mirror of
https://github.com/langgenius/dify.git
synced 2024-11-16 03:32:23 +08:00
feat: support AnalyticDB vector store (#5586)
Co-authored-by: xiaozeyu <xiaozeyu.xzy@alibaba-inc.com>
This commit is contained in:
parent
6ef401a9f0
commit
7c70eb87bc
|
@ -151,6 +151,16 @@ CHROMA_DATABASE=default_database
|
|||
CHROMA_AUTH_PROVIDER=chromadb.auth.token_authn.TokenAuthenticationServerProvider
|
||||
CHROMA_AUTH_CREDENTIALS=difyai123456
|
||||
|
||||
# AnalyticDB configuration
|
||||
ANALYTICDB_KEY_ID=your-ak
|
||||
ANALYTICDB_KEY_SECRET=your-sk
|
||||
ANALYTICDB_REGION_ID=cn-hangzhou
|
||||
ANALYTICDB_INSTANCE_ID=gp-ab123456
|
||||
ANALYTICDB_ACCOUNT=testaccount
|
||||
ANALYTICDB_PASSWORD=testpassword
|
||||
ANALYTICDB_NAMESPACE=dify
|
||||
ANALYTICDB_NAMESPACE_PASSWORD=difypassword
|
||||
|
||||
# OpenSearch configuration
|
||||
OPENSEARCH_HOST=127.0.0.1
|
||||
OPENSEARCH_PORT=9200
|
||||
|
|
|
@ -337,6 +337,14 @@ def migrate_knowledge_vector_database():
|
|||
"vector_store": {"class_prefix": collection_name}
|
||||
}
|
||||
dataset.index_struct = json.dumps(index_struct_dict)
|
||||
elif vector_type == VectorType.ANALYTICDB:
|
||||
dataset_id = dataset.id
|
||||
collection_name = Dataset.gen_collection_name_by_id(dataset_id)
|
||||
index_struct_dict = {
|
||||
"type": VectorType.ANALYTICDB,
|
||||
"vector_store": {"class_prefix": collection_name}
|
||||
}
|
||||
dataset.index_struct = json.dumps(index_struct_dict)
|
||||
else:
|
||||
raise ValueError(f"Vector store {vector_type} is not supported.")
|
||||
|
||||
|
|
|
@ -10,6 +10,7 @@ from configs.middleware.storage.azure_blob_storage_config import AzureBlobStorag
|
|||
from configs.middleware.storage.google_cloud_storage_config import GoogleCloudStorageConfig
|
||||
from configs.middleware.storage.oci_storage_config import OCIStorageConfig
|
||||
from configs.middleware.storage.tencent_cos_storage_config import TencentCloudCOSStorageConfig
|
||||
from configs.middleware.vdb.analyticdb_config import AnalyticdbConfig
|
||||
from configs.middleware.vdb.chroma_config import ChromaConfig
|
||||
from configs.middleware.vdb.milvus_config import MilvusConfig
|
||||
from configs.middleware.vdb.opensearch_config import OpenSearchConfig
|
||||
|
@ -183,6 +184,7 @@ class MiddlewareConfig(
|
|||
|
||||
# configs of vdb and vdb providers
|
||||
VectorStoreConfig,
|
||||
AnalyticdbConfig,
|
||||
ChromaConfig,
|
||||
MilvusConfig,
|
||||
OpenSearchConfig,
|
||||
|
|
44
api/configs/middleware/vdb/analyticdb_config.py
Normal file
44
api/configs/middleware/vdb/analyticdb_config.py
Normal file
|
@ -0,0 +1,44 @@
|
|||
from typing import Optional
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
||||
class AnalyticdbConfig(BaseModel):
|
||||
"""
|
||||
Configuration for connecting to AnalyticDB.
|
||||
Refer to the following documentation for details on obtaining credentials:
|
||||
https://www.alibabacloud.com/help/en/analyticdb-for-postgresql/getting-started/create-an-instance-instances-with-vector-engine-optimization-enabled
|
||||
"""
|
||||
|
||||
ANALYTICDB_KEY_ID : Optional[str] = Field(
|
||||
default=None,
|
||||
description="The Access Key ID provided by Alibaba Cloud for authentication."
|
||||
)
|
||||
ANALYTICDB_KEY_SECRET : Optional[str] = Field(
|
||||
default=None,
|
||||
description="The Secret Access Key corresponding to the Access Key ID for secure access."
