True, nullable=True, location="json")
args = parser.parse_args()
@ -33,7 +35,7 @@ class WebsiteCrawlStatusApi(Resource):
@account_initialization_required
def get(self, job_id: str):
parser = reqparse.RequestParser()
parser.add_argument("provider", type=str, choices=["firecrawl"], required=True, location="args")
parser.add_argument("provider", type=str, choices=["firecrawl", "jinareader"], required=True, location="args")
args = parser.parse_args()
# get crawl status
try:

View File

@ -38,11 +38,52 @@ class VersionApi(Resource):
return result
content = json.loads(response.content)
result["version"] = content["version"]
result["release_date"] = content["releaseDate"]
result["release_notes"] = content["releaseNotes"]
result["can_auto_update"] = content["canAutoUpdate"]
if _has_new_version(latest_version=content["version"], current_version=f"{args.get('current_version')}"):
result["version"] = content["version"]
result["release_date"] = content["releaseDate"]
result["release_notes"] = content["releaseNotes"]
result["can_auto_update"] = content["canAutoUpdate"]
return result
def _has_new_version(*, latest_version: str, current_version: str) -> bool:
def parse_version(version: str) -> tuple:
# Split version into parts and pre-release suffix if any
parts = version.split("-")
version_parts = parts[0].split(".")
pre_release = parts[1] if len(parts) > 1 else None
# Validate version format
if len(version_parts) != 3:
raise ValueError(f"Invalid version format: {version}")
try:
# Convert version parts to integers
major, minor, patch = map(int, version_parts)
return (major, minor, patch, pre_release)
except ValueError:
raise ValueError(f"Invalid version format: {version}")
latest = parse_version(latest_version)
current = parse_version(current_version)
# Compare major, minor, and patch versions
for latest_part, current_part in zip(latest[:3], current[:3]):
if latest_part > current_part:
return True
elif latest_part < current_part:
return False
# If versions are equal, check pre-release suffixes
if latest[3] is None and current[3] is not None:
return True
elif latest[3] is not None and current[3] is None:
return False
elif latest[3] is not None and current[3] is not None:
# Simple string comparison for pre-release versions
return latest[3] > current[3]
return False
api.add_resource(VersionApi, "/version")

View File

@ -28,11 +28,11 @@ class DatasetListApi(DatasetApiResource):
page = request.args.get("page", default=1, type=int)
limit = request.args.get("limit", default=20, type=int)
provider = request.args.get("provider", default="vendor")
# provider = request.args.get("provider", default="vendor")
search = request.args.get("keyword", default=None, type=str)
tag_ids = request.args.getlist("tag_ids")
datasets, total = DatasetService.get_datasets(page, limit, provider, tenant_id, current_user, search, tag_ids)
datasets, total = DatasetService.get_datasets(page, limit, tenant_id, current_user, search, tag_ids)
# check embedding setting
provider_manager = ProviderManager()
configurations = provider_manager.get_configurations(tenant_id=current_user.current_tenant_id)
@ -82,6 +82,26 @@ class DatasetListApi(DatasetApiResource):
required=False,
nullable=False,
)
parser.add_argument(
"external_knowledge_api_id",
type=str,
nullable=True,
required=False,
default="_validate_name",
)
parser.add_argument(
"provider",
type=str,
nullable=True,
required=False,
default="vendor",
)
parser.add_argument(
"external_knowledge_id",
type=str,
nullable=True,
required=False,
)
args = parser.parse_args()
try:
@ -91,6 +111,9 @@ class DatasetListApi(DatasetApiResource):
indexing_technique=args["indexing_technique"],
account=current_user,
permission=args["permission"],
provider=args["provider"],
external_knowledge_api_id=args["external_knowledge_api_id"],
external_knowledge_id=args["external_knowledge_id"],
)
except services.errors.dataset.DatasetNameDuplicateError:
raise DatasetNameDuplicateError()

View File

@ -231,7 +231,8 @@ class AdvancedChatAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCyc
except Exception as e:
logger.error(e)
break
yield MessageAudioEndStreamResponse(audio="", task_id=task_id)
if tts_publisher:
yield MessageAudioEndStreamResponse(audio="", task_id=task_id)
def _process_stream_response(
self,

View File

@ -212,7 +212,8 @@ class WorkflowAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCycleMa
except Exception as e:
logger.error(e)
break
yield MessageAudioEndStreamResponse(audio="", task_id=task_id)
if tts_publisher:
yield MessageAudioEndStreamResponse(audio="", task_id=task_id)
def _process_stream_response(
self,

View File

@ -1,2 +1,2 @@
class VariableError(Exception):
class VariableError(ValueError):
pass

View File

@ -248,7 +248,8 @@ class EasyUIBasedGenerateTaskPipeline(BasedGenerateTaskPipeline, MessageCycleMan
else:
start_listener_time = time.time()
yield MessageAudioStreamResponse(audio=audio.audio, task_id=task_id)
yield MessageAudioEndStreamResponse(audio="", task_id=task_id)
if publisher:
yield MessageAudioEndStreamResponse(audio="", task_id=task_id)
def _process_stream_response(
self, publisher: AppGeneratorTTSPublisher, trace_manager: Optional[TraceQueueManager] = None

View File

@ -59,7 +59,7 @@ class DatasetIndexToolCallbackHandler:
for item in resource:
dataset_retriever_resource = DatasetRetrieverResource(
message_id=self._message_id,
position=item.get("position"),
position=item.get("position") or 0,
dataset_id=item.get("dataset_id"),
dataset_name=item.get("dataset_name"),
document_id=item.get("document_id"),

View File

@ -119,7 +119,7 @@ class ProviderConfiguration(BaseModel):
credentials = model_configuration.credentials
break
if self.custom_configuration.provider:
if not credentials and self.custom_configuration.provider:
credentials = self.custom_configuration.provider.credentials
return credentials

View File

@ -1,3 +1,4 @@
from abc import ABC, abstractmethod
from typing import Optional
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk
@ -13,7 +14,7 @@ _TEXT_COLOR_MAPPING = {
}
class Callback:
class Callback(ABC):
"""
Base class for callbacks.
Only for LLM.
@ -21,6 +22,7 @@ class Callback:
raise_error: bool = False
@abstractmethod
def on_before_invoke(
self,
llm_instance: AIModel,
@ -48,6 +50,7 @@ class Callback:
"""
raise NotImplementedError()
@abstractmethod
def on_new_chunk(
self,
llm_instance: AIModel,
@ -77,6 +80,7 @@ class Callback:
"""
raise NotImplementedError()
@abstractmethod
def on_after_invoke(
self,
llm_instance: AIModel,
@ -106,6 +110,7 @@ class Callback:
"""
raise NotImplementedError()
@abstractmethod
def on_invoke_error(
self,
llm_instance: AIModel,

View File

@ -0,0 +1,310 @@
## Custom Integration of Pre-defined Models
### Introduction
After completing the vendors integration, the next step is to connect the vendor's models. To illustrate the entire connection process, we will use Xinference as an example to demonstrate a complete vendor integration.
It is important to note that for custom models, each model connection requires a complete vendor credential.
Unlike pre-defined models, a custom vendor integration always includes the following two parameters, which do not need to be defined in the vendor YAML file.
![](images/index/image-3.png)
As mentioned earlier, vendors do not need to implement validate_provider_credential. The runtime will automatically call the corresponding model layer's validate_credentials to validate the credentials based on the model type and name selected by the user.
### Writing the Vendor YAML
First, we need to identify the types of models supported by the vendor we are integrating.
Currently supported model types are as follows:
- `llm` Text Generation Models
- `text_embedding` Text Embedding Models
- `rerank` Rerank Models
- `speech2text` Speech-to-Text
- `tts` Text-to-Speech
- `moderation` Moderation
Xinference supports LLM, Text Embedding, and Rerank. So we will start by writing xinference.yaml.
```yaml
provider: xinference #Define the vendor identifier
label: # Vendor display name, supports both en_US (English) and zh_Hans (Simplified Chinese). If zh_Hans is not set, it will use en_US by default.
en_US: Xorbits Inference
icon_small: # Small icon, refer to other vendors' icons stored in the _assets directory within the vendor implementation directory; follows the same language policy as the label
en_US: icon_s_en.svg
icon_large: # Large icon
en_US: icon_l_en.svg
help: # Help information
title:
en_US: How to deploy Xinference
zh_Hans: 如何部署 Xinference
url:
en_US: https://github.com/xorbitsai/inference
supported_model_types: # Supported model types. Xinference supports LLM, Text Embedding, and Rerank
- llm
- text-embedding
- rerank
configurate_methods: # Since Xinference is a locally deployed vendor with no predefined models, users need to deploy whatever models they need according to Xinference documentation. Thus, it only supports custom models.
- customizable-model
provider_credential_schema:
credential_form_schemas:
```
Then, we need to determine what credentials are required to define a model in Xinference.
- Since it supports three different types of models, we need to specify the model_type to denote the model type. Here is how we can define it:
```yaml
provider_credential_schema:
credential_form_schemas:
- variable: model_type
type: select
label:
en_US: Model type
zh_Hans: 模型类型
required: true
options:
- value: text-generation
label:
en_US: Language Model
zh_Hans: 语言模型
- value: embeddings
label:
en_US: Text Embedding
- value: reranking
label:
en_US: Rerank
```
- Next, each model has its own model_name, so we need to define that here:
```yaml
- variable: model_name
type: text-input
label:
en_US: Model name
zh_Hans: 模型名称
required: true
placeholder:
zh_Hans: 填写模型名称
en_US: Input model name
```
- Specify the Xinference local deployment address:
```yaml
- variable: server_url
label:
zh_Hans: 服务器URL
en_US: Server url
type: text-input
required: true
placeholder:
zh_Hans: 在此输入Xinference的服务器地址如 https://example.com/xxx
en_US: Enter the url of your Xinference, for example https://example.com/xxx
```
- Each model has a unique model_uid, so we also need to define that here:
```yaml
- variable: model_uid
label:
zh_Hans: 模型UID
en_US: Model uid
type: text-input
required: true
placeholder:
zh_Hans: 在此输入您的Model UID
en_US: Enter the model uid
```
Now, we have completed the basic definition of the vendor.
### Writing the Model Code
Next, let's take the `llm` type as an example and write `xinference.llm.llm.py`.
In `llm.py`, create a Xinference LLM class, we name it `XinferenceAILargeLanguageModel` (this can be arbitrary), inheriting from the `__base.large_language_model.LargeLanguageModel` base class, and implement the following methods:
- LLM Invocation
Implement the core method for LLM invocation, supporting both stream and synchronous responses.
```python
def _invoke(self, model: str, credentials: dict,
prompt_messages: list[PromptMessage], model_parameters: dict,
tools: Optional[list[PromptMessageTool]] = None, stop: Optional[list[str]] = None,
stream: bool = True, user: Optional[str] = None) \
-> Union[LLMResult, Generator]:
"""
Invoke large language model
:param model: model name
:param credentials: model credentials
:param prompt_messages: prompt messages
:param model_parameters: model parameters
:param tools: tools for tool usage
:param stop: stop words
:param stream: is the response a stream
:param user: unique user id
:return: full response or stream response chunk generator result
"""
```
When implementing, ensure to use two functions to return data separately for synchronous and stream responses. This is important because Python treats functions containing the `yield` keyword as generator functions, mandating them to return `Generator` types. Heres an example (note that the example uses simplified parameters; in real implementation, use the parameter list as defined above):
```python
def _invoke(self, stream: bool, **kwargs) \
-> Union[LLMResult, Generator]:
if stream:
return self._handle_stream_response(**kwargs)
return self._handle_sync_response(**kwargs)
def _handle_stream_response(self, **kwargs) -> Generator:
for chunk in response:
yield chunk
def _handle_sync_response(self, **kwargs) -> LLMResult:
return LLMResult(**response)
```
- Pre-compute Input Tokens
If the model does not provide an interface for pre-computing tokens, you can return 0 directly.
```python
def get_num_tokens(self, model: str, credentials: dict, prompt_messages: list[PromptMessage],tools: Optional[list[PromptMessageTool]] = None) -> int:
"""
Get number of tokens for given prompt messages
:param model: model name
:param credentials: model credentials
:param prompt_messages: prompt messages
:param tools: tools for tool usage
:return: token count
"""
```
Sometimes, you might not want to return 0 directly. In such cases, you can use `self._get_num_tokens_by_gpt2(text: str)` to get pre-computed tokens. This method is provided by the `AIModel` base class, and it uses GPT2's Tokenizer for calculation. However, it should be noted that this is only a substitute and may not be fully accurate.
- Model Credentials Validation
Similar to vendor credentials validation, this method validates individual model credentials.
```python
def validate_credentials(self, model: str, credentials: dict) -> None:
"""
Validate model credentials
:param model: model name
:param credentials: model credentials
:return: None
"""
```
- Model Parameter Schema
Unlike custom types, since the YAML file does not define which parameters a model supports, we need to dynamically generate the model parameter schema.
For instance, Xinference supports `max_tokens`, `temperature`, and `top_p` parameters.
However, some vendors may support different parameters for different models. For example, the `OpenLLM` vendor supports `top_k`, but not all models provided by this vendor support `top_k`. Let's say model A supports `top_k` but model B does not. In such cases, we need to dynamically generate the model parameter schema, as illustrated below:
```python
def get_customizable_model_schema(self, model: str, credentials: dict) -> AIModelEntity | None:
"""
used to define customizable model schema
"""
rules = [
ParameterRule(
name='temperature', type=ParameterType.FLOAT,
use_template='temperature',
label=I18nObject(
zh_Hans='温度', en_US='Temperature'
)
),
ParameterRule(
name='top_p', type=ParameterType.FLOAT,
use_template='top_p',
label=I18nObject(
zh_Hans='Top P', en_US='Top P'
)
),
ParameterRule(
name='max_tokens', type=ParameterType.INT,
use_template='max_tokens',
min=1,
default=512,
label=I18nObject(
zh_Hans='最大生成长度', en_US='Max Tokens'
)
)
]
# if model is A, add top_k to rules
if model == 'A':
rules.append(
ParameterRule(
name='top_k', type=ParameterType.INT,
use_template='top_k',
min=1,
default=50,
label=I18nObject(
zh_Hans='Top K', en_US='Top K'
)
)
)
"""
some NOT IMPORTANT code here
"""
entity = AIModelEntity(
model=model,
label=I18nObject(
en_US=model
),
fetch_from=FetchFrom.CUSTOMIZABLE_MODEL,
model_type=model_type,
model_properties={
ModelPropertyKey.MODE: ModelType.LLM,
},
parameter_rules=rules
)
return entity
```
- Exception Error Mapping
When a model invocation error occurs, it should be mapped to the runtime's specified `InvokeError` type, enabling Dify to handle different errors appropriately.
Runtime Errors:
- `InvokeConnectionError` Connection error during invocation
- `InvokeServerUnavailableError` Service provider unavailable
- `InvokeRateLimitError` Rate limit reached
- `InvokeAuthorizationError` Authorization failure
- `InvokeBadRequestError` Invalid request parameters
```python
@property
def _invoke_error_mapping(self) -> dict[type[InvokeError], list[type[Exception]]]:
"""
Map model invoke error to unified error
The key is the error type thrown to the caller
The value is the error type thrown by the model,
which needs to be converted into a unified error type for the caller.
:return: Invoke error mapping
"""
```
For interface method details, see: [Interfaces](./interfaces.md). For specific implementations, refer to: [llm.py](https://github.com/langgenius/dify-runtime/blob/main/lib/model_providers/anthropic/llm/llm.py).

