refactor(variables): replace deprecated 'get_any' with 'get' method (#9584)

This commit is contained in:
-LAN- 2024-10-22 10:49:19 +08:00 committed by GitHub
parent 5838345f48
commit 8f670f31b8
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
8 changed files with 95 additions and 77 deletions

View File

@ -4,7 +4,6 @@ from collections.abc import Mapping, Sequence
from typing import Any, Union
from pydantic import BaseModel, Field
from typing_extensions import deprecated
from core.file import File, FileAttribute, file_manager
from core.variables import Segment, SegmentGroup, Variable
@ -133,26 +132,6 @@ class VariablePool(BaseModel):
return value
@deprecated("This method is deprecated, use `get` instead.")
def get_any(self, selector: Sequence[str], /) -> Any | None:
"""
Retrieves the value from the variable pool based on the given selector.
Args:
selector (Sequence[str]): The selector used to identify the variable.
Returns:
Any: The value associated with the given selector.
Raises:
ValueError: If the selector is invalid.
"""
if len(selector) < 2:
raise ValueError("Invalid selector")
hash_key = hash(tuple(selector[1:]))
value = self.variable_dictionary[selector[0]].get(hash_key)
return value.to_object() if value else None
def remove(self, selector: Sequence[str], /):
"""
Remove variables from the variable pool based on the given selector.

View File

@ -41,10 +41,15 @@ class CodeNode(BaseNode[CodeNodeData]):
# Get variables
variables = {}
for variable_selector in self.node_data.variables:
variable = variable_selector.variable
value = self.graph_runtime_state.variable_pool.get_any(variable_selector.value_selector)
variables[variable] = value
variable_name = variable_selector.variable
variable = self.graph_runtime_state.variable_pool.get(variable_selector.value_selector)
if variable is None:
return NodeRunResult(
status=WorkflowNodeExecutionStatus.FAILED,
inputs=variables,
error=f"Variable `{variable_selector.value_selector}` not found",
)
variables[variable_name] = variable.to_object()
# Run code
try:
result = CodeExecutor.execute_workflow_code_template(

View File

@ -5,6 +5,7 @@ from typing import Any, cast
from configs import dify_config
from core.model_runtime.utils.encoders import jsonable_encoder
from core.variables import IntegerSegment
from core.workflow.entities.node_entities import NodeRunMetadataKey, NodeRunResult
from core.workflow.graph_engine.entities.event import (
BaseGraphEvent,
@ -147,9 +148,16 @@ class IterationNode(BaseNode[IterationNodeData]):
if NodeRunMetadataKey.ITERATION_ID not in metadata:
metadata[NodeRunMetadataKey.ITERATION_ID] = self.node_id
metadata[NodeRunMetadataKey.ITERATION_INDEX] = variable_pool.get_any(
[self.node_id, "index"]
)
index_variable = variable_pool.get([self.node_id, "index"])
if not isinstance(index_variable, IntegerSegment):
yield RunCompletedEvent(
run_result=NodeRunResult(
status=WorkflowNodeExecutionStatus.FAILED,
error=f"Invalid index variable type: {type(index_variable)}",
)
)
return
metadata[NodeRunMetadataKey.ITERATION_INDEX] = index_variable.value
event.route_node_state.node_run_result.metadata = metadata
yield event
@ -181,7 +189,16 @@ class IterationNode(BaseNode[IterationNodeData]):
yield event
# append to iteration output variable list
current_iteration_output = variable_pool.get_any(self.node_data.output_selector)
current_iteration_output_variable = variable_pool.get(self.node_data.output_selector)
if current_iteration_output_variable is None:
yield RunCompletedEvent(
run_result=NodeRunResult(
status=WorkflowNodeExecutionStatus.FAILED,
error=f"Iteration output variable {self.node_data.output_selector} not found",
)
)
return
current_iteration_output = current_iteration_output_variable.to_object()
outputs.append(current_iteration_output)
# remove all nodes outputs from variable pool
@ -189,11 +206,11 @@ class IterationNode(BaseNode[IterationNodeData]):
variable_pool.remove([node_id])
# move to next iteration
current_index = variable_pool.get([self.node_id, "index"])
if current_index is None:
current_index_variable = variable_pool.get([self.node_id, "index"])
if not isinstance(current_index_variable, IntegerSegment):
raise ValueError(f"iteration {self.node_id} current index not found")
next_index = int(current_index.to_object()) + 1
next_index = current_index_variable.value + 1
variable_pool.add([self.node_id, "index"], next_index)
if next_index < len(iterator_list_value):
@ -205,9 +222,7 @@ class IterationNode(BaseNode[IterationNodeData]):
iteration_node_type=self.node_type,
iteration_node_data=self.node_data,
index=next_index,
pre_iteration_output=jsonable_encoder(current_iteration_output)
if current_iteration_output
else None,
pre_iteration_output=jsonable_encoder(current_iteration_output),
)
yield IterationRunSucceededEvent(