|
||||
)
|
||||
ANALYTICDB_REGION_ID : Optional[str] = Field(
|
||||
default=None,
|
||||
description="The region where the AnalyticDB instance is deployed (e.g., 'cn-hangzhou')."
|
||||
)
|
||||
ANALYTICDB_INSTANCE_ID : Optional[str] = Field(
|
||||
default=None,
|
||||
description="The unique identifier of the AnalyticDB instance you want to connect to (e.g., 'gp-ab123456').."
|
||||
)
|
||||
ANALYTICDB_ACCOUNT : Optional[str] = Field(
|
||||
default=None,
|
||||
description="The account name used to log in to the AnalyticDB instance."
|
||||
)
|
||||
ANALYTICDB_PASSWORD : Optional[str] = Field(
|
||||
default=None,
|
||||
description="The password associated with the AnalyticDB account for authentication."
|
||||
)
|
||||
ANALYTICDB_NAMESPACE : Optional[str] = Field(
|
||||
default=None,
|
||||
description="The namespace within AnalyticDB for schema isolation."
|
||||
)
|
||||
ANALYTICDB_NAMESPACE_PASSWORD : Optional[str] = Field(
|
||||
default=None,
|
||||
description="The password for accessing the specified namespace within the AnalyticDB instance."
|
||||
)
|
|
@ -515,7 +515,7 @@ class DatasetRetrievalSettingApi(Resource):
|
|||
RetrievalMethod.SEMANTIC_SEARCH
|
||||
]
|
||||
}
|
||||
case VectorType.QDRANT | VectorType.WEAVIATE | VectorType.OPENSEARCH:
|
||||
case VectorType.QDRANT | VectorType.WEAVIATE | VectorType.OPENSEARCH | VectorType.ANALYTICDB:
|
||||
return {
|
||||
'retrieval_method': [
|
||||
RetrievalMethod.SEMANTIC_SEARCH,
|
||||
|
@ -539,7 +539,7 @@ class DatasetRetrievalSettingMockApi(Resource):
|
|||
RetrievalMethod.SEMANTIC_SEARCH
|
||||
]
|
||||
}
|
||||
case VectorType.QDRANT | VectorType.WEAVIATE | VectorType.OPENSEARCH:
|
||||
case VectorType.QDRANT | VectorType.WEAVIATE | VectorType.OPENSEARCH| VectorType.ANALYTICDB:
|
||||
return {
|
||||
'retrieval_method': [
|
||||
RetrievalMethod.SEMANTIC_SEARCH,
|
||||
|
|
0
api/core/rag/datasource/vdb/analyticdb/__init__.py
Normal file
0
api/core/rag/datasource/vdb/analyticdb/__init__.py
Normal file
332
api/core/rag/datasource/vdb/analyticdb/analyticdb_vector.py
Normal file
332
api/core/rag/datasource/vdb/analyticdb/analyticdb_vector.py
Normal file
|
@ -0,0 +1,332 @@
|
|||
import json
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
_import_err_msg = (
|
||||
"`alibabacloud_gpdb20160503` and `alibabacloud_tea_openapi` packages not found, "
|
||||
"please run `pip install alibabacloud_gpdb20160503 alibabacloud_tea_openapi`"
|
||||
)
|
||||
from flask import current_app
|
||||
|
||||
from core.rag.datasource.entity.embedding import Embeddings
|
||||
from core.rag.datasource.vdb.vector_base import BaseVector
|
||||
from core.rag.datasource.vdb.vector_factory import AbstractVectorFactory
|
||||
from core.rag.datasource.vdb.vector_type import VectorType
|
||||
from core.rag.models.document import Document
|
||||
from extensions.ext_redis import redis_client
|
||||
from models.dataset import Dataset
|
||||
|
||||
|
||||
class AnalyticdbConfig(BaseModel):
|
||||
access_key_id: str
|
||||
access_key_secret: str
|
||||
region_id: str
|
||||
instance_id: str
|
||||
account: str
|
||||
account_password: str
|
||||
namespace: str = ("dify",)
|
||||
namespace_password: str = (None,)
|
||||
metrics: str = ("cosine",)
|
||||
read_timeout: int = 60000
|
||||
def to_analyticdb_client_params(self):
|
||||
return {
|
||||
"access_key_id": self.access_key_id,
|
||||
"access_key_secret": self.access_key_secret,
|
||||
"region_id": self.region_id,
|
||||
"read_timeout": self.read_timeout,
|
||||
}
|
||||
|
||||
class AnalyticdbVector(BaseVector):
|
||||
_instance = None
|
||||
_init = False
|
||||
|
||||
def __new__(cls, *args, **kwargs):
|
||||
if cls._instance is None:
|
||||
cls._instance = super().__new__(cls)
|
||||
return cls._instance
|
||||
|
||||
def __init__(self, collection_name: str, config: AnalyticdbConfig):
|
||||
# collection_name must be updated every time
|
||||
self._collection_name = collection_name.lower()