Binary file not shown.

After

Width:  |  Height:  |  Size: 230 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 205 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 44 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 262 KiB

View File

@ -0,0 +1,173 @@
## Predefined Model Integration
After completing the vendor integration, the next step is to integrate the models from the vendor.
First, we need to determine the type of model to be integrated and create the corresponding model type `module` under the respective vendor's directory.
Currently supported model types are:
- `llm` Text Generation Model
- `text_embedding` Text Embedding Model
- `rerank` Rerank Model
- `speech2text` Speech-to-Text
- `tts` Text-to-Speech
- `moderation` Moderation
Continuing with `Anthropic` as an example, `Anthropic` only supports LLM, so create a `module` named `llm` under `model_providers.anthropic`.
For predefined models, we first need to create a YAML file named after the model under the `llm` `module`, such as `claude-2.1.yaml`.
### Prepare Model YAML
```yaml
model: claude-2.1 # Model identifier
# Display name of the model, which can be set to en_US English or zh_Hans Chinese. If zh_Hans is not set, it will default to en_US.
# This can also be omitted, in which case the model identifier will be used as the label
label:
en_US: claude-2.1
model_type: llm # Model type, claude-2.1 is an LLM
features: # Supported features, agent-thought supports Agent reasoning, vision supports image understanding
- agent-thought
model_properties: # Model properties
mode: chat # LLM mode, complete for text completion models, chat for conversation models
context_size: 200000 # Maximum context size
parameter_rules: # Parameter rules for the model call; only LLM requires this
- name: temperature # Parameter variable name
# Five default configuration templates are provided: temperature/top_p/max_tokens/presence_penalty/frequency_penalty
# The template variable name can be set directly in use_template, which will use the default configuration in entities.defaults.PARAMETER_RULE_TEMPLATE
# Additional configuration parameters will override the default configuration if set
use_template: temperature
- name: top_p
use_template: top_p
- name: top_k
label: # Display name of the parameter
zh_Hans: 取样数量
en_US: Top k
type: int # Parameter type, supports float/int/string/boolean
help: # Help information, describing the parameter's function
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
en_US: Only sample from the top K options for each subsequent token.
required: false # Whether the parameter is mandatory; can be omitted
- name: max_tokens_to_sample
use_template: max_tokens
default: 4096 # Default value of the parameter
min: 1 # Minimum value of the parameter, applicable to float/int only
max: 4096 # Maximum value of the parameter, applicable to float/int only
pricing: # Pricing information
input: '8.00' # Input unit price, i.e., prompt price
output: '24.00' # Output unit price, i.e., response content price
unit: '0.000001' # Price unit, meaning the above prices are per 100K
currency: USD # Price currency
```
It is recommended to prepare all model configurations before starting the implementation of the model code.
You can also refer to the YAML configuration information under the corresponding model type directories of other vendors in the `model_providers` directory. For the complete YAML rules, refer to: [Schema](schema.md#aimodelentity).
### Implement the Model Call Code
Next, create a Python file named `llm.py` under the `llm` `module` to write the implementation code.
Create an Anthropic LLM class named `AnthropicLargeLanguageModel` (or any other name), inheriting from the `__base.large_language_model.LargeLanguageModel` base class, and implement the following methods:
- LLM Call
Implement the core method for calling the LLM, supporting both streaming and synchronous responses.
```python
def _invoke(self, model: str, credentials: dict,
prompt_messages: list[PromptMessage], model_parameters: dict,
tools: Optional[list[PromptMessageTool]] = None, stop: Optional[list[str]] = None,
stream: bool = True, user: Optional[str] = None) \
-> Union[LLMResult, Generator]:
"""
Invoke large language model
:param model: model name
:param credentials: model credentials
:param prompt_messages: prompt messages
:param model_parameters: model parameters
:param tools: tools for tool calling
:param stop: stop words
:param stream: is stream response
:param user: unique user id
:return: full response or stream response chunk generator result
"""
```
Ensure to use two functions for returning data, one for synchronous returns and the other for streaming returns, because Python identifies functions containing the `yield` keyword as generator functions, fixing the return type to `Generator`. Thus, synchronous and streaming returns need to be implemented separately, as shown below (note that the example uses simplified parameters, for actual implementation follow the above parameter list):
```python
def _invoke(self, stream: bool, **kwargs) \
-> Union[LLMResult, Generator]:
if stream:
return self._handle_stream_response(**kwargs)
return self._handle_sync_response(**kwargs)
def _handle_stream_response(self, **kwargs) -> Generator:
for chunk in response:
yield chunk
def _handle_sync_response(self, **kwargs) -> LLMResult:
return LLMResult(**response)
```
- Pre-compute Input Tokens
If the model does not provide an interface to precompute tokens, return 0 directly.
```python
def get_num_tokens(self, model: str, credentials: dict, prompt_messages: list[PromptMessage],
tools: Optional[list[PromptMessageTool]] = None) -> int:
"""
Get number of tokens for given prompt messages
:param model: model name
:param credentials: model credentials
:param prompt_messages: prompt messages
:param tools: tools for tool calling
:return:
"""
```
- Validate Model Credentials
Similar to vendor credential validation, but specific to a single model.
```python
def validate_credentials(self, model: str, credentials: dict) -> None:
"""
Validate model credentials
:param model: model name
:param credentials: model credentials
:return:
"""
```
- Map Invoke Errors
When a model call fails, map it to a specific `InvokeError` type as required by Runtime, allowing Dify to handle different errors accordingly.
Runtime Errors:
- `InvokeConnectionError` Connection error
- `InvokeServerUnavailableError` Service provider unavailable
- `InvokeRateLimitError` Rate limit reached
- `InvokeAuthorizationError` Authorization failed
- `InvokeBadRequestError` Parameter error
```python
@property
def _invoke_error_mapping(self) -> dict[type[InvokeError], list[type[Exception]]]:
"""
Map model invoke error to unified error
The key is the error type thrown to the caller
The value is the error type thrown by the model,
which needs to be converted into a unified error type for the caller.
:return: Invoke error mapping
"""
```
For interface method explanations, see: [Interfaces](./interfaces.md). For detailed implementation, refer to: [llm.py](https://github.com/langgenius/dify-runtime/blob/main/lib/model_providers/anthropic/llm/llm.py).

View File

@ -58,7 +58,7 @@ provider_credential_schema: # Provider credential rules, as Anthropic only supp
en_US: Enter your API URL
```
You can also refer to the YAML configuration information under other provider directories in `model_providers`. The complete YAML rules are available at: [Schema](schema.md#Provider).
You can also refer to the YAML configuration information under other provider directories in `model_providers`. The complete YAML rules are available at: [Schema](schema.md#provider).
### Implementing Provider Code

View File

@ -117,7 +117,7 @@ model_credential_schema:
en_US: Enter your API Base
```
也可以参考 `model_providers` 目录下其他供应商目录下的 YAML 配置信息,完整的 YAML 规则见:[Schema](schema.md#Provider)。
也可以参考 `model_providers` 目录下其他供应商目录下的 YAML 配置信息,完整的 YAML 规则见:[Schema](schema.md#provider)。
#### 实现供应商代码

View File

@ -40,3 +40,4 @@
- fireworks
- mixedbread
- nomic
- voyage

View File

@ -6,6 +6,8 @@
- anthropic.claude-v2:1
- anthropic.claude-3-sonnet-v1:0
- anthropic.claude-3-haiku-v1:0
- ai21.jamba-1-5-large-v1:0
- ai21.jamba-1-5-mini-v1:0
- cohere.command-light-text-v14
- cohere.command-text-v14
- cohere.command-r-plus-v1.0
@ -15,6 +17,10 @@
- meta.llama3-1-405b-instruct-v1:0
- meta.llama3-8b-instruct-v1:0
- meta.llama3-70b-instruct-v1:0
- us.meta.llama3-2-1b-instruct-v1:0
- us.meta.llama3-2-3b-instruct-v1:0
- us.meta.llama3-2-11b-instruct-v1:0
- us.meta.llama3-2-90b-instruct-v1:0
- meta.llama2-13b-chat-v1
- meta.llama2-70b-chat-v1
- mistral.mistral-large-2407-v1:0

View File

@ -0,0 +1,26 @@
model: ai21.jamba-1-5-large-v1:0
label:
en_US: Jamba 1.5 Large
model_type: llm
model_properties:
mode: completion
context_size: 256000
parameter_rules:
- name: temperature
use_template: temperature
default: 1
min: 0.0
max: 2.0
- name: top_p
use_template: top_p
- name: max_gen_len
use_template: max_tokens
required: true
default: 4096
min: 1
max: 4096
pricing:
input: '0.002'
output: '0.008'
unit: '0.001'
currency: USD

View File

@ -0,0 +1,26 @@
model: ai21.jamba-1-5-mini-v1:0
label:
en_US: Jamba 1.5 Mini
model_type: llm
model_properties:
mode: completion
context_size: 256000
parameter_rules:
- name: temperature
use_template: temperature
default: 1
min: 0.0
max: 2.0
- name: top_p
use_template: top_p
- name: max_gen_len
use_template: max_tokens
required: true
default: 4096
min: 1
max: 4096
pricing:
input: '0.0002'
output: '0.0004'
unit: '0.001'
currency: USD

View File

@ -63,6 +63,7 @@ class BedrockLargeLanguageModel(LargeLanguageModel):
{"prefix": "us.anthropic.claude-3", "support_system_prompts": True, "support_tool_use": True},
{"prefix": "eu.anthropic.claude-3", "support_system_prompts": True, "support_tool_use": True},
{"prefix": "anthropic.claude-3", "support_system_prompts": True, "support_tool_use": True},
{"prefix": "us.meta.llama3-2", "support_system_prompts": True, "support_tool_use": True},
{"prefix": "meta.llama", "support_system_prompts": True, "support_tool_use": False},
{"prefix": "mistral.mistral-7b-instruct", "support_system_prompts": False, "support_tool_use": False},
{"prefix": "mistral.mixtral-8x7b-instruct", "support_system_prompts": False, "support_tool_use": False},
@ -70,6 +71,7 @@ class BedrockLargeLanguageModel(LargeLanguageModel):
{"prefix": "mistral.mistral-small", "support_system_prompts": True, "support_tool_use": True},
{"prefix": "cohere.command-r", "support_system_prompts": True, "support_tool_use": True},
{"prefix": "amazon.titan", "support_system_prompts": False, "support_tool_use": False},
{"prefix": "ai21.jamba-1-5", "support_system_prompts": True, "support_tool_use": False},
]
@staticmethod

View File

@ -0,0 +1,29 @@
model: us.meta.llama3-2-11b-instruct-v1:0
label:
en_US: US Meta Llama 3.2 11B Instruct
model_type: llm
features:
- vision
- tool-call
model_properties:
mode: completion
context_size: 128000
parameter_rules:
- name: temperature
use_template: temperature
default: 0.5
min: 0.0
max: 1
- name: top_p
use_template: top_p
- name: max_gen_len
use_template: max_tokens
required: true
default: 512
min: 1
max: 2048
pricing:
input: '0.00035'
output: '0.00035'
unit: '0.001'
currency: USD

View File

@ -0,0 +1,26 @@
model: us.meta.llama3-2-1b-instruct-v1:0
label:
en_US: US Meta Llama 3.2 1B Instruct
model_type: llm
model_properties:
mode: completion
context_size: 128000
parameter_rules:
- name: temperature
use_template: temperature
default: 0.5
min: 0.0
max: 1
- name: top_p
use_template: top_p
- name: max_gen_len
use_template: max_tokens
required: true
default: 512
min: 1
max: 2048
pricing:
input: '0.0001'
output: '0.0001'
unit: '0.001'
currency: USD

View File

@ -0,0 +1,26 @@
model: us.meta.llama3-2-3b-instruct-v1:0
label:
en_US: US Meta Llama 3.2 3B Instruct
model_type: llm
model_properties:
mode: completion
context_size: 128000
parameter_rules:
- name: temperature
use_template: temperature
default: 0.5
min: 0.0
max: 1
- name: top_p
use_template: top_p
- name: max_gen_len
use_template: max_tokens
required: true
default: 512
min: 1
max: 2048
pricing:
input: '0.00015'
output: '0.00015'
unit: '0.001'
currency: USD

View File

@ -0,0 +1,31 @@
model: us.meta.llama3-2-90b-instruct-v1:0
label:
en_US: US Meta Llama 3.2 90B Instruct
model_type: llm
features:
- tool-call
model_properties:
mode: completion
context_size: 128000
parameter_rules:
- name: temperature
use_template: temperature
default: 0.5
min: 0.0
max: 1
- name: top_p
use_template: top_p
default: 0.9
min: 0
max: 1
- name: max_gen_len
use_template: max_tokens
required: true
default: 512
min: 1
max: 2048
pricing:
input: '0.002'
output: '0.002'
unit: '0.001'
currency: USD