View File

@ -14,6 +14,7 @@ from core.model_runtime.entities.model_entities import ModelFeature, ModelType
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
from core.rag.retrieval.dataset_retrieval import DatasetRetrieval
from core.rag.retrieval.retrieval_methods import RetrievalMethod
from core.variables import StringSegment
from core.workflow.entities.node_entities import NodeRunResult
from core.workflow.nodes.base import BaseNode
from core.workflow.nodes.enums import NodeType
@ -39,8 +40,14 @@ class KnowledgeRetrievalNode(BaseNode[KnowledgeRetrievalNodeData]):
def _run(self) -> NodeRunResult:
# extract variables
variable = self.graph_runtime_state.variable_pool.get_any(self.node_data.query_variable_selector)
query = variable
variable = self.graph_runtime_state.variable_pool.get(self.node_data.query_variable_selector)
if not isinstance(variable, StringSegment):
return NodeRunResult(
status=WorkflowNodeExecutionStatus.FAILED,
inputs={},
error="Query variable is not string type.",
)
query = variable.value
variables = {"query": query}
if not query:
return NodeRunResult(

View File

@ -22,7 +22,15 @@ from core.model_runtime.utils.encoders import jsonable_encoder
from core.prompt.advanced_prompt_transform import AdvancedPromptTransform
from core.prompt.entities.advanced_prompt_entities import CompletionModelPromptTemplate, MemoryConfig
from core.prompt.utils.prompt_message_util import PromptMessageUtil
from core.variables import ArrayAnySegment, ArrayFileSegment, FileSegment, NoneSegment
from core.variables import (
ArrayAnySegment,
ArrayFileSegment,
ArraySegment,
FileSegment,
NoneSegment,
ObjectSegment,
StringSegment,
)
from core.workflow.constants import SYSTEM_VARIABLE_NODE_ID
from core.workflow.entities.node_entities import NodeRunMetadataKey, NodeRunResult
from core.workflow.enums import SystemVariableKey
@ -263,50 +271,44 @@ class LLMNode(BaseNode[LLMNodeData]):
return variables
for variable_selector in node_data.prompt_config.jinja2_variables or []:
variable = variable_selector.variable
value = self.graph_runtime_state.variable_pool.get_any(variable_selector.value_selector)
variable_name = variable_selector.variable
variable = self.graph_runtime_state.variable_pool.get(variable_selector.value_selector)
if variable is None:
raise ValueError(f"Variable {variable_selector.variable} not found")
def parse_dict(d: dict) -> str:
def parse_dict(input_dict: Mapping[str, Any]) -> str:
"""
Parse dict into string
"""
# check if it's a context structure
if "metadata" in d and "_source" in d["metadata"] and "content" in d:
return d["content"]
if "metadata" in input_dict and "_source" in input_dict["metadata"] and "content" in input_dict:
return input_dict["content"]
# else, parse the dict
try:
return json.dumps(d, ensure_ascii=False)
return json.dumps(input_dict, ensure_ascii=False)
except Exception:
return str(d)
return str(input_dict)
if isinstance(value, str):
value = value
elif isinstance(value, list):
if isinstance(variable, ArraySegment):
result = ""
for item in value:
for item in variable.value:
if isinstance(item, dict):
result += parse_dict(item)
elif isinstance(item, str):
result += item
elif isinstance(item, int | float):
result += str(item)
else:
result += str(item)
result += "\n"
value = result.strip()
elif isinstance(value, dict):
value = parse_dict(value)
elif isinstance(value, int | float):
value = str(value)
elif isinstance(variable, ObjectSegment):
value = parse_dict(variable.value)
else:
value = str(value)
value = variable.text
variables[variable] = value
variables[variable_name] = value
return variables
def _fetch_inputs(self, node_data: LLMNodeData) -> dict[str, str]:
def _fetch_inputs(self, node_data: LLMNodeData) -> dict[str, Any]:
inputs = {}
prompt_template = node_data.prompt_template
@ -363,14 +365,14 @@ class LLMNode(BaseNode[LLMNodeData]):
if not node_data.context.variable_selector:
return
context_value = self.graph_runtime_state.variable_pool.get_any(node_data.context.variable_selector)
if context_value:
if isinstance(context_value, str):
yield RunRetrieverResourceEvent(retriever_resources=[], context=context_value)
elif isinstance(context_value, list):
context_value_variable = self.graph_runtime_state.variable_pool.get(node_data.context.variable_selector)
if context_value_variable:
if isinstance(context_value_variable, StringSegment):
yield RunRetrieverResourceEvent(retriever_resources=[], context=context_value_variable.value)
elif isinstance(context_value_variable, ArraySegment):
context_str = ""
original_retriever_resource = []
for item in context_value:
for item in context_value_variable.value:
if isinstance(item, str):
context_str += item + "\n"
else:
@ -484,11 +486,12 @@ class LLMNode(BaseNode[LLMNodeData]):
return None
# get conversation id
conversation_id = self.graph_runtime_state.variable_pool.get_any(
conversation_id_variable = self.graph_runtime_state.variable_pool.get(
["sys", SystemVariableKey.CONVERSATION_ID.value]
)
if conversation_id is None:
if not isinstance(conversation_id_variable, StringSegment):
return None
conversation_id = conversation_id_variable.value
# get conversation
conversation = (