|
||||
if AnalyticdbVector._init:
|
||||
return
|
||||
try:
|
||||
from alibabacloud_gpdb20160503.client import Client
|
||||
from alibabacloud_tea_openapi import models as open_api_models
|
||||
except:
|
||||
raise ImportError(_import_err_msg)
|
||||
self.config = config
|
||||
self._client_config = open_api_models.Config(
|
||||
user_agent="dify", **config.to_analyticdb_client_params()
|
||||
)
|
||||
self._client = Client(self._client_config)
|
||||
self._initialize()
|
||||
AnalyticdbVector._init = True
|
||||
|
||||
def _initialize(self) -> None:
|
||||
self._initialize_vector_database()
|
||||
self._create_namespace_if_not_exists()
|
||||
|
||||
def _initialize_vector_database(self) -> None:
|
||||
from alibabacloud_gpdb20160503 import models as gpdb_20160503_models
|
||||
request = gpdb_20160503_models.InitVectorDatabaseRequest(
|
||||
dbinstance_id=self.config.instance_id,
|
||||
region_id=self.config.region_id,
|
||||
manager_account=self.config.account,
|
||||
manager_account_password=self.config.account_password,
|
||||
)
|
||||
self._client.init_vector_database(request)
|
||||
|
||||
def _create_namespace_if_not_exists(self) -> None:
|
||||
from alibabacloud_gpdb20160503 import models as gpdb_20160503_models
|
||||
from Tea.exceptions import TeaException
|
||||
try:
|
||||
request = gpdb_20160503_models.DescribeNamespaceRequest(
|
||||
dbinstance_id=self.config.instance_id,
|
||||
region_id=self.config.region_id,
|
||||
namespace=self.config.namespace,
|
||||
manager_account=self.config.account,
|
||||
manager_account_password=self.config.account_password,
|
||||
)
|
||||
self._client.describe_namespace(request)
|
||||
except TeaException as e:
|
||||
if e.statusCode == 404:
|
||||
request = gpdb_20160503_models.CreateNamespaceRequest(
|
||||
dbinstance_id=self.config.instance_id,
|
||||
region_id=self.config.region_id,
|
||||
manager_account=self.config.account,
|
||||
manager_account_password=self.config.account_password,
|
||||
namespace=self.config.namespace,
|
||||
namespace_password=self.config.namespace_password,
|
||||
)
|
||||
self._client.create_namespace(request)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"failed to create namespace {self.config.namespace}: {e}"
|
||||
)
|
||||
|
||||
def _create_collection_if_not_exists(self, embedding_dimension: int):
|
||||
from alibabacloud_gpdb20160503 import models as gpdb_20160503_models
|
||||
from Tea.exceptions import TeaException
|
||||
cache_key = f"vector_indexing_{self._collection_name}"
|
||||
lock_name = f"{cache_key}_lock"
|
||||
with redis_client.lock(lock_name, timeout=20):
|
||||
collection_exist_cache_key = f"vector_indexing_{self._collection_name}"
|
||||
if redis_client.get(collection_exist_cache_key):
|
||||
return
|
||||
try:
|
||||
request = gpdb_20160503_models.DescribeCollectionRequest(
|
||||
dbinstance_id=self.config.instance_id,
|
||||
region_id=self.config.region_id,
|
||||
namespace=self.config.namespace,
|
||||
namespace_password=self.config.namespace_password,
|
||||
collection=self._collection_name,
|
||||
)
|
||||
self._client.describe_collection(request)
|
||||
except TeaException as e:
|
||||
if e.statusCode == 404:
|
||||
metadata = '{"ref_doc_id":"text","page_content":"text","metadata_":"jsonb"}'
|
||||
full_text_retrieval_fields = "page_content"
|
||||
request = gpdb_20160503_models.CreateCollectionRequest(
|
||||
dbinstance_id=self.config.instance_id,
|
||||
region_id=self.config.region_id,
|
||||
manager_account=self.config.account,
|
||||
manager_account_password=self.config.account_password,
|
||||
namespace=self.config.namespace,
|
||||
collection=self._collection_name,
|
||||
dimension=embedding_dimension,
|
||||
metrics=self.config.metrics,
|
||||
metadata=metadata,
|
||||
full_text_retrieval_fields=full_text_retrieval_fields,
|
||||
)
|
||||
self._client.create_collection(request)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"failed to create collection {self._collection_name}: {e}"