View File

@ -1,24 +1,23 @@
- Qwen2.5-72B-Instruct
- Qwen2.5-7B-Instruct
- Qwen2-72B-Instruct
- Qwen2-72B-Instruct-AWQ-int4
- Qwen2-72B-Instruct-GPTQ-Int4
- Qwen2-7B-Instruct
- Qwen2-7B
- Qwen1.5-110B-Chat-GPTQ-Int4
- Qwen1.5-72B-Chat-GPTQ-Int4
- Qwen1.5-7B
- Qwen-14B-Chat-Int4
- Yi-Coder-1.5B-Chat
- Yi-Coder-9B-Chat
- Qwen2-72B-Instruct-AWQ-int4
- Yi-1_5-9B-Chat-16K
- Qwen2-7B-Instruct
- Reflection-Llama-3.1-70B
- Qwen2-72B-Instruct
- Meta-Llama-3.1-8B-Instruct
- Meta-Llama-3.1-405B-Instruct-AWQ-INT4
- Meta-Llama-3-70B-Instruct-GPTQ-Int4
- chatglm3-6b
- Meta-Llama-3-8B-Instruct
- Llama3-Chinese_v2
- deepseek-v2-lite-chat
- Qwen2-72B-Instruct-GPTQ-Int4
- Qwen2-7B
- Qwen-14B-Chat-Int4
- Qwen1.5-72B-Chat-GPTQ-Int4
- Qwen1.5-7B
- Qwen1.5-110B-Chat-GPTQ-Int4
- deepseek-v2-chat
- chatglm3-6b

View File

@ -0,0 +1,4 @@
- gte-Qwen2-7B-instruct
- BAAI/bge-large-en-v1.5
- BAAI/bge-large-zh-v1.5
- BAAI/bge-m3

View File

@ -2,3 +2,4 @@ model: gte-Qwen2-7B-instruct
model_type: text-embedding
model_properties:
context_size: 2048
deprecated: true

View File

@ -1,18 +1,17 @@
- Qwen/Qwen2.5-72B-Instruct
- Qwen/Qwen2.5-Math-72B-Instruct
- Qwen/Qwen2.5-32B-Instruct
- Qwen/Qwen2.5-14B-Instruct
- Qwen/Qwen2.5-7B-Instruct
- Qwen/Qwen2.5-Coder-7B-Instruct
- deepseek-ai/DeepSeek-V2.5
- Qwen/Qwen2.5-Math-72B-Instruct
- Qwen/Qwen2-72B-Instruct
- Qwen/Qwen2-57B-A14B-Instruct
- Qwen/Qwen2-7B-Instruct
- Qwen/Qwen2-1.5B-Instruct
- deepseek-ai/DeepSeek-V2.5
- deepseek-ai/DeepSeek-V2-Chat
- deepseek-ai/DeepSeek-Coder-V2-Instruct
- THUDM/glm-4-9b-chat
- THUDM/chatglm3-6b
- 01-ai/Yi-1.5-34B-Chat-16K
- 01-ai/Yi-1.5-9B-Chat-16K
- 01-ai/Yi-1.5-6B-Chat
@ -26,13 +25,4 @@
- google/gemma-2-27b-it
- google/gemma-2-9b-it
- mistralai/Mistral-7B-Instruct-v0.2
- Pro/Qwen/Qwen2-7B-Instruct
- Pro/Qwen/Qwen2-1.5B-Instruct
- Pro/THUDM/glm-4-9b-chat
- Pro/THUDM/chatglm3-6b
- Pro/01-ai/Yi-1.5-9B-Chat-16K
- Pro/01-ai/Yi-1.5-6B-Chat
- Pro/internlm/internlm2_5-7b-chat
- Pro/meta-llama/Meta-Llama-3.1-8B-Instruct
- Pro/meta-llama/Meta-Llama-3-8B-Instruct
- Pro/google/gemma-2-9b-it
- mistralai/Mixtral-8x7B-Instruct-v0.1

View File

@ -0,0 +1,30 @@
model: internlm/internlm2_5-20b-chat
label:
en_US: internlm/internlm2_5-20b-chat
model_type: llm
features:
- agent-thought
model_properties:
mode: chat
context_size: 32768
parameter_rules:
- name: temperature
use_template: temperature
- name: max_tokens
use_template: max_tokens
type: int
default: 512
min: 1
max: 4096
help:
zh_Hans: 指定生成结果长度的上限。如果生成结果截断,可以调大该参数。
en_US: Specifies the upper limit on the length of generated results. If the generated results are truncated, you can increase this parameter.
- name: top_p
use_template: top_p
- name: frequency_penalty
use_template: frequency_penalty
pricing:
input: '1'
output: '1'
unit: '0.000001'
currency: RMB

View File

@ -0,0 +1,74 @@
model: Qwen/Qwen2.5-Coder-7B-Instruct
label:
en_US: Qwen/Qwen2.5-Coder-7B-Instruct
model_type: llm
features:
- agent-thought
model_properties:
mode: chat
context_size: 131072
parameter_rules:
- name: temperature
use_template: temperature
type: float
default: 0.3
min: 0.0
max: 2.0
help:
zh_Hans: 用于控制随机性和多样性的程度。具体来说temperature值控制了生成文本时对每个候选词的概率分布进行平滑的程度。较高的temperature值会降低概率分布的峰值使得更多的低概率词被选择生成结果更加多样化而较低的temperature值则会增强概率分布的峰值使得高概率词更容易被选择生成结果更加确定。
en_US: Used to control the degree of randomness and diversity. Specifically, the temperature value controls the degree to which the probability distribution of each candidate word is smoothed when generating text. A higher temperature value will reduce the peak value of the probability distribution, allowing more low-probability words to be selected, and the generated results will be more diverse; while a lower temperature value will enhance the peak value of the probability distribution, making it easier for high-probability words to be selected. , the generated results are more certain.
- name: max_tokens
use_template: max_tokens
type: int
default: 8192
min: 1
max: 8192
help:
zh_Hans: 用于指定模型在生成内容时token的最大数量它定义了生成的上限但不保证每次都会生成到这个数量。
en_US: It is used to specify the maximum number of tokens when the model generates content. It defines the upper limit of generation, but does not guarantee that this number will be generated every time.
- name: top_p
use_template: top_p
type: float
default: 0.8
min: 0.1
max: 0.9
help:
zh_Hans: 生成过程中核采样方法概率阈值例如取值为0.8时仅保留概率加起来大于等于0.8的最可能token的最小集合作为候选集。取值范围为0,1.0),取值越大,生成的随机性越高;取值越低,生成的确定性越高。
en_US: The probability threshold of the kernel sampling method during the generation process. For example, when the value is 0.8, only the smallest set of the most likely tokens with a sum of probabilities greater than or equal to 0.8 is retained as the candidate set. The value range is (0,1.0). The larger the value, the higher the randomness generated; the lower the value, the higher the certainty generated.
- name: top_k
type: int
min: 0
max: 99
label:
zh_Hans: 取样数量
en_US: Top k
help:
zh_Hans: 生成时采样候选集的大小。例如取值为50时仅将单次生成中得分最高的50个token组成随机采样的候选集。取值越大生成的随机性越高取值越小生成的确定性越高。
en_US: The size of the sample candidate set when generated. For example, when the value is 50, only the 50 highest-scoring tokens in a single generation form a randomly sampled candidate set. The larger the value, the higher the randomness generated; the smaller the value, the higher the certainty generated.
- name: seed
required: false
type: int
default: 1234
label:
zh_Hans: 随机种子
en_US: Random seed
help:
zh_Hans: 生成时使用的随机数种子用户控制模型生成内容的随机性。支持无符号64位整数默认值为 1234。在使用seed时模型将尽可能生成相同或相似的结果但目前不保证每次生成的结果完全相同。
en_US: The random number seed used when generating, the user controls the randomness of the content generated by the model. Supports unsigned 64-bit integers, default value is 1234. When using seed, the model will try its best to generate the same or similar results, but there is currently no guarantee that the results will be exactly the same every time.
- name: repetition_penalty
required: false
type: float
default: 1.1
label:
zh_Hans: 重复惩罚
en_US: Repetition penalty
help:
zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。
en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment.
- name: response_format
use_template: response_format
pricing:
input: '0'
output: '0'
unit: '0.000001'
currency: RMB

View File

@ -0,0 +1,74 @@
model: Qwen/Qwen2.5-Math-72B-Instruct
label:
en_US: Qwen/Qwen2.5-Math-72B-Instruct
model_type: llm
features:
- agent-thought
model_properties:
mode: chat
context_size: 4096
parameter_rules:
- name: temperature
use_template: temperature
type: float
default: 0.3
min: 0.0
max: 2.0
help:
zh_Hans: 用于控制随机性和多样性的程度。具体来说temperature值控制了生成文本时对每个候选词的概率分布进行平滑的程度。较高的temperature值会降低概率分布的峰值使得更多的低概率词被选择生成结果更加多样化而较低的temperature值则会增强概率分布的峰值使得高概率词更容易被选择生成结果更加确定。
en_US: Used to control the degree of randomness and diversity. Specifically, the temperature value controls the degree to which the probability distribution of each candidate word is smoothed when generating text. A higher temperature value will reduce the peak value of the probability distribution, allowing more low-probability words to be selected, and the generated results will be more diverse; while a lower temperature value will enhance the peak value of the probability distribution, making it easier for high-probability words to be selected. , the generated results are more certain.
- name: max_tokens
use_template: max_tokens
type: int
default: 2000
min: 1
max: 2000
help:
zh_Hans: 用于指定模型在生成内容时token的最大数量它定义了生成的上限但不保证每次都会生成到这个数量。
en_US: It is used to specify the maximum number of tokens when the model generates content. It defines the upper limit of generation, but does not guarantee that this number will be generated every time.
- name: top_p
use_template: top_p
type: float
default: 0.8
min: 0.1
max: 0.9
help:
zh_Hans: 生成过程中核采样方法概率阈值例如取值为0.8时仅保留概率加起来大于等于0.8的最可能token的最小集合作为候选集。取值范围为0,1.0),取值越大,生成的随机性越高;取值越低,生成的确定性越高。
en_US: The probability threshold of the kernel sampling method during the generation process. For example, when the value is 0.8, only the smallest set of the most likely tokens with a sum of probabilities greater than or equal to 0.8 is retained as the candidate set. The value range is (0,1.0). The larger the value, the higher the randomness generated; the lower the value, the higher the certainty generated.
- name: top_k
type: int
min: 0
max: 99
label:
zh_Hans: 取样数量
en_US: Top k
help:
zh_Hans: 生成时采样候选集的大小。例如取值为50时仅将单次生成中得分最高的50个token组成随机采样的候选集。取值越大生成的随机性越高取值越小生成的确定性越高。
en_US: The size of the sample candidate set when generated. For example, when the value is 50, only the 50 highest-scoring tokens in a single generation form a randomly sampled candidate set. The larger the value, the higher the randomness generated; the smaller the value, the higher the certainty generated.
- name: seed
required: false
type: int
default: 1234
label:
zh_Hans: 随机种子
en_US: Random seed
help:
zh_Hans: 生成时使用的随机数种子用户控制模型生成内容的随机性。支持无符号64位整数默认值为 1234。在使用seed时模型将尽可能生成相同或相似的结果但目前不保证每次生成的结果完全相同。
en_US: The random number seed used when generating, the user controls the randomness of the content generated by the model. Supports unsigned 64-bit integers, default value is 1234. When using seed, the model will try its best to generate the same or similar results, but there is currently no guarantee that the results will be exactly the same every time.
- name: repetition_penalty
required: false
type: float
default: 1.1
label:
zh_Hans: 重复惩罚
en_US: Repetition penalty
help:
zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。
en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment.
- name: response_format
use_template: response_format
pricing:
input: '4.13'
output: '4.13'
unit: '0.000001'
currency: RMB

View File

@ -1,7 +1,7 @@
# for more details, please refer to https://help.aliyun.com/zh/model-studio/getting-started/models
model: qwen2.5-7b-instruct
model: qwen2.5-coder-7b-instruct
label:
en_US: qwen2.5-7b-instruct
en_US: qwen2.5-coder-7b-instruct
model_type: llm
features:
- agent-thought