View File

@ -33,8 +33,13 @@ class TemplateTransformNode(BaseNode[TemplateTransformNodeData]):
variables = {}
for variable_selector in self.node_data.variables:
variable_name = variable_selector.variable
value = self.graph_runtime_state.variable_pool.get_any(variable_selector.value_selector)
variables[variable_name] = value
value = self.graph_runtime_state.variable_pool.get(variable_selector.value_selector)
if value is None:
return NodeRunResult(
status=WorkflowNodeExecutionStatus.FAILED,
error=f"Variable {variable_name} not found in variable pool",
)
variables[variable_name] = value.to_object()
# Run code
try:
result = CodeExecutor.execute_workflow_code_template(

View File

@ -19,27 +19,27 @@ class VariableAggregatorNode(BaseNode[VariableAssignerNodeData]):
if not self.node_data.advanced_settings or not self.node_data.advanced_settings.group_enabled:
for selector in self.node_data.variables:
variable = self.graph_runtime_state.variable_pool.get_any(selector)
variable = self.graph_runtime_state.variable_pool.get(selector)
if variable is not None:
outputs = {"output": variable}
outputs = {"output": variable.to_object()}
inputs = {".".join(selector[1:]): variable}
inputs = {".".join(selector[1:]): variable.to_object()}
break
else:
for group in self.node_data.advanced_settings.groups:
for selector in group.variables:
variable = self.graph_runtime_state.variable_pool.get_any(selector)
variable = self.graph_runtime_state.variable_pool.get(selector)
if variable is not None:
outputs[group.group_name] = {"output": variable}
inputs[".".join(selector[1:])] = variable
outputs[group.group_name] = {"output": variable.to_object()}
inputs[".".join(selector[1:])] = variable.to_object()
break
return NodeRunResult(status=WorkflowNodeExecutionStatus.SUCCEEDED, outputs=outputs, inputs=inputs)
@classmethod
def _extract_variable_selector_to_variable_mapping(
cls, graph_config: Mapping[str, Any], node_id: str, node_data: VariableAssignerNodeData
cls, *, graph_config: Mapping[str, Any], node_id: str, node_data: VariableAssignerNodeData
) -> Mapping[str, Sequence[str]]:
"""
Extract variable selector to variable mapping

View File

@ -102,6 +102,8 @@ def test_execute_code(setup_code_executor_mock):
}
node = init_code_node(code_config)
node.graph_runtime_state.variable_pool.add(["1", "123", "args1"], 1)
node.graph_runtime_state.variable_pool.add(["1", "123", "args2"], 2)
# execute node
result = node._run()
@ -146,6 +148,8 @@ def test_execute_code_output_validator(setup_code_executor_mock):
}
node = init_code_node(code_config)
node.graph_runtime_state.variable_pool.add(["1", "123", "args1"], 1)
node.graph_runtime_state.variable_pool.add(["1", "123", "args2"], 2)
# execute node
result = node._run()