|
||||
)
|
||||
redis_client.set(collection_exist_cache_key, 1, ex=3600)
|
||||
|
||||
def get_type(self) -> str:
|
||||
return VectorType.ANALYTICDB
|
||||
|
||||
def create(self, texts: list[Document], embeddings: list[list[float]], **kwargs):
|
||||
dimension = len(embeddings[0])
|
||||
self._create_collection_if_not_exists(dimension)
|
||||
self.add_texts(texts, embeddings)
|
||||
|
||||
def add_texts(
|
||||
self, documents: list[Document], embeddings: list[list[float]], **kwargs
|
||||
):
|
||||
from alibabacloud_gpdb20160503 import models as gpdb_20160503_models
|
||||
rows: list[gpdb_20160503_models.UpsertCollectionDataRequestRows] = []
|
||||
for doc, embedding in zip(documents, embeddings, strict=True):
|
||||
metadata = {
|
||||
"ref_doc_id": doc.metadata["doc_id"],
|
||||
"page_content": doc.page_content,
|
||||
"metadata_": json.dumps(doc.metadata),
|
||||
}
|
||||
rows.append(
|
||||
gpdb_20160503_models.UpsertCollectionDataRequestRows(
|
||||
vector=embedding,
|
||||
metadata=metadata,
|
||||
)
|
||||
)
|
||||
request = gpdb_20160503_models.UpsertCollectionDataRequest(
|
||||
dbinstance_id=self.config.instance_id,
|
||||
region_id=self.config.region_id,
|
||||
namespace=self.config.namespace,
|
||||
namespace_password=self.config.namespace_password,
|
||||
collection=self._collection_name,
|
||||
rows=rows,
|
||||
)
|
||||
self._client.upsert_collection_data(request)
|
||||
|
||||
def text_exists(self, id: str) -> bool:
|
||||
from alibabacloud_gpdb20160503 import models as gpdb_20160503_models
|
||||
request = gpdb_20160503_models.QueryCollectionDataRequest(
|
||||
dbinstance_id=self.config.instance_id,
|
||||
region_id=self.config.region_id,
|
||||
namespace=self.config.namespace,
|
||||
namespace_password=self.config.namespace_password,
|
||||
collection=self._collection_name,
|
||||
metrics=self.config.metrics,
|
||||
include_values=True,
|
||||
vector=None,
|
||||
content=None,
|
||||
top_k=1,
|
||||
filter=f"ref_doc_id='{id}'"
|
||||
)
|
||||
response = self._client.query_collection_data(request)
|
||||
return len(response.body.matches.match) > 0
|
||||
|
||||
def delete_by_ids(self, ids: list[str]) -> None:
|
||||
from alibabacloud_gpdb20160503 import models as gpdb_20160503_models
|
||||
ids_str = ",".join(f"'{id}'" for id in ids)
|
||||
ids_str = f"({ids_str})"
|
||||
request = gpdb_20160503_models.DeleteCollectionDataRequest(
|
||||
dbinstance_id=self.config.instance_id,
|
||||
region_id=self.config.region_id,
|
||||
namespace=self.config.namespace,
|
||||
namespace_password=self.config.namespace_password,
|
||||
collection=self._collection_name,
|
||||
collection_data=None,
|
||||
collection_data_filter=f"ref_doc_id IN {ids_str}",
|
||||
)
|
||||
self._client.delete_collection_data(request)
|
||||
|
||||
def delete_by_metadata_field(self, key: str, value: str) -> None:
|
||||
from alibabacloud_gpdb20160503 import models as gpdb_20160503_models
|
||||
request = gpdb_20160503_models.DeleteCollectionDataRequest(
|
||||
dbinstance_id=self.config.instance_id,
|
||||
region_id=self.config.region_id,
|
||||
namespace=self.config.namespace,
|
||||
namespace_password=self.config.namespace_password,
|
||||
collection=self._collection_name,
|
||||
collection_data=None,
|
||||
collection_data_filter=f"metadata_ ->> '{key}' = '{value}'",
|
||||
)
|
||||
self._client.delete_collection_data(request)
|
||||
|
||||
def search_by_vector(
|
||||
self, query_vector: list[float], **kwargs: Any
|
||||
) -> list[Document]:
|
||||
from alibabacloud_gpdb20160503 import models as gpdb_20160503_models
|
||||
score_threshold = (
|
||||
kwargs.get("score_threshold", 0.0)
|
||||
if kwargs.get("score_threshold", 0.0)
|
||||
else 0.0
|
||||
)
|
||||
request = gpdb_20160503_models.QueryCollectionDataRequest(
|
||||
dbinstance_id=self.config.instance_id,
|
||||
region_id=self.config.region_id,
|
||||
namespace=self.config.namespace,
|
||||