View File

@ -0,0 +1,21 @@
<svg version="1.0" xmlns="http://www.w3.org/2000/svg" width="100.000000pt" height="19.000000pt" viewBox="0 0 300.000000 57.000000" preserveAspectRatio="xMidYMid meet"><g transform="translate(0.000000,57.000000) scale(0.100000,-0.100000)" fill="#000000" stroke="none"><path d="M2505 368 c-38 -84 -86 -188 -106 -230 l-38 -78 27 0 c24 0 30 7 55
75 l28 75 100 0 100 0 25 -55 c13 -31 24 -64 24 -75 0 -17 7 -20 44 -20 l43 0
-37 73 c-20 39 -68 143 -106 229 -38 87 -74 158 -80 158 -5 0 -41 -69 -79
-152z m110 -30 c22 -51 41 -95 42 -98 2 -3 -36 -6 -83 -7 -76 -1 -85 0 -81 15
12 40 72 182 77 182 3 0 24 -41 45 -92z"/><path d="M63 493 c19 -61 197 -438 209 -440 10 -2 147 282 216 449 2 4 -10 8
-27 8 -23 0 -31 -5 -31 -17 0 -16 -142 -365 -146 -360 -8 11 -144 329 -149
350 -6 23 -12 27 -42 27 -29 0 -34 -3 -30 -17z"/><path d="M2855 285 l0 -225 30 0 30 0 0 225 0 225 -30 0 -30 0 0 -225z"/><path d="M588 380 c-55 -30 -82 -74 -86 -145 -3 -50 0 -66 20 -95 39 -58 82
-80 153 -80 68 0 110 21 149 73 32 43 30 150 -3 196 -47 66 -158 90 -233 51z
m133 -16 c59 -30 89 -156 54 -224 -45 -87 -162 -78 -201 16 -18 44 -18 128 1
164 28 55 90 73 146 44z"/><path d="M935 303 l76 -98 -7 -72 -6 -73 33 0 34 0 -3 78 -4 77 71 93 c65 85
68 92 46 92 -15 0 -29 -9 -36 -22 -18 -33 -90 -128 -98 -128 -6 1 -67 85 -88
122 -8 15 -24 23 -53 25 l-41 4 76 -98z"/><path d="M1257 230 c-82 -169 -83 -170 -57 -170 17 0 27 6 27 15 0 8 7 31 17
52 l17 38 79 0 78 1 16 -34 c9 -18 16 -42 16 -52 0 -17 7 -20 41 -20 22 0 39
3 37 8 -2 4 -39 80 -83 170 -43 89 -84 162 -92 162 -7 0 -50 -76 -96 -170z
m90 -38 c-33 -2 -61 -1 -63 1 -2 2 10 34 26 71 l31 68 33 -68 33 -69 -60 -3z"/><path d="M1665 386 c-37 -16 -84 -63 -97 -96 -13 -35 -12 -104 2 -132 49 -94
182 -134 280 -83 24 12 29 22 32 64 3 49 3 49 -30 53 l-33 4 3 -45 c4 -61 -5
-71 -60 -71 -93 0 -142 57 -142 164 0 44 5 60 25 85 47 55 136 65 184 20 30
-28 35 -20 11 19 -19 31 -22 32 -82 32 -35 -1 -76 -7 -93 -14z"/><path d="M1955 230 l0 -170 91 0 c76 0 93 3 98 16 4 9 5 18 4 20 -2 1 -31 -1
-66 -5 -34 -4 -64 -5 -67 -3 -3 3 -5 36 -5 73 l0 68 55 -6 c49 -5 55 -4 55 13
0 17 -6 19 -55 16 l-55 -4 0 61 0 61 64 0 c48 0 65 4 70 15 4 13 -10 15 -92
15 l-97 0 0 -170z"/></g></svg>

After

Width:  |  Height:  |  Size: 2.2 KiB

View File

@ -0,0 +1,8 @@
<?xml version="1.0" encoding="UTF-8"?>
<svg width="64px" height="64px" viewBox="0 0 64 64" version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
<title>voyage</title>
<g id="voyage" stroke="none" stroke-width="1" fill="none" fill-rule="evenodd">
<rect id="矩形" fill="#333333" x="0" y="0" width="64" height="64" rx="12"></rect>
<path d="M12.1128004,51.4376727 C13.8950799,45.8316747 30.5922254,11.1847688 31.7178757,11.0009656 C32.6559176,10.8171624 45.5070913,36.9172188 51.9795803,52.2647871 C52.1671887,52.6323936 51.0415384,53 49.4468672,53 C47.2893709,53 46.5389374,52.540492 46.5389374,51.4376727 C46.5389374,49.967247 33.2187427,17.8935861 32.8435259,18.3530942 C32.0930924,19.3640118 19.3357228,48.5887229 18.8667019,50.5186566 C18.3038768,52.6323936 17.7410516,53 14.926926,53 C12.2066045,53 11.7375836,52.7242952 12.1128004,51.4376727 Z" id="路径" fill="#FFFFFF" transform="translate(32, 32) scale(1, -1) translate(-32, -32)"></path>
</g>
</svg>

After

Width:  |  Height:  |  Size: 1.0 KiB

View File

@ -0,0 +1,4 @@
model: rerank-1
model_type: rerank
model_properties:
context_size: 8000

View File

@ -0,0 +1,4 @@
model: rerank-lite-1
model_type: rerank
model_properties:
context_size: 4000

View File

@ -0,0 +1,123 @@
from typing import Optional
import httpx
from core.model_runtime.entities.common_entities import I18nObject
from core.model_runtime.entities.model_entities import AIModelEntity, FetchFrom, ModelPropertyKey, ModelType
from core.model_runtime.entities.rerank_entities import RerankDocument, RerankResult
from core.model_runtime.errors.invoke import (
InvokeAuthorizationError,
InvokeBadRequestError,
InvokeConnectionError,
InvokeError,
InvokeRateLimitError,
InvokeServerUnavailableError,
)
from core.model_runtime.errors.validate import CredentialsValidateFailedError
from core.model_runtime.model_providers.__base.rerank_model import RerankModel
class VoyageRerankModel(RerankModel):
"""
Model class for Voyage rerank model.
"""
def _invoke(
self,
model: str,
credentials: dict,
query: str,
docs: list[str],
score_threshold: Optional[float] = None,
top_n: Optional[int] = None,
user: Optional[str] = None,
) -> RerankResult:
"""
Invoke rerank model
:param model: model name
:param credentials: model credentials
:param query: search query
:param docs: docs for reranking
:param score_threshold: score threshold
:param top_n: top n documents to return
:param user: unique user id
:return: rerank result
"""
if len(docs) == 0:
return RerankResult(model=model, docs=[])
base_url = credentials.get("base_url", "https://api.voyageai.com/v1")
base_url = base_url.removesuffix("/")
try:
response = httpx.post(
base_url + "/rerank",
json={"model": model, "query": query, "documents": docs, "top_k": top_n, "return_documents": True},
headers={"Authorization": f"Bearer {credentials.get('api_key')}", "Content-Type": "application/json"},
)
response.raise_for_status()
results = response.json()
rerank_documents = []
for result in results["data"]:
rerank_document = RerankDocument(
index=result["index"],
text=result["document"],
score=result["relevance_score"],
)
if score_threshold is None or result["relevance_score"] >= score_threshold:
rerank_documents.append(rerank_document)
return RerankResult(model=model, docs=rerank_documents)
except httpx.HTTPStatusError as e:
raise InvokeServerUnavailableError(str(e))
def validate_credentials(self, model: str, credentials: dict) -> None:
"""
Validate model credentials
:param model: model name
:param credentials: model credentials
:return:
"""
try:
self._invoke(
model=model,
credentials=credentials,
query="What is the capital of the United States?",
docs=[
"Carson City is the capital city of the American state of Nevada. At the 2010 United States "
"Census, Carson City had a population of 55,274.",
"The Commonwealth of the Northern Mariana Islands is a group of islands in the Pacific Ocean that "
"are a political division controlled by the United States. Its capital is Saipan.",
],
score_threshold=0.8,
)
except Exception as ex:
raise CredentialsValidateFailedError(str(ex))
@property
def _invoke_error_mapping(self) -> dict[type[InvokeError], list[type[Exception]]]:
"""
Map model invoke error to unified error
"""
return {
InvokeConnectionError: [httpx.ConnectError],
InvokeServerUnavailableError: [httpx.RemoteProtocolError],
InvokeRateLimitError: [],
InvokeAuthorizationError: [httpx.HTTPStatusError],
InvokeBadRequestError: [httpx.RequestError],
}
def get_customizable_model_schema(self, model: str, credentials: dict) -> AIModelEntity:
"""
generate custom model entities from credentials
"""
entity = AIModelEntity(
model=model,
label=I18nObject(en_US=model),
model_type=ModelType.RERANK,
fetch_from=FetchFrom.CUSTOMIZABLE_MODEL,
model_properties={ModelPropertyKey.CONTEXT_SIZE: int(credentials.get("context_size", "8000"))},
)
return entity

View File

@ -0,0 +1,172 @@
import time
from json import JSONDecodeError, dumps
from typing import Optional
import requests
from core.embedding.embedding_constant import EmbeddingInputType
from core.model_runtime.entities.common_entities import I18nObject
from core.model_runtime.entities.model_entities import AIModelEntity, FetchFrom, ModelPropertyKey, ModelType, PriceType
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
from core.model_runtime.errors.invoke import (
InvokeAuthorizationError,
InvokeBadRequestError,
InvokeConnectionError,
InvokeError,
InvokeRateLimitError,
InvokeServerUnavailableError,
)
from core.model_runtime.errors.validate import CredentialsValidateFailedError
from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
class VoyageTextEmbeddingModel(TextEmbeddingModel):
"""
Model class for Voyage text embedding model.
"""
api_base: str = "https://api.voyageai.com/v1"
def _invoke(
self,
model: str,
credentials: dict,
texts: list[str],
user: Optional[str] = None,
input_type: EmbeddingInputType = EmbeddingInputType.DOCUMENT,
) -> TextEmbeddingResult:
"""
Invoke text embedding model
:param model: model name
:param credentials: model credentials
:param texts: texts to embed
:param user: unique user id
:param input_type: input type
:return: embeddings result
"""
api_key = credentials["api_key"]
if not api_key:
raise CredentialsValidateFailedError("api_key is required")
base_url = credentials.get("base_url", self.api_base)
base_url = base_url.removesuffix("/")
url = base_url + "/embeddings"
headers = {"Authorization": "Bearer " + api_key, "Content-Type": "application/json"}
voyage_input_type = "null"
if input_type is not None:
voyage_input_type = input_type.value
data = {"model": model, "input": texts, "input_type": voyage_input_type}
try:
response = requests.post(url, headers=headers, data=dumps(data))
except Exception as e:
raise InvokeConnectionError(str(e))
if response.status_code != 200:
try:
resp = response.json()
msg = resp["detail"]
if response.status_code == 401:
raise InvokeAuthorizationError(msg)
elif response.status_code == 429:
raise InvokeRateLimitError(msg)
elif response.status_code == 500:
raise InvokeServerUnavailableError(msg)
else:
raise InvokeBadRequestError(msg)
except JSONDecodeError as e:
raise InvokeServerUnavailableError(
f"Failed to convert response to json: {e} with text: {response.text}"
)
try:
resp = response.json()
embeddings = resp["data"]
usage = resp["usage"]
except Exception as e:
raise InvokeServerUnavailableError(f"Failed to convert response to json: {e} with text: {response.text}")
usage = self._calc_response_usage(model=model, credentials=credentials, tokens=usage["total_tokens"])
result = TextEmbeddingResult(
model=model, embeddings=[[float(data) for data in x["embedding"]] for x in embeddings], usage=usage
)
return result
def get_num_tokens(self, model: str, credentials: dict, texts: list[str]) -> int:
"""
Get number of tokens for given prompt messages
:param model: model name
:param credentials: model credentials
:param texts: texts to embed
:return:
"""
return sum(self._get_num_tokens_by_gpt2(text) for text in texts)
def validate_credentials(self, model: str, credentials: dict) -> None:
"""
Validate model credentials
:param model: model name
:param credentials: model credentials
:return:
"""
try:
self._invoke(model=model, credentials=credentials, texts=["ping"])
except Exception as e:
raise CredentialsValidateFailedError(f"Credentials validation failed: {e}")
@property
def _invoke_error_mapping(self) -> dict[type[InvokeError], list[type[Exception]]]:
return {
InvokeConnectionError: [InvokeConnectionError],
InvokeServerUnavailableError: [InvokeServerUnavailableError],
InvokeRateLimitError: [InvokeRateLimitError],
InvokeAuthorizationError: [InvokeAuthorizationError],
InvokeBadRequestError: [KeyError, InvokeBadRequestError],
}
def _calc_response_usage(self, model: str, credentials: dict, tokens: int) -> EmbeddingUsage:
"""
Calculate response usage
:param model: model name
:param credentials: model credentials
:param tokens: input tokens
:return: usage
"""
# get input price info
input_price_info = self.get_price(
model=model, credentials=credentials, price_type=PriceType.INPUT, tokens=tokens
)
# transform usage
usage = EmbeddingUsage(
tokens=tokens,
total_tokens=tokens,
unit_price=input_price_info.unit_price,
price_unit=input_price_info.unit,
total_price=input_price_info.total_amount,
currency=input_price_info.currency,
latency=time.perf_counter() - self.started_at,
)
return usage
def get_customizable_model_schema(self, model: str, credentials: dict) -> AIModelEntity:
"""
generate custom model entities from credentials
"""
entity = AIModelEntity(
model=model,
label=I18nObject(en_US=model),
model_type=ModelType.TEXT_EMBEDDING,
fetch_from=FetchFrom.CUSTOMIZABLE_MODEL,
model_properties={ModelPropertyKey.CONTEXT_SIZE: int(credentials.get("context_size"))},
)
return entity

View File

@ -0,0 +1,8 @@
model: voyage-3-lite
model_type: text-embedding
model_properties:
context_size: 32000
pricing:
input: '0.00002'
unit: '0.001'
currency: USD

View File

@ -0,0 +1,8 @@
model: voyage-3
model_type: text-embedding
model_properties:
context_size: 32000
pricing:
input: '0.00006'
unit: '0.001'
currency: USD

View File

@ -0,0 +1,28 @@
import logging
from core.model_runtime.entities.model_entities import ModelType
from core.model_runtime.errors.validate import CredentialsValidateFailedError
from core.model_runtime.model_providers.__base.model_provider import ModelProvider
logger = logging.getLogger(__name__)
class VoyageProvider(ModelProvider):
def validate_provider_credentials(self, credentials: dict) -> None:
"""
Validate provider credentials
if validate failed, raise exception
:param credentials: provider credentials, credentials form defined in `provider_credential_schema`.
"""
try:
model_instance = self.get_model_instance(ModelType.TEXT_EMBEDDING)
# Use `voyage-3` model for validate,
# no matter what model you pass in, text completion model or chat model
model_instance.validate_credentials(model="voyage-3", credentials=credentials)
except CredentialsValidateFailedError as ex:
raise ex
except Exception as ex:
logger.exception(f"{self.get_provider_schema().provider} credentials validate failed")
raise ex

View File

@ -0,0 +1,31 @@
provider: voyage
label:
en_US: Voyage
description:
en_US: Embedding and Rerank Model Supported
icon_small:
en_US: icon_s_en.svg
icon_large:
en_US: icon_l_en.svg
background: "#EFFDFD"
help:
title:
en_US: Get your API key from Voyage AI
zh_Hans: 从 Voyage 获取 API Key
url:
en_US: https://dash.voyageai.com/
supported_model_types:
- text-embedding
- rerank
configurate_methods:
- predefined-model
provider_credential_schema:
credential_form_schemas:
- variable: api_key
label:
en_US: API Key
type: secret-input
required: true
placeholder:
zh_Hans: 在此输入您的 API Key
en_US: Enter your API Key