namespace_password=self.config.namespace_password,
|
||||
collection=self._collection_name,
|
||||
include_values=kwargs.pop("include_values", True),
|
||||
metrics=self.config.metrics,
|
||||
vector=query_vector,
|
||||
content=None,
|
||||
top_k=kwargs.get("top_k", 4),
|
||||
filter=None,
|
||||
)
|
||||
response = self._client.query_collection_data(request)
|
||||
documents = []
|
||||
for match in response.body.matches.match:
|
||||
if match.score > score_threshold:
|
||||
doc = Document(
|
||||
page_content=match.metadata.get("page_content"),
|
||||
metadata=json.loads(match.metadata.get("metadata_")),
|
||||
)
|
||||
documents.append(doc)
|
||||
return documents
|
||||
|
||||
def search_by_full_text(self, query: str, **kwargs: Any) -> list[Document]:
|
||||
from alibabacloud_gpdb20160503 import models as gpdb_20160503_models
|
||||
score_threshold = (
|
||||
kwargs.get("score_threshold", 0.0)
|
||||
if kwargs.get("score_threshold", 0.0)
|
||||
else 0.0
|
||||
)
|
||||
request = gpdb_20160503_models.QueryCollectionDataRequest(
|
||||
dbinstance_id=self.config.instance_id,
|
||||
region_id=self.config.region_id,
|
||||
namespace=self.config.namespace,
|
||||
namespace_password=self.config.namespace_password,
|
||||
collection=self._collection_name,
|
||||
include_values=kwargs.pop("include_values", True),
|
||||
metrics=self.config.metrics,
|
||||
vector=None,
|
||||
content=query,
|
||||
top_k=kwargs.get("top_k", 4),
|
||||
filter=None,
|
||||
)
|
||||
response = self._client.query_collection_data(request)
|
||||
documents = []
|
||||
for match in response.body.matches.match:
|
||||
if match.score > score_threshold:
|
||||
doc = Document(
|
||||
page_content=match.metadata.get("page_content"),
|
||||
metadata=json.loads(match.metadata.get("metadata_")),
|
||||
)
|
||||
documents.append(doc)
|
||||
return documents
|
||||
|
||||
def delete(self) -> None:
|
||||
from alibabacloud_gpdb20160503 import models as gpdb_20160503_models
|
||||
request = gpdb_20160503_models.DeleteCollectionRequest(
|
||||
collection=self._collection_name,
|
||||
dbinstance_id=self.config.instance_id,
|
||||
namespace=self.config.namespace,
|
||||
namespace_password=self.config.namespace_password,
|
||||
region_id=self.config.region_id,
|
||||
)
|
||||
self._client.delete_collection(request)
|
||||
|
||||
class AnalyticdbVectorFactory(AbstractVectorFactory):
|
||||
def init_vector(self, dataset: Dataset, attributes: list, embeddings: Embeddings):
|
||||
if dataset.index_struct_dict:
|
||||
class_prefix: str = dataset.index_struct_dict["vector_store"][
|
||||
"class_prefix"
|
||||
]
|
||||
collection_name = class_prefix.lower()
|
||||
else:
|
||||
dataset_id = dataset.id
|
||||
collection_name = Dataset.gen_collection_name_by_id(dataset_id).lower()
|
||||
dataset.index_struct = json.dumps(
|
||||
self.gen_index_struct_dict(VectorType.ANALYTICDB, collection_name)
|
||||
)
|
||||
config = current_app.config
|
||||
return AnalyticdbVector(
|
||||
collection_name,
|
||||
AnalyticdbConfig(
|
||||
access_key_id=config.get("ANALYTICDB_KEY_ID"),
|
||||
access_key_secret=config.get("ANALYTICDB_KEY_SECRET"),
|
||||
region_id=config.get("ANALYTICDB_REGION_ID"),
|
||||
instance_id=config.get("ANALYTICDB_INSTANCE_ID"),
|
||||
account=config.get("ANALYTICDB_ACCOUNT"),
|
||||
account_password=config.get("ANALYTICDB_PASSWORD"),
|
||||
namespace=config.get("ANALYTICDB_NAMESPACE"),
|
||||
namespace_password=config.get("ANALYTICDB_NAMESPACE_PASSWORD"),
|
||||
),
|
||||
)
|
|
@ -84,6 +84,9 @@ class Vector:
|
|||
case VectorType.OPENSEARCH:
|
||||
from core.rag.datasource.vdb.opensearch.opensearch_vector import OpenSearchVectorFactory
|
||||
return OpenSearchVectorFactory
|
||||
case VectorType.ANALYTICDB:
|
||||
from core.rag.datasource.vdb.analyticdb.analyticdb_vector import AnalyticdbVectorFactory
|
||||
return AnalyticdbVectorFactory
|
||||
case _:
|
||||
raise ValueError(f"Vector store {vector_type} is not supported.")
|
||||
|
||||
|
|
|
@ -2,6 +2,7 @@ from enum import Enum
|
|||
|
||||
|
||||
class VectorType(str, Enum):
|
||||
ANALYTICDB = 'analyticdb'
|
||||
CHROMA = 'chroma'
|
||||
MILVUS = 'milvus'
|
||||
PGVECTOR = 'pgvector'
|
||||
|
|
194
api/poetry.lock
generated
194
api/poetry.lock
generated
|
@ -143,6 +143,198 @@ typing-extensions = ">=4"
|
|||
[package.extras]
|
||||
tz = ["backports.zoneinfo"]
|
||||
|
||||
[[package]]
|
||||
name = "alibabacloud-credentials"
|
||||
version = "0.3.4"
|
||||
description = "The alibabacloud credentials module of alibabaCloud Python SDK."
|
||||
optional = false
|
||||
python-versions = ">=3.6"
|
||||
files = [
|
||||
{file = "alibabacloud_credentials-0.3.4.tar.gz", hash = "sha256:c15a34fe782c318d4cf24cb041a0385ac4ccd2548e524e5d7fe1cff56a9a6acc"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
alibabacloud-tea = "*"
|
||||
|
||||
[[package]]
|
||||
name = "alibabacloud-endpoint-util"
|
||||
version = "0.0.3"
|
||||
description = "The endpoint-util module of alibabaCloud Python SDK."
|
||||
optional = false
|
||||
python-versions = "*"
|
||||
files = [
|
||||
{file = "alibabacloud_endpoint_util-0.0.3.tar.gz", hash = "sha256:8c0efb76fdcc3af4ca716ef24bbce770201a3f83f98c0afcf81655f684b9c7d2"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
alibabacloud-tea = ">=0.0.1"
|
||||
|
||||
[[package]]
|
||||
name = "alibabacloud-gateway-spi"
|
||||
version = "0.0.1"
|
||||
description = "Alibaba Cloud Gateway SPI SDK Library for Python"
|
||||
optional = false
|
||||
python-versions = ">=3.6"
|
||||
files = [
|
||||
{file = "alibabacloud_gateway_spi-0.0.1.tar.gz", hash = "sha256:1b259855708afc3c04d8711d8530c63f7645e1edc0cf97e2fd15461b08e11c30"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
alibabacloud_credentials = ">=0.2.0,<1.0.0"
|
||||
|
||||
[[package]]
|
||||
name = "alibabacloud-gpdb20160503"
|
||||
version = "3.8.2"
|
||||
description = "Alibaba Cloud AnalyticDB for PostgreSQL (20160503) SDK Library for Python"
|
||||
optional = false
|
||||
python-versions = ">=3.6"
|
||||
files = [
|
||||
{file = "alibabacloud_gpdb20160503-3.8.2-py3-none-any.whl", hash = "sha256:081977cdd4174c786b303f3c5651026297d84baa0256386be8215ee997cd5c75"},
|
||||
{file = "alibabacloud_gpdb20160503-3.8.2.tar.gz", hash = "sha256:c964ca721a05e440a1065e33aa74d456eafe2c8b17f6e0d960d5bb44dfe4bd9c"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
alibabacloud-endpoint-util = ">=0.0.3,<1.0.0"
|
||||
alibabacloud-openapi-util = ">=0.2.1,<1.0.0"
|
||||
alibabacloud-openplatform20191219 = ">=2.0.0,<3.0.0"
|
||||
alibabacloud-oss-sdk = ">=0.1.0,<1.0.0"
|
||||
alibabacloud-oss-util = ">=0.0.5,<1.0.0"
|
||||
alibabacloud-tea-fileform = ">=0.0.3,<1.0.0"
|
||||
alibabacloud-tea-openapi = ">=0.3.10,<1.0.0"
|
||||
alibabacloud-tea-util = ">=0.3.12,<1.0.0"
|
||||
|
||||
[[package]]
|
||||
name = "alibabacloud-openapi-util"
|
||||
version = "0.2.2"
|
||||
description = "Aliyun Tea OpenApi Library for Python"
|
||||
optional = false