View File

@ -59,6 +59,7 @@ from core.model_runtime.model_providers.__base.large_language_model import Large
from core.model_runtime.model_providers.xinference.xinference_helper import (
XinferenceHelper,
XinferenceModelExtraParameter,
validate_model_uid,
)
from core.model_runtime.utils import helper
@ -114,7 +115,7 @@ class XinferenceAILargeLanguageModel(LargeLanguageModel):
}
"""
try:
if "/" in credentials["model_uid"] or "?" in credentials["model_uid"] or "#" in credentials["model_uid"]:
if not validate_model_uid(credentials):
raise CredentialsValidateFailedError("model_uid should not contain /, ?, or #")
extra_param = XinferenceHelper.get_xinference_extra_parameter(

View File

@ -15,6 +15,7 @@ from core.model_runtime.errors.invoke import (
)
from core.model_runtime.errors.validate import CredentialsValidateFailedError
from core.model_runtime.model_providers.__base.rerank_model import RerankModel
from core.model_runtime.model_providers.xinference.xinference_helper import validate_model_uid
class XinferenceRerankModel(RerankModel):
@ -77,10 +78,7 @@ class XinferenceRerankModel(RerankModel):
)
# score threshold check
if score_threshold is not None:
if result["relevance_score"] >= score_threshold:
rerank_documents.append(rerank_document)
else:
if score_threshold is None or result["relevance_score"] >= score_threshold:
rerank_documents.append(rerank_document)
return RerankResult(model=model, docs=rerank_documents)
@ -94,7 +92,7 @@ class XinferenceRerankModel(RerankModel):
:return:
"""
try:
if "/" in credentials["model_uid"] or "?" in credentials["model_uid"] or "#" in credentials["model_uid"]:
if not validate_model_uid(credentials):
raise CredentialsValidateFailedError("model_uid should not contain /, ?, or #")
credentials["server_url"] = credentials["server_url"].removesuffix("/")

View File

@ -14,6 +14,7 @@ from core.model_runtime.errors.invoke import (
)
from core.model_runtime.errors.validate import CredentialsValidateFailedError
from core.model_runtime.model_providers.__base.speech2text_model import Speech2TextModel
from core.model_runtime.model_providers.xinference.xinference_helper import validate_model_uid
class XinferenceSpeech2TextModel(Speech2TextModel):
@ -42,7 +43,7 @@ class XinferenceSpeech2TextModel(Speech2TextModel):
:return:
"""
try:
if "/" in credentials["model_uid"] or "?" in credentials["model_uid"] or "#" in credentials["model_uid"]:
if not validate_model_uid(credentials):
raise CredentialsValidateFailedError("model_uid should not contain /, ?, or #")
credentials["server_url"] = credentials["server_url"].removesuffix("/")

View File

@ -17,7 +17,7 @@ from core.model_runtime.errors.invoke import (
)
from core.model_runtime.errors.validate import CredentialsValidateFailedError
from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
from core.model_runtime.model_providers.xinference.xinference_helper import XinferenceHelper
from core.model_runtime.model_providers.xinference.xinference_helper import XinferenceHelper, validate_model_uid
class XinferenceTextEmbeddingModel(TextEmbeddingModel):
@ -110,7 +110,7 @@ class XinferenceTextEmbeddingModel(TextEmbeddingModel):
:return:
"""
try:
if "/" in credentials["model_uid"] or "?" in credentials["model_uid"] or "#" in credentials["model_uid"]:
if not validate_model_uid(credentials):
raise CredentialsValidateFailedError("model_uid should not contain /, ?, or #")
server_url = credentials["server_url"]

View File

@ -15,7 +15,7 @@ from core.model_runtime.errors.invoke import (
)
from core.model_runtime.errors.validate import CredentialsValidateFailedError
from core.model_runtime.model_providers.__base.tts_model import TTSModel
from core.model_runtime.model_providers.xinference.xinference_helper import XinferenceHelper
from core.model_runtime.model_providers.xinference.xinference_helper import XinferenceHelper, validate_model_uid
class XinferenceText2SpeechModel(TTSModel):
@ -70,7 +70,7 @@ class XinferenceText2SpeechModel(TTSModel):
:return:
"""
try:
if "/" in credentials["model_uid"] or "?" in credentials["model_uid"] or "#" in credentials["model_uid"]:
if not validate_model_uid(credentials):
raise CredentialsValidateFailedError("model_uid should not contain /, ?, or #")
credentials["server_url"] = credentials["server_url"].removesuffix("/")

View File

@ -132,3 +132,16 @@ class XinferenceHelper:
context_length=context_length,
model_family=model_family,
)
def validate_model_uid(credentials: dict) -> bool:
"""
Validate the model_uid within the credentials dictionary to ensure it does not
contain forbidden characters ("/", "?", "#").
param credentials: model credentials
:return: True if the model_uid does not contain forbidden characters ("/", "?", "#"), else False.
"""
forbidden_characters = ["/", "?", "#"]
model_uid = credentials.get("model_uid", "")
return not any(char in forbidden_characters for char in model_uid)

View File

@ -48,7 +48,7 @@ from ._utils import (
)
if TYPE_CHECKING:
from pydantic_core.core_schema import LiteralSchema, ModelField, ModelFieldsSchema
from pydantic_core.core_schema import ModelField
__all__ = ["BaseModel", "GenericModel"]
_BaseModelT = TypeVar("_BaseModelT", bound="BaseModel")

View File

@ -248,7 +248,7 @@ def required_args(*variants: Sequence[str]) -> Callable[[CallableT], CallableT]:
@functools.wraps(func)
def wrapper(*args: object, **kwargs: object) -> object:
given_params: set[str] = set()
for i, _ in enumerate(args):
for i in range(len(args)):
try:
given_params.add(positional[i])
except IndexError:

View File

@ -18,8 +18,12 @@ class KeywordsModeration(Moderation):
if not config.get("keywords"):
raise ValueError("keywords is required")
if len(config.get("keywords")) > 1000:
raise ValueError("keywords length must be less than 1000")
if len(config.get("keywords")) > 10000:
raise ValueError("keywords length must be less than 10000")
keywords_row_len = config["keywords"].split("\n")
if len(keywords_row_len) > 100:
raise ValueError("the number of rows for the keywords must be less than 100")
def moderation_for_inputs(self, inputs: dict, query: str = "") -> ModerationInputsResult:
flagged = False

View File

@ -45,7 +45,7 @@ class Jieba(BaseKeyword):
keyword_table_handler = JiebaKeywordTableHandler()
keyword_table = self._get_dataset_keyword_table()
keywords_list = kwargs.get("keywords_list", None)
keywords_list = kwargs.get("keywords_list")
for i in range(len(texts)):
text = texts[i]
if keywords_list:

View File

@ -10,6 +10,7 @@ from core.rag.rerank.constants.rerank_mode import RerankMode
from core.rag.retrieval.retrieval_methods import RetrievalMethod
from extensions.ext_database import db
from models.dataset import Dataset
from services.external_knowledge_service import ExternalDatasetService
default_retrieval_model = {
"search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
@ -34,6 +35,9 @@ class RetrievalService:
weights: Optional[dict] = None,
):
dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
if not dataset:
return []
if not dataset or dataset.available_document_count == 0 or dataset.available_segment_count == 0:
return []
all_documents = []
@ -108,6 +112,16 @@ class RetrievalService:
)
return all_documents
@classmethod
def external_retrieve(cls, dataset_id: str, query: str, external_retrieval_model: Optional[dict] = None):
dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
if not dataset:
return []
all_documents = ExternalDatasetService.fetch_external_knowledge_retrieval(
dataset.tenant_id, dataset_id, query, external_retrieval_model
)
return all_documents
@classmethod
def keyword_search(
cls, flask_app: Flask, dataset_id: str, query: str, top_k: int, all_documents: list, exceptions: list

View File

@ -23,6 +23,8 @@ class PGVectorConfig(BaseModel):
user: str
password: str
database: str
min_connection: int
max_connection: int
@model_validator(mode="before")
@classmethod
@ -37,6 +39,12 @@ class PGVectorConfig(BaseModel):
raise ValueError("config PGVECTOR_PASSWORD is required")
if not values["database"]:
raise ValueError("config PGVECTOR_DATABASE is required")
if not values["min_connection"]:
raise ValueError("config PGVECTOR_MIN_CONNECTION is required")
if not values["max_connection"]:
raise ValueError("config PGVECTOR_MAX_CONNECTION is required")
if values["min_connection"] > values["max_connection"]:
raise ValueError("config PGVECTOR_MIN_CONNECTION should less than PGVECTOR_MAX_CONNECTION")
return values
@ -61,8 +69,8 @@ class PGVector(BaseVector):
def _create_connection_pool(self, config: PGVectorConfig):
return psycopg2.pool.SimpleConnectionPool(
1,
5,
config.min_connection,
config.max_connection,
host=config.host,
port=config.port,
user=config.user,
@ -158,7 +166,7 @@ class PGVector(BaseVector):
with self._get_cursor() as cur:
cur.execute(
f"""SELECT meta, text, ts_rank(to_tsvector(coalesce(text, '')), to_tsquery(%s)) AS score
f"""SELECT meta, text, ts_rank(to_tsvector(coalesce(text, '')), plainto_tsquery(%s)) AS score
FROM {self.table_name}
WHERE to_tsvector(text) @@ plainto_tsquery(%s)
ORDER BY score DESC
@ -213,5 +221,7 @@ class PGVectorFactory(AbstractVectorFactory):
user=dify_config.PGVECTOR_USER,
password=dify_config.PGVECTOR_PASSWORD,
database=dify_config.PGVECTOR_DATABASE,
min_connection=dify_config.PGVECTOR_MIN_CONNECTION,
max_connection=dify_config.PGVECTOR_MAX_CONNECTION,
),
)

View File

@ -56,7 +56,7 @@ class TencentVector(BaseVector):
return self._client.create_database(database_name=self._client_config.database)
def get_type(self) -> str:
return "tencent"
return VectorType.TENCENT
def to_index_struct(self) -> dict:
return {"type": self.get_type(), "vector_store": {"class_prefix": self._collection_name}}

View File

@ -0,0 +1,10 @@
from pydantic import BaseModel
class DocumentContext(BaseModel):
"""
Model class for document context.
"""
content: str
score: float

View File

@ -12,6 +12,7 @@ from core.rag.extractor.entity.extract_setting import ExtractSetting
from core.rag.extractor.excel_extractor import ExcelExtractor
from core.rag.extractor.firecrawl.firecrawl_web_extractor import FirecrawlWebExtractor
from core.rag.extractor.html_extractor import HtmlExtractor
from core.rag.extractor.jina_reader_extractor import JinaReaderWebExtractor
from core.rag.extractor.markdown_extractor import MarkdownExtractor
from core.rag.extractor.notion_extractor import NotionExtractor
from core.rag.extractor.pdf_extractor import PdfExtractor
@ -171,6 +172,15 @@ class ExtractProcessor:
only_main_content=extract_setting.website_info.only_main_content,
)
return extractor.extract()
elif extract_setting.website_info.provider == "jinareader":
extractor = JinaReaderWebExtractor(
url=extract_setting.website_info.url,
job_id=extract_setting.website_info.job_id,
tenant_id=extract_setting.website_info.tenant_id,
mode=extract_setting.website_info.mode,
only_main_content=extract_setting.website_info.only_main_content,
)
return extractor.extract()
else:
raise ValueError(f"Unsupported website provider: {extract_setting.website_info.provider}")
else:

View File

@ -0,0 +1,35 @@
from core.rag.extractor.extractor_base import BaseExtractor
from core.rag.models.document import Document
from services.website_service import WebsiteService
class JinaReaderWebExtractor(BaseExtractor):
"""
Crawl and scrape websites and return content in clean llm-ready markdown.
"""
def __init__(self, url: str, job_id: str, tenant_id: str, mode: str = "crawl", only_main_content: bool = False):
"""Initialize with url, api_key, base_url and mode."""
self._url = url
self.job_id = job_id
self.tenant_id = tenant_id
self.mode = mode
self.only_main_content = only_main_content
def extract(self) -> list[Document]:
"""Extract content from the URL."""
documents = []
if self.mode == "crawl":
crawl_data = WebsiteService.get_crawl_url_data(self.job_id, "jinareader", self._url, self.tenant_id)
if crawl_data is None:
return []
document = Document(
page_content=crawl_data.get("content", ""),
metadata={
"source_url": crawl_data.get("url"),
"description": crawl_data.get("description"),
"title": crawl_data.get("title"),
},
)
documents.append(document)
return documents

View File

@ -17,6 +17,8 @@ class Document(BaseModel):
"""
metadata: Optional[dict] = Field(default_factory=dict)
provider: Optional[str] = "dify"
class BaseDocumentTransformer(ABC):
"""Abstract base class for document transformation systems.

View File

@ -28,11 +28,16 @@ class RerankModelRunner:
docs = []
doc_id = []
unique_documents = []
for document in documents:
dify_documents = [item for item in documents if item.provider == "dify"]
external_documents = [item for item in documents if item.provider == "external"]
for document in dify_documents:
if document.metadata["doc_id"] not in doc_id:
doc_id.append(document.metadata["doc_id"])
docs.append(document.page_content)
unique_documents.append(document)
for document in external_documents:
docs.append(document.page_content)
unique_documents.append(document)
documents = unique_documents
@ -46,14 +51,10 @@ class RerankModelRunner:
# format document
rerank_document = Document(
page_content=result.text,
metadata={
"doc_id": documents[result.index].metadata["doc_id"],
"doc_hash": documents[result.index].metadata["doc_hash"],
"document_id": documents[result.index].metadata["document_id"],
"dataset_id": documents[result.index].metadata["dataset_id"],
"score": result.score,
},
metadata=documents[result.index].metadata,
provider=documents[result.index].provider,
)
rerank_document.metadata["score"] = result.score
rerank_documents.append(rerank_document)
return rerank_documents

View File

@ -20,6 +20,7 @@ from core.ops.utils import measure_time
from core.rag.data_post_processor.data_post_processor import DataPostProcessor
from core.rag.datasource.keyword.jieba.jieba_keyword_table_handler import JiebaKeywordTableHandler
from core.rag.datasource.retrieval_service import RetrievalService
from core.rag.entities.context_entities import DocumentContext
from core.rag.models.document import Document
from core.rag.retrieval.retrieval_methods import RetrievalMethod
from core.rag.retrieval.router.multi_dataset_function_call_router import FunctionCallMultiDatasetRouter
@ -30,6 +31,7 @@ from core.tools.tool.dataset_retriever.dataset_retriever_tool import DatasetRetr
from extensions.ext_database import db
from models.dataset import Dataset, DatasetQuery, DocumentSegment
from models.dataset import Document as DatasetDocument
from services.external_knowledge_service import ExternalDatasetService
default_retrieval_model = {
"search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
@ -110,7 +112,7 @@ class DatasetRetrieval:
continue
# pass if dataset is not available
if dataset and dataset.available_document_count == 0:
if dataset and dataset.available_document_count == 0 and dataset.provider != "external":
continue
available_datasets.append(dataset)
@ -146,69 +148,93 @@ class DatasetRetrieval:
message_id,
)
document_score_list = {}
for item in all_documents:
if item.metadata.get("score"):
document_score_list[item.metadata["doc_id"]] = item.metadata["score"]
dify_documents = [item for item in all_documents if item.provider == "dify"]
external_documents = [item for item in all_documents if item.provider == "external"]
document_context_list = []
index_node_ids = [document.metadata["doc_id"] for document in all_documents]
segments = DocumentSegment.query.filter(
DocumentSegment.dataset_id.in_(dataset_ids),
DocumentSegment.completed_at.isnot(None),
DocumentSegment.status == "completed",
DocumentSegment.enabled == True,
DocumentSegment.index_node_id.in_(index_node_ids),
).all()
retrieval_resource_list = []
# deal with external documents
for item in external_documents:
document_context_list.append(DocumentContext(content=item.page_content, score=item.metadata.get("score")))
source = {
"dataset_id": item.metadata.get("dataset_id"),
"dataset_name": item.metadata.get("dataset_name"),
"document_name": item.metadata.get("title"),
"data_source_type": "external",
"retriever_from": invoke_from.to_source(),
"score": item.metadata.get("score"),
"content": item.page_content,
}
retrieval_resource_list.append(source)
document_score_list = {}
# deal with dify documents
if dify_documents:
for item in dify_documents:
if item.metadata.get("score"):
document_score_list[item.metadata["doc_id"]] = item.metadata["score"]
if segments:
index_node_id_to_position = {id: position for position, id in enumerate(index_node_ids)}
sorted_segments = sorted(
segments, key=lambda segment: index_node_id_to_position.get(segment.index_node_id, float("inf"))
)
for segment in sorted_segments:
if segment.answer:
document_context_list.append(f"question:{segment.get_sign_content()} answer:{segment.answer}")
else:
document_context_list.append(segment.get_sign_content())
if show_retrieve_source:
context_list = []
resource_number = 1
index_node_ids = [document.metadata["doc_id"] for document in dify_documents]
segments = DocumentSegment.query.filter(
DocumentSegment.dataset_id.in_(dataset_ids),
DocumentSegment.status == "completed",
DocumentSegment.enabled == True,
DocumentSegment.index_node_id.in_(index_node_ids),
).all()
if segments:
index_node_id_to_position = {id: position for position, id in enumerate(index_node_ids)}
sorted_segments = sorted(
segments, key=lambda segment: index_node_id_to_position.get(segment.index_node_id, float("inf"))
)
for segment in sorted_segments:
dataset = Dataset.query.filter_by(id=segment.dataset_id).first()
document = DatasetDocument.query.filter(
DatasetDocument.id == segment.document_id,
DatasetDocument.enabled == True,
DatasetDocument.archived == False,
).first()
if dataset and document:
source = {
"position": resource_number,
"dataset_id": dataset.id,
"dataset_name": dataset.name,
"document_id": document.id,
"document_name": document.name,
"data_source_type": document.data_source_type,
"segment_id": segment.id,
"retriever_from": invoke_from.to_source(),
"score": document_score_list.get(segment.index_node_id, None),
}
if segment.answer:
document_context_list.append(
DocumentContext(
content=f"question:{segment.get_sign_content()} answer:{segment.answer}",
score=document_score_list.get(segment.index_node_id, None),
)
)
else:
document_context_list.append(
DocumentContext(
content=segment.get_sign_content(),
score=document_score_list.get(segment.index_node_id, None),
)
)
if show_retrieve_source:
for segment in sorted_segments:
dataset = Dataset.query.filter_by(id=segment.dataset_id).first()
document = DatasetDocument.query.filter(
DatasetDocument.id == segment.document_id,
DatasetDocument.enabled == True,
DatasetDocument.archived == False,
).first()
if dataset and document:
source = {
"dataset_id": dataset.id,
"dataset_name": dataset.name,
"document_id": document.id,
"document_name": document.name,
"data_source_type": document.data_source_type,
"segment_id": segment.id,
"retriever_from": invoke_from.to_source(),
"score": document_score_list.get(segment.index_node_id, None),
}
if invoke_from.to_source() == "dev":
source["hit_count"] = segment.hit_count
source["word_count"] = segment.word_count
source["segment_position"] = segment.position
source["index_node_hash"] = segment.index_node_hash
if segment.answer:
source["content"] = f"question:{segment.content} \nanswer:{segment.answer}"
else:
source["content"] = segment.content
context_list.append(source)
resource_number += 1
if hit_callback:
hit_callback.return_retriever_resource_info(context_list)
return str("\n".join(document_context_list))
if invoke_from.to_source() == "dev":
source["hit_count"] = segment.hit_count
source["word_count"] = segment.word_count
source["segment_position"] = segment.position
source["index_node_hash"] = segment.index_node_hash
if segment.answer:
source["content"] = f"question:{segment.content} \nanswer:{segment.answer}"
else:
source["content"] = segment.content
retrieval_resource_list.append(source)
if hit_callback and retrieval_resource_list:
hit_callback.return_retriever_resource_info(retrieval_resource_list)
if document_context_list:
document_context_list = sorted(document_context_list, key=lambda x: x.score, reverse=True)
return str("\n".join([document_context.content for document_context in document_context_list]))
return ""
def single_retrieve(
@ -256,36 +282,58 @@ class DatasetRetrieval:
# get retrieval model config
dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
if dataset:
retrieval_model_config = dataset.retrieval_model or default_retrieval_model
# get top k
top_k = retrieval_model_config["top_k"]
# get retrieval method
if dataset.indexing_technique == "economy":
retrieval_method = "keyword_search"
else:
retrieval_method = retrieval_model_config["search_method"]
# get reranking model
reranking_model = (
retrieval_model_config["reranking_model"] if retrieval_model_config["reranking_enable"] else None
)
# get score threshold
score_threshold = 0.0
score_threshold_enabled = retrieval_model_config.get("score_threshold_enabled")
if score_threshold_enabled:
score_threshold = retrieval_model_config.get("score_threshold")
with measure_time() as timer:
results = RetrievalService.retrieve(
retrieval_method=retrieval_method,
dataset_id=dataset.id,
results = []
if dataset.provider == "external":
external_documents = ExternalDatasetService.fetch_external_knowledge_retrieval(
tenant_id=dataset.tenant_id,
dataset_id=dataset_id,
query=query,
top_k=top_k,
score_threshold=score_threshold,
reranking_model=reranking_model,
reranking_mode=retrieval_model_config.get("reranking_mode", "reranking_model"),
weights=retrieval_model_config.get("weights", None),
external_retrieval_parameters=dataset.retrieval_model,
)
for external_document in external_documents:
document = Document(
page_content=external_document.get("content"),
metadata=external_document.get("metadata"),
provider="external",
)
document.metadata["score"] = external_document.get("score")
document.metadata["title"] = external_document.get("title")
document.metadata["dataset_id"] = dataset_id
document.metadata["dataset_name"] = dataset.name
results.append(document)
else:
retrieval_model_config = dataset.retrieval_model or default_retrieval_model
# get top k
top_k = retrieval_model_config["top_k"]
# get retrieval method
if dataset.indexing_technique == "economy":
retrieval_method = "keyword_search"
else:
retrieval_method = retrieval_model_config["search_method"]
# get reranking model
reranking_model = (
retrieval_model_config["reranking_model"]
if retrieval_model_config["reranking_enable"]
else None
)
# get score threshold
score_threshold = 0.0
score_threshold_enabled = retrieval_model_config.get("score_threshold_enabled")
if score_threshold_enabled:
score_threshold = retrieval_model_config.get("score_threshold")
with measure_time() as timer:
results = RetrievalService.retrieve(
retrieval_method=retrieval_method,
dataset_id=dataset.id,
query=query,
top_k=top_k,
score_threshold=score_threshold,
reranking_model=reranking_model,
reranking_mode=retrieval_model_config.get("reranking_mode", "reranking_model"),
weights=retrieval_model_config.get("weights", None),
)
self._on_query(query, [dataset_id], app_id, user_from, user_id)
if results:
@ -356,7 +404,8 @@ class DatasetRetrieval:
self, documents: list[Document], message_id: Optional[str] = None, timer: Optional[dict] = None
) -> None:
"""Handle retrieval end."""
for document in documents:
dify_documents = [document for document in documents if document.provider == "dify"]
for document in dify_documents:
query = db.session.query(DocumentSegment).filter(
DocumentSegment.index_node_id == document.metadata["doc_id"]
)
@ -409,35 +458,54 @@ class DatasetRetrieval:
if not dataset:
return []
# get retrieval model , if the model is not setting , using default
retrieval_model = dataset.retrieval_model or default_retrieval_model
if dataset.indexing_technique == "economy":
# use keyword table query
documents = RetrievalService.retrieve(
retrieval_method="keyword_search", dataset_id=dataset.id, query=query, top_k=top_k
if dataset.provider == "external":
external_documents = ExternalDatasetService.fetch_external_knowledge_retrieval(
tenant_id=dataset.tenant_id,
dataset_id=dataset_id,
query=query,
external_retrieval_parameters=dataset.retrieval_model,
)
if documents:
all_documents.extend(documents)
else:
if top_k > 0:
# retrieval source
documents = RetrievalService.retrieve(
retrieval_method=retrieval_model["search_method"],
dataset_id=dataset.id,
query=query,
top_k=retrieval_model.get("top_k") or 2,
score_threshold=retrieval_model.get("score_threshold", 0.0)
if retrieval_model["score_threshold_enabled"]
else 0.0,
reranking_model=retrieval_model.get("reranking_model", None)
if retrieval_model["reranking_enable"]
else None,
reranking_mode=retrieval_model.get("reranking_mode") or "reranking_model",
weights=retrieval_model.get("weights", None),
for external_document in external_documents:
document = Document(
page_content=external_document.get("content"),
metadata=external_document.get("metadata"),
provider="external",
)
document.metadata["score"] = external_document.get("score")
document.metadata["title"] = external_document.get("title")
document.metadata["dataset_id"] = dataset_id
document.metadata["dataset_name"] = dataset.name
all_documents.append(document)
else:
# get retrieval model , if the model is not setting , using default
retrieval_model = dataset.retrieval_model or default_retrieval_model
all_documents.extend(documents)
if dataset.indexing_technique == "economy":
# use keyword table query
documents = RetrievalService.retrieve(
retrieval_method="keyword_search", dataset_id=dataset.id, query=query, top_k=top_k
)
if documents:
all_documents.extend(documents)
else:
if top_k > 0:
# retrieval source
documents = RetrievalService.retrieve(
retrieval_method=retrieval_model["search_method"],
dataset_id=dataset.id,
query=query,
top_k=retrieval_model.get("top_k") or 2,
score_threshold=retrieval_model.get("score_threshold", 0.0)
if retrieval_model["score_threshold_enabled"]
else 0.0,
reranking_model=retrieval_model.get("reranking_model", None)
if retrieval_model["reranking_enable"]
else None,
reranking_mode=retrieval_model.get("reranking_mode") or "reranking_model",
weights=retrieval_model.get("weights", None),
)
all_documents.extend(documents)
def to_dataset_retriever_tool(
self,

View File

@ -34,5 +34,9 @@
- feishu_base
- feishu_document
- feishu_message
- feishu_wiki
- feishu_task
- feishu_calendar
- feishu_spreadsheet
- slack
- tianditu

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.4 KiB

View File

@ -0,0 +1,7 @@
from core.tools.provider.builtin_tool_provider import BuiltinToolProviderController
from core.tools.utils.feishu_api_utils import auth
class FeishuCalendarProvider(BuiltinToolProviderController):
def _validate_credentials(self, credentials: dict) -> None:
auth(credentials)

View File

@ -0,0 +1,36 @@
identity:
author: Doug Lea
name: feishu_calendar
label:
en_US: Feishu Calendar
zh_Hans: 飞书日历
description:
en_US: |
Feishu calendar, requires the following permissions: calendar:calendar:read、calendar:calendar、contact:user.id:readonly.
zh_Hans: |
飞书日历,需要开通以下权限: calendar:calendar:read、calendar:calendar、contact:user.id:readonly。
icon: icon.png
tags:
- social
- productivity
credentials_for_provider:
app_id:
type: text-input
required: true
label:
en_US: APP ID
placeholder:
en_US: Please input your feishu app id
zh_Hans: 请输入你的飞书 app id
help:
en_US: Get your app_id and app_secret from Feishu
zh_Hans: 从飞书获取您的 app_id 和 app_secret
url: https://open.larkoffice.com/app
app_secret:
type: secret-input
required: true
label:
en_US: APP Secret
placeholder:
en_US: Please input your app secret
zh_Hans: 请输入你的飞书 app secret