|
||||
python-versions = "*"
|
||||
files = [
|
||||
{file = "alibabacloud_openapi_util-0.2.2.tar.gz", hash = "sha256:ebbc3906f554cb4bf8f513e43e8a33e8b6a3d4a0ef13617a0e14c3dda8ef52a8"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
alibabacloud_tea_util = ">=0.0.2"
|
||||
cryptography = ">=3.0.0"
|
||||
|
||||
[[package]]
|
||||
name = "alibabacloud-openplatform20191219"
|
||||
version = "2.0.0"
|
||||
description = "Alibaba Cloud OpenPlatform (20191219) SDK Library for Python"
|
||||
optional = false
|
||||
python-versions = ">=3.6"
|
||||
files = [
|
||||
{file = "alibabacloud_openplatform20191219-2.0.0-py3-none-any.whl", hash = "sha256:873821c45bca72a6c6ec7a906c9cb21554c122e88893bbac3986934dab30dd36"},
|
||||
{file = "alibabacloud_openplatform20191219-2.0.0.tar.gz", hash = "sha256:e67f4c337b7542538746592c6a474bd4ae3a9edccdf62e11a32ca61fad3c9020"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
alibabacloud-endpoint-util = ">=0.0.3,<1.0.0"
|
||||
alibabacloud-openapi-util = ">=0.1.6,<1.0.0"
|
||||
alibabacloud-tea-openapi = ">=0.3.3,<1.0.0"
|
||||
alibabacloud-tea-util = ">=0.3.6,<1.0.0"
|
||||
|
||||
[[package]]
|
||||
name = "alibabacloud-oss-sdk"
|
||||
version = "0.1.0"
|
||||
description = "Aliyun Tea OSS SDK Library for Python"
|
||||
optional = false
|
||||
python-versions = ">=3.6"
|
||||
files = [
|
||||
{file = "alibabacloud_oss_sdk-0.1.0.tar.gz", hash = "sha256:cc5ce36044bae758047fccb56c0cb6204cbc362d18cc3dd4ceac54c8c0897b8b"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
alibabacloud_credentials = ">=0.1.2,<1.0.0"
|
||||
alibabacloud_oss_util = ">=0.0.5,<1.0.0"
|
||||
alibabacloud_tea_fileform = ">=0.0.3,<1.0.0"
|
||||
alibabacloud_tea_util = ">=0.3.1,<1.0.0"
|
||||
alibabacloud_tea_xml = ">=0.0.2,<1.0.0"
|
||||
|
||||
[[package]]
|
||||
name = "alibabacloud-oss-util"
|
||||
version = "0.0.6"
|
||||
description = "The oss util module of alibabaCloud Python SDK."
|
||||
optional = false
|
||||
python-versions = "*"
|
||||
files = [
|
||||
{file = "alibabacloud_oss_util-0.0.6.tar.gz", hash = "sha256:d3ecec36632434bd509a113e8cf327dc23e830ac8d9dd6949926f4e334c8b5d6"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
alibabacloud-tea = "*"
|
||||
|
||||
[[package]]
|
||||
name = "alibabacloud-tea"
|
||||
version = "0.3.9"
|
||||
description = "The tea module of alibabaCloud Python SDK."
|
||||
optional = false
|
||||
python-versions = ">=3.6"
|
||||
files = [
|
||||
{file = "alibabacloud-tea-0.3.9.tar.gz", hash = "sha256:a9689770003fa9313d1995812f9fe36a2be315e5cdfc8d58de0d96808219ced9"},
|
||||
{file = "alibabacloud_tea-0.3.9-py3-none-any.whl", hash = "sha256:402fd2a92e6729f228d8c0300b182f80019edce19d83afa497aeb15fd7947f9a"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
aiohttp = ">=3.7.0,<4.0.0"
|
||||
requests = ">=2.21.0,<3.0.0"
|
||||
|
||||
[[package]]
|
||||
name = "alibabacloud-tea-fileform"
|
||||
version = "0.0.5"
|
||||
description = "The tea-fileform module of alibabaCloud Python SDK."