View File

@ -0,0 +1,20 @@
from typing import Any
from core.tools.entities.tool_entities import ToolInvokeMessage
from core.tools.tool.builtin_tool import BuiltinTool
from core.tools.utils.feishu_api_utils import FeishuRequest
class AddEventAttendeesTool(BuiltinTool):
def _invoke(self, user_id: str, tool_parameters: dict[str, Any]) -> ToolInvokeMessage:
app_id = self.runtime.credentials.get("app_id")
app_secret = self.runtime.credentials.get("app_secret")
client = FeishuRequest(app_id, app_secret)
event_id = tool_parameters.get("event_id")
attendee_phone_or_email = tool_parameters.get("attendee_phone_or_email")
need_notification = tool_parameters.get("need_notification", True)
res = client.add_event_attendees(event_id, attendee_phone_or_email, need_notification)
return self.create_json_message(res)

View File

@ -0,0 +1,54 @@
identity:
name: add_event_attendees
author: Doug Lea
label:
en_US: Add Event Attendees
zh_Hans: 添加日程参会人
description:
human:
en_US: Add Event Attendees
zh_Hans: 添加日程参会人
llm: A tool for adding attendees to events in Feishu. (在飞书中添加日程参会人)
parameters:
- name: event_id
type: string
required: true
label:
en_US: Event ID
zh_Hans: 日程 ID
human_description:
en_US: |
The ID of the event, which will be returned when the event is created. For example: fb2a6406-26d6-4c8d-a487-6f0246c94d2f_0.
zh_Hans: |
创建日程时会返回日程 ID。例如: fb2a6406-26d6-4c8d-a487-6f0246c94d2f_0。
llm_description: |
日程 ID创建日程时会返回日程 ID。例如: fb2a6406-26d6-4c8d-a487-6f0246c94d2f_0。
form: llm
- name: need_notification
type: boolean
required: false
default: true
label:
en_US: Need Notification
zh_Hans: 是否需要通知
human_description:
en_US: |
Whether to send a Bot notification to attendees. true: send, false: do not send.
zh_Hans: |
是否给参与人发送 Bot 通知true: 发送false: 不发送。
llm_description: |
是否给参与人发送 Bot 通知true: 发送false: 不发送。
form: form
- name: attendee_phone_or_email
type: string
required: true
label:
en_US: Attendee Phone or Email
zh_Hans: 参会人电话或邮箱
human_description:
en_US: The list of attendee emails or phone numbers, separated by commas.
zh_Hans: 日程参会人邮箱或者手机号列表,使用逗号分隔。
llm_description: 日程参会人邮箱或者手机号列表,使用逗号分隔。
form: llm

View File

@ -0,0 +1,26 @@
from typing import Any
from core.tools.entities.tool_entities import ToolInvokeMessage
from core.tools.tool.builtin_tool import BuiltinTool
from core.tools.utils.feishu_api_utils import FeishuRequest
class CreateEventTool(BuiltinTool):
def _invoke(self, user_id: str, tool_parameters: dict[str, Any]) -> ToolInvokeMessage:
app_id = self.runtime.credentials.get("app_id")
app_secret = self.runtime.credentials.get("app_secret")
client = FeishuRequest(app_id, app_secret)
summary = tool_parameters.get("summary")
description = tool_parameters.get("description")
start_time = tool_parameters.get("start_time")
end_time = tool_parameters.get("end_time")
attendee_ability = tool_parameters.get("attendee_ability")
need_notification = tool_parameters.get("need_notification", True)
auto_record = tool_parameters.get("auto_record", False)
res = client.create_event(
summary, description, start_time, end_time, attendee_ability, need_notification, auto_record
)
return self.create_json_message(res)

View File

@ -0,0 +1,119 @@
identity:
name: create_event
author: Doug Lea
label:
en_US: Create Event
zh_Hans: 创建日程
description:
human:
en_US: Create Event
zh_Hans: 创建日程
llm: A tool for creating events in Feishu.(创建飞书日程)
parameters:
- name: summary
type: string
required: false
label:
en_US: Summary
zh_Hans: 日程标题
human_description:
en_US: The title of the event. If not filled, the event title will display (No Subject).
zh_Hans: 日程标题,若不填则日程标题显示 (无主题)。
llm_description: 日程标题,若不填则日程标题显示 (无主题)。
form: llm
- name: description
type: string
required: false
label:
en_US: Description
zh_Hans: 日程描述
human_description:
en_US: The description of the event.
zh_Hans: 日程描述。
llm_description: 日程描述。
form: llm
- name: need_notification
type: boolean
required: false
default: true
label:
en_US: Need Notification
zh_Hans: 是否发送通知
human_description:
en_US: |
Whether to send a bot message when the event is created, true: send, false: do not send.
zh_Hans: 创建日程时是否发送 bot 消息true发送false不发送。
llm_description: 创建日程时是否发送 bot 消息true发送false不发送。
form: form
- name: start_time
type: string
required: true
label:
en_US: Start Time
zh_Hans: 开始时间
human_description:
en_US: |
The start time of the event, format: 2006-01-02 15:04:05.
zh_Hans: 日程开始时间格式2006-01-02 15:04:05。
llm_description: 日程开始时间格式2006-01-02 15:04:05。
form: llm
- name: end_time
type: string
required: true
label:
en_US: End Time
zh_Hans: 结束时间
human_description:
en_US: |
The end time of the event, format: 2006-01-02 15:04:05.
zh_Hans: 日程结束时间格式2006-01-02 15:04:05。
llm_description: 日程结束时间格式2006-01-02 15:04:05。
form: llm
- name: attendee_ability
type: select
required: false
options:
- value: none
label:
en_US: none
zh_Hans:
- value: can_see_others
label:
en_US: can_see_others
zh_Hans: 可以查看参与人列表
- value: can_invite_others
label:
en_US: can_invite_others
zh_Hans: 可以邀请其它参与人
- value: can_modify_event
label:
en_US: can_modify_event
zh_Hans: 可以编辑日程
default: "none"
label:
en_US: attendee_ability
zh_Hans: 参会人权限
human_description:
en_US: Attendee ability, optional values are none, can_see_others, can_invite_others, can_modify_event, with a default value of none.
zh_Hans: 参会人权限,可选值有无、可以查看参与人列表、可以邀请其它参与人、可以编辑日程,默认值为无。
llm_description: 参会人权限,可选值有无、可以查看参与人列表、可以邀请其它参与人、可以编辑日程,默认值为无。
form: form
- name: auto_record
type: boolean
required: false
default: false
label:
en_US: Auto Record
zh_Hans: 自动录制
human_description:
en_US: |
Whether to enable automatic recording, true: enabled, automatically record when the meeting starts; false: not enabled.
zh_Hans: 是否开启自动录制true开启会议开始后自动录制false不开启。
llm_description: 是否开启自动录制true开启会议开始后自动录制false不开启。
form: form

View File

@ -0,0 +1,19 @@
from typing import Any
from core.tools.entities.tool_entities import ToolInvokeMessage
from core.tools.tool.builtin_tool import BuiltinTool
from core.tools.utils.feishu_api_utils import FeishuRequest
class DeleteEventTool(BuiltinTool):
def _invoke(self, user_id: str, tool_parameters: dict[str, Any]) -> ToolInvokeMessage:
app_id = self.runtime.credentials.get("app_id")
app_secret = self.runtime.credentials.get("app_secret")
client = FeishuRequest(app_id, app_secret)
event_id = tool_parameters.get("event_id")
need_notification = tool_parameters.get("need_notification", True)
res = client.delete_event(event_id, need_notification)
return self.create_json_message(res)

View File

@ -0,0 +1,38 @@
identity:
name: delete_event
author: Doug Lea
label:
en_US: Delete Event
zh_Hans: 删除日程
description:
human:
en_US: Delete Event
zh_Hans: 删除日程
llm: A tool for deleting events in Feishu.(在飞书中删除日程)
parameters:
- name: event_id
type: string
required: true
label:
en_US: Event ID
zh_Hans: 日程 ID
human_description:
en_US: |
The ID of the event, for example: e8b9791c-39ae-4908-8ad8-66b13159b9fb_0.
zh_Hans: 日程 ID例如e8b9791c-39ae-4908-8ad8-66b13159b9fb_0。
llm_description: 日程 ID例如e8b9791c-39ae-4908-8ad8-66b13159b9fb_0。
form: llm
- name: need_notification
type: boolean
required: false
default: true
label:
en_US: Need Notification
zh_Hans: 是否需要通知
human_description:
en_US: |
Indicates whether to send bot notifications to event participants upon deletion. true: send, false: do not send.
zh_Hans: 删除日程是否给日程参与人发送 bot 通知true发送false不发送。
llm_description: 删除日程是否给日程参与人发送 bot 通知true发送false不发送。
form: form

View File

@ -0,0 +1,18 @@
from typing import Any
from core.tools.entities.tool_entities import ToolInvokeMessage
from core.tools.tool.builtin_tool import BuiltinTool
from core.tools.utils.feishu_api_utils import FeishuRequest
class GetPrimaryCalendarTool(BuiltinTool):
def _invoke(self, user_id: str, tool_parameters: dict[str, Any]) -> ToolInvokeMessage:
app_id = self.runtime.credentials.get("app_id")
app_secret = self.runtime.credentials.get("app_secret")
client = FeishuRequest(app_id, app_secret)
user_id_type = tool_parameters.get("user_id_type", "open_id")
res = client.get_primary_calendar(user_id_type)
return self.create_json_message(res)

View File

@ -0,0 +1,37 @@
identity:
name: get_primary_calendar
author: Doug Lea
label:
en_US: Get Primary Calendar
zh_Hans: 查询主日历信息
description:
human:
en_US: Get Primary Calendar
zh_Hans: 查询主日历信息
llm: A tool for querying primary calendar information in Feishu.(在飞书中查询主日历信息)
parameters:
- name: user_id_type
type: select
required: false
options:
- value: open_id
label:
en_US: open_id
zh_Hans: open_id
- value: union_id
label:
en_US: union_id
zh_Hans: union_id
- value: user_id
label:
en_US: user_id
zh_Hans: user_id
default: "open_id"
label:
en_US: user_id_type
zh_Hans: 用户 ID 类型
human_description:
en_US: User ID type, optional values are open_id, union_id, user_id, with a default value of open_id.
zh_Hans: 用户 ID 类型,可选值有 open_id、union_id、user_id默认值为 open_id。
llm_description: 用户 ID 类型,可选值有 open_id、union_id、user_id默认值为 open_id。
form: form

View File

@ -0,0 +1,21 @@
from typing import Any
from core.tools.entities.tool_entities import ToolInvokeMessage
from core.tools.tool.builtin_tool import BuiltinTool
from core.tools.utils.feishu_api_utils import FeishuRequest
class ListEventsTool(BuiltinTool):
def _invoke(self, user_id: str, tool_parameters: dict[str, Any]) -> ToolInvokeMessage:
app_id = self.runtime.credentials.get("app_id")
app_secret = self.runtime.credentials.get("app_secret")
client = FeishuRequest(app_id, app_secret)
start_time = tool_parameters.get("start_time")
end_time = tool_parameters.get("end_time")
page_token = tool_parameters.get("page_token")
page_size = tool_parameters.get("page_size")
res = client.list_events(start_time, end_time, page_token, page_size)
return self.create_json_message(res)

View File

@ -0,0 +1,62 @@
identity:
name: list_events
author: Doug Lea
label:
en_US: List Events
zh_Hans: 获取日程列表
description:
human:
en_US: List Events
zh_Hans: 获取日程列表
llm: A tool for listing events in Feishu.(在飞书中获取日程列表)
parameters:
- name: start_time
type: string
required: false
label:
en_US: Start Time
zh_Hans: 开始时间
human_description:
en_US: |
The start time, defaults to 0:00 of the current day if not provided, format: 2006-01-02 15:04:05.
zh_Hans: 开始时间,不传值时默认当天 0 点时间,格式为:2006-01-02 15:04:05。
llm_description: 开始时间,不传值时默认当天 0 点时间,格式为:2006-01-02 15:04:05。
form: llm
- name: end_time
type: string
required: false
label:
en_US: End Time
zh_Hans: 结束时间
human_description:
en_US: |
The end time, defaults to 23:59 of the current day if not provided, format: 2006-01-02 15:04:05.
zh_Hans: 结束时间,不传值时默认当天 23:59 分时间,格式为:2006-01-02 15:04:05。
llm_description: 结束时间,不传值时默认当天 23:59 分时间,格式为:2006-01-02 15:04:05。
form: llm
- name: page_size
type: number
required: false
default: 50
label:
en_US: Page Size
zh_Hans: 分页大小
human_description:
en_US: The page size, i.e., the number of data entries returned in a single request. The default value is 50, and the value range is [50,1000].
zh_Hans: 分页大小,即单次请求所返回的数据条目数。默认值为 50取值范围为 [50,1000]。
llm_description: 分页大小,即单次请求所返回的数据条目数。默认值为 50取值范围为 [50,1000]。
form: llm
- name: page_token
type: string
required: false
label:
en_US: Page Token
zh_Hans: 分页标记
human_description:
en_US: The pagination token. Leave it blank for the first request, indicating to start traversing from the beginning; when the pagination query result has more items, a new page_token will be returned simultaneously, which can be used to obtain the query result in the next traversal.
zh_Hans: 分页标记,第一次请求不填,表示从头开始遍历;分页查询结果还有更多项时会同时返回新的 page_token下次遍历可采用该 page_token 获取查询结果。
llm_description: 分页标记,第一次请求不填,表示从头开始遍历;分页查询结果还有更多项时会同时返回新的 page_token下次遍历可采用该 page_token 获取查询结果。
form: llm

View File

@ -0,0 +1,23 @@
from typing import Any
from core.tools.entities.tool_entities import ToolInvokeMessage
from core.tools.tool.builtin_tool import BuiltinTool
from core.tools.utils.feishu_api_utils import FeishuRequest
class SearchEventsTool(BuiltinTool):
def _invoke(self, user_id: str, tool_parameters: dict[str, Any]) -> ToolInvokeMessage:
app_id = self.runtime.credentials.get("app_id")
app_secret = self.runtime.credentials.get("app_secret")
client = FeishuRequest(app_id, app_secret)
query = tool_parameters.get("query")
start_time = tool_parameters.get("start_time")
end_time = tool_parameters.get("end_time")
page_token = tool_parameters.get("page_token")
user_id_type = tool_parameters.get("user_id_type", "open_id")
page_size = tool_parameters.get("page_size", 20)
res = client.search_events(query, start_time, end_time, page_token, user_id_type, page_size)
return self.create_json_message(res)

View File

@ -0,0 +1,100 @@
identity:
name: search_events
author: Doug Lea
label:
en_US: Search Events
zh_Hans: 搜索日程
description:
human:
en_US: Search Events
zh_Hans: 搜索日程
llm: A tool for searching events in Feishu.(在飞书中搜索日程)
parameters:
- name: user_id_type
type: select
required: false
options:
- value: open_id
label:
en_US: open_id
zh_Hans: open_id
- value: union_id
label:
en_US: union_id
zh_Hans: union_id
- value: user_id
label:
en_US: user_id
zh_Hans: user_id
default: "open_id"
label:
en_US: user_id_type
zh_Hans: 用户 ID 类型
human_description:
en_US: User ID type, optional values are open_id, union_id, user_id, with a default value of open_id.
zh_Hans: 用户 ID 类型,可选值有 open_id、union_id、user_id默认值为 open_id。
llm_description: 用户 ID 类型,可选值有 open_id、union_id、user_id默认值为 open_id。
form: form
- name: query
type: string
required: true
label:
en_US: Query
zh_Hans: 搜索关键字
human_description:
en_US: The search keyword used for fuzzy searching event names, with a maximum input of 200 characters.
zh_Hans: 用于模糊查询日程名称的搜索关键字,最大输入 200 字符。
llm_description: 用于模糊查询日程名称的搜索关键字,最大输入 200 字符。
form: llm
- name: start_time
type: string
required: false
label:
en_US: Start Time
zh_Hans: 开始时间
human_description:
en_US: |
The start time, defaults to 0:00 of the current day if not provided, format: 2006-01-02 15:04:05.
zh_Hans: 开始时间,不传值时默认当天 0 点时间,格式为:2006-01-02 15:04:05。
llm_description: 开始时间,不传值时默认当天 0 点时间,格式为:2006-01-02 15:04:05。
form: llm
- name: end_time
type: string
required: false
label:
en_US: End Time
zh_Hans: 结束时间
human_description:
en_US: |
The end time, defaults to 23:59 of the current day if not provided, format: 2006-01-02 15:04:05.
zh_Hans: 结束时间,不传值时默认当天 23:59 分时间,格式为:2006-01-02 15:04:05。
llm_description: 结束时间,不传值时默认当天 23:59 分时间,格式为:2006-01-02 15:04:05。
form: llm
- name: page_size
type: number
required: false
default: 20
label:
en_US: Page Size
zh_Hans: 分页大小
human_description:
en_US: The page size, i.e., the number of data entries returned in a single request. The default value is 20, and the value range is [10,100].
zh_Hans: 分页大小,即单次请求所返回的数据条目数。默认值为 20取值范围为 [10,100]。
llm_description: 分页大小,即单次请求所返回的数据条目数。默认值为 20取值范围为 [10,100]。
form: llm
- name: page_token
type: string
required: false
label:
en_US: Page Token
zh_Hans: 分页标记
human_description:
en_US: The pagination token. Leave it blank for the first request, indicating to start traversing from the beginning; when the pagination query result has more items, a new page_token will be returned simultaneously, which can be used to obtain the query result in the next traversal.
zh_Hans: 分页标记,第一次请求不填,表示从头开始遍历;分页查询结果还有更多项时会同时返回新的 page_token下次遍历可采用该 page_token 获取查询结果。
llm_description: 分页标记,第一次请求不填,表示从头开始遍历;分页查询结果还有更多项时会同时返回新的 page_token下次遍历可采用该 page_token 获取查询结果。
form: llm

View File

@ -0,0 +1,24 @@
from typing import Any
from core.tools.entities.tool_entities import ToolInvokeMessage
from core.tools.tool.builtin_tool import BuiltinTool
from core.tools.utils.feishu_api_utils import FeishuRequest
class UpdateEventTool(BuiltinTool):
def _invoke(self, user_id: str, tool_parameters: dict[str, Any]) -> ToolInvokeMessage:
app_id = self.runtime.credentials.get("app_id")
app_secret = self.runtime.credentials.get("app_secret")
client = FeishuRequest(app_id, app_secret)
event_id = tool_parameters.get("event_id")
summary = tool_parameters.get("summary")
description = tool_parameters.get("description")
need_notification = tool_parameters.get("need_notification", True)
start_time = tool_parameters.get("start_time")
end_time = tool_parameters.get("end_time")
auto_record = tool_parameters.get("auto_record", False)
res = client.update_event(event_id, summary, description, need_notification, start_time, end_time, auto_record)
return self.create_json_message(res)

View File

@ -0,0 +1,100 @@
identity:
name: update_event
author: Doug Lea
label:
en_US: Update Event
zh_Hans: 更新日程
description:
human:
en_US: Update Event
zh_Hans: 更新日程
llm: A tool for updating events in Feishu.(更新飞书中的日程)
parameters:
- name: event_id
type: string
required: true
label:
en_US: Event ID
zh_Hans: 日程 ID
human_description:
en_US: |
The ID of the event, for example: e8b9791c-39ae-4908-8ad8-66b13159b9fb_0.
zh_Hans: 日程 ID例如e8b9791c-39ae-4908-8ad8-66b13159b9fb_0。
llm_description: 日程 ID例如e8b9791c-39ae-4908-8ad8-66b13159b9fb_0。
form: llm
- name: summary
type: string
required: false
label:
en_US: Summary
zh_Hans: 日程标题
human_description:
en_US: The title of the event.
zh_Hans: 日程标题。
llm_description: 日程标题。
form: llm
- name: description
type: string
required: false
label:
en_US: Description
zh_Hans: 日程描述
human_description:
en_US: The description of the event.
zh_Hans: 日程描述。
llm_description: 日程描述。
form: llm
- name: need_notification
type: boolean
required: false
label:
en_US: Need Notification
zh_Hans: 是否发送通知
human_description:
en_US: |
Whether to send a bot message when the event is updated, true: send, false: do not send.
zh_Hans: 更新日程时是否发送 bot 消息true发送false不发送。
llm_description: 更新日程时是否发送 bot 消息true发送false不发送。
form: form
- name: start_time
type: string
required: false
label:
en_US: Start Time
zh_Hans: 开始时间
human_description:
en_US: |
The start time of the event, format: 2006-01-02 15:04:05.
zh_Hans: 日程开始时间格式2006-01-02 15:04:05。
llm_description: 日程开始时间格式2006-01-02 15:04:05。
form: llm
- name: end_time
type: string
required: false
label:
en_US: End Time
zh_Hans: 结束时间
human_description:
en_US: |
The end time of the event, format: 2006-01-02 15:04:05.
zh_Hans: 日程结束时间格式2006-01-02 15:04:05。
llm_description: 日程结束时间格式2006-01-02 15:04:05。
form: llm
- name: auto_record
type: boolean
required: false
label:
en_US: Auto Record
zh_Hans: 自动录制
human_description:
en_US: |
Whether to enable automatic recording, true: enabled, automatically record when the meeting starts; false: not enabled.
zh_Hans: 是否开启自动录制true开启会议开始后自动录制false不开启。
llm_description: 是否开启自动录制true开启会议开始后自动录制false不开启。
form: form

View File

@ -1,15 +1,7 @@
from core.tools.errors import ToolProviderCredentialValidationError
from core.tools.provider.builtin_tool_provider import BuiltinToolProviderController
from core.tools.utils.feishu_api_utils import FeishuRequest
from core.tools.utils.feishu_api_utils import auth
class FeishuDocumentProvider(BuiltinToolProviderController):
def _validate_credentials(self, credentials: dict) -> None:
app_id = credentials.get("app_id")
app_secret = credentials.get("app_secret")
if not app_id or not app_secret:
raise ToolProviderCredentialValidationError("app_id and app_secret is required")
try:
assert FeishuRequest(app_id, app_secret).tenant_access_token is not None
except Exception as e:
raise ToolProviderCredentialValidationError(str(e))
auth(credentials)

View File

@ -5,8 +5,10 @@ identity:
en_US: Lark Cloud Document
zh_Hans: 飞书云文档
description:
en_US: Lark Cloud Document
zh_Hans: 飞书云文档
en_US: |
Lark cloud document, requires the following permissions: docx:document、drive:drive、docs:document.content:read.
zh_Hans: |
飞书云文档,需要开通以下权限: docx:document、drive:drive、docs:document.content:read。
icon: icon.svg
tags:
- social
@ -23,7 +25,7 @@ credentials_for_provider:
help:
en_US: Get your app_id and app_secret from Feishu
zh_Hans: 从飞书获取您的 app_id 和 app_secret
url: https://open.feishu.cn
url: https://open.larkoffice.com/app
app_secret:
type: secret-input
required: true

View File

@ -7,7 +7,7 @@ identity:
description:
human:
en_US: Create Lark document
zh_Hans: 创建飞书文档,支持创建空文档和带内容的文档,支持 markdown 语法创建。
zh_Hans: 创建飞书文档,支持创建空文档和带内容的文档,支持 markdown 语法创建。应用需要开启机器人能力(https://open.feishu.cn/document/faq/trouble-shooting/how-to-enable-bot-ability)。
llm: A tool for creating Feishu documents.
parameters:
- name: title
@ -41,7 +41,8 @@ parameters:
en_US: folder_token
zh_Hans: 文档所在文件夹的 Token
human_description:
en_US: The token of the folder where the document is located. If it is not passed or is empty, it means the root directory.
zh_Hans: 文档所在文件夹的 Token不传或传空表示根目录。
llm_description: 文档所在文件夹的 Token不传或传空表示根目录。
en_US: |
The token of the folder where the document is located. If it is not passed or is empty, it means the root directory. For Example: https://svi136aogf123.feishu.cn/drive/folder/JgR9fiG9AlPt8EdsSNpcGjIInbf
zh_Hans: 文档所在文件夹的 Token不传或传空表示根目录。例如https://svi136aogf123.feishu.cn/drive/folder/JgR9fiG9AlPt8EdsSNpcGjIInbf。
llm_description: 文档所在文件夹的 Token不传或传空表示根目录。例如https://svi136aogf123.feishu.cn/drive/folder/JgR9fiG9AlPt8EdsSNpcGjIInbf。
form: llm

View File

@ -12,8 +12,8 @@ class GetDocumentRawContentTool(BuiltinTool):
client = FeishuRequest(app_id, app_secret)
document_id = tool_parameters.get("document_id")
mode = tool_parameters.get("mode")
lang = tool_parameters.get("lang", 0)
mode = tool_parameters.get("mode", "markdown")
lang = tool_parameters.get("lang", "0")
res = client.get_document_content(document_id, mode, lang)
return self.create_json_message(res)

View File

@ -23,8 +23,18 @@ parameters:
form: llm
- name: mode
type: string
type: select
required: false
options:
- value: text
label:
en_US: text
zh_Hans: text
- value: markdown
label:
en_US: markdown
zh_Hans: markdown
default: "markdown"
label:
en_US: mode
zh_Hans: 文档返回格式
@ -32,18 +42,29 @@ parameters:
en_US: Format of the document return, optional values are text, markdown, can be empty, default is markdown.
zh_Hans: 文档返回格式,可选值有 text、markdown可以为空默认值为 markdown。
llm_description: 文档返回格式,可选值有 text、markdown可以为空默认值为 markdown。
form: llm
form: form
- name: lang
type: number
type: select
required: false
default: 0
options:
- value: "0"
label:
en_US: User's default name
zh_Hans: 用户的默认名称
- value: "1"
label:
en_US: User's English name
zh_Hans: 用户的英文名称
default: "0"
label:
en_US: lang
zh_Hans: 指定@用户的语言
human_description:
en_US: |
Specifies the language for MentionUser, optional values are [0, 1]. 0: User's default name, 1: User's English name, default is 0.
zh_Hans: 指定返回的 MentionUser即 @用户 的语言,可选值有 [0,1]。0该用户的默认名称1该用户的英文名称默认值为 0。
llm_description: 指定返回的 MentionUser即 @用户 的语言,可选值有 [0,1]。0该用户的默认名称1该用户的英文名称默认值为 0。
form: llm
zh_Hans: |
指定返回的 MentionUser即@用户的语言,可选值有 [0,1]。0: 该用户的默认名称1: 该用户的英文名称,默认值为 0。
llm_description: |
指定返回的 MentionUser即@用户的语言,可选值有 [0,1]。0: 该用户的默认名称1: 该用户的英文名称,默认值为 0。
form: form

View File

@ -12,8 +12,9 @@ class ListDocumentBlockTool(BuiltinTool):
client = FeishuRequest(app_id, app_secret)
document_id = tool_parameters.get("document_id")
page_size = tool_parameters.get("page_size", 500)
page_token = tool_parameters.get("page_token", "")
user_id_type = tool_parameters.get("user_id_type", "open_id")
page_size = tool_parameters.get("page_size", 500)
res = client.list_document_blocks(document_id, page_token, page_size)
res = client.list_document_blocks(document_id, page_token, user_id_type, page_size)
return self.create_json_message(res)

View File

@ -46,12 +46,12 @@ parameters:
en_US: User ID type, optional values are open_id, union_id, user_id, with a default value of open_id.
zh_Hans: 用户 ID 类型,可选值有 open_id、union_id、user_id默认值为 open_id。
llm_description: 用户 ID 类型,可选值有 open_id、union_id、user_id默认值为 open_id。
form: llm
form: form
- name: page_size
type: number
required: false
default: "500"
default: 500
label:
en_US: page_size
zh_Hans: 分页大小

View File

@ -13,7 +13,7 @@ class CreateDocumentTool(BuiltinTool):
document_id = tool_parameters.get("document_id")
content = tool_parameters.get("content")
position = tool_parameters.get("position")
position = tool_parameters.get("position", "end")
res = client.write_document(document_id, content, position)
return self.create_json_message(res)

Some files were not shown because too many files have changed in this diff Show More