|
||||
optional = false
|
||||
python-versions = "*"
|
||||
files = [
|
||||
{file = "alibabacloud_tea_fileform-0.0.5.tar.gz", hash = "sha256:fd00a8c9d85e785a7655059e9651f9e91784678881831f60589172387b968ee8"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
alibabacloud-tea = ">=0.0.1"
|
||||
|
||||
[[package]]
|
||||
name = "alibabacloud-tea-openapi"
|
||||
version = "0.3.10"
|
||||
description = "Alibaba Cloud openapi SDK Library for Python"
|
||||
optional = false
|
||||
python-versions = ">=3.6"
|
||||
files = [
|
||||
{file = "alibabacloud_tea_openapi-0.3.10.tar.gz", hash = "sha256:46e9c54ea857346306cd5c628dc33479349b559179ed2fdb2251dbe6ec9a1cf1"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
alibabacloud_credentials = ">=0.3.1,<1.0.0"
|
||||
alibabacloud_gateway_spi = ">=0.0.1,<1.0.0"
|
||||
alibabacloud_openapi_util = ">=0.2.1,<1.0.0"
|
||||
alibabacloud_tea_util = ">=0.3.12,<1.0.0"
|
||||
alibabacloud_tea_xml = ">=0.0.2,<1.0.0"
|
||||
|
||||
[[package]]
|
||||
name = "alibabacloud-tea-util"
|
||||
version = "0.3.12"
|
||||
description = "The tea-util module of alibabaCloud Python SDK."
|
||||
optional = false
|
||||
python-versions = ">=3.6"
|
||||
files = [
|
||||
{file = "alibabacloud_tea_util-0.3.12.tar.gz", hash = "sha256:72a2f5a046e5b977ade4202eb4f65b3d70ad707a548e29aacd4a572c2d18d06b"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
alibabacloud-tea = ">=0.3.3"
|
||||
|
||||
[[package]]
|
||||
name = "alibabacloud-tea-xml"
|
||||
version = "0.0.2"
|
||||
description = "The tea-xml module of alibabaCloud Python SDK."
|
||||
optional = false
|
||||
python-versions = "*"
|
||||
files = [
|
||||
{file = "alibabacloud_tea_xml-0.0.2.tar.gz", hash = "sha256:f0135e8148fd7d9c1f029db161863f37f144f837c280cba16c2edeb2f9c549d8"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
alibabacloud-tea = ">=0.0.1"
|
||||
|
||||
[[package]]
|
||||
name = "aliyun-python-sdk-core"
|
||||
version = "2.15.1"
|
||||
|
@ -9000,4 +9192,4 @@ testing = ["coverage (>=5.0.3)", "zope.event", "zope.testing"]
|
|||
[metadata]
|
||||
lock-version = "2.0"
|
||||
python-versions = "^3.10"
|
||||
content-hash = "fdba75f08df361b7b0d89d375062fa9208a68d2a59597071c6e382285f6fccff"
|
||||
content-hash = "08572878f911d65a3c4796a7fff2a6d4c9a71dd3fe57387e225436607c179068"
|
||||
|
|
|
@ -209,6 +209,8 @@ tcvectordb = "1.3.2"
|
|||
tidb-vector = "0.0.9"
|
||||
qdrant-client = "1.7.3"
|
||||
weaviate-client = "~3.21.0"
|
||||
alibabacloud_gpdb20160503 = "~3.8.0"
|
||||
alibabacloud_tea_openapi = "~0.3.9"
|
||||
|
||||
############################################################
|
||||
# Transparent dependencies required by main dependencies
|
||||
|
|
|
@ -0,0 +1,31 @@
|
|||
from core.rag.datasource.vdb.analyticdb.analyticdb_vector import AnalyticdbConfig, AnalyticdbVector
|
||||
from tests.integration_tests.vdb.test_vector_store import AbstractVectorTest, setup_mock_redis
|
||||
|
||||
|
||||
class AnalyticdbVectorTest(AbstractVectorTest):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
# Analyticdb requires collection_name length less than 60.
|
||||
# it's ok for normal usage.
|
||||
self.collection_name = self.collection_name.replace("_test", "")
|
||||
self.vector = AnalyticdbVector(
|
||||
collection_name=self.collection_name,
|
||||
config=AnalyticdbConfig(
|
||||
access_key_id="test_key_id",
|
||||
access_key_secret="test_key_secret",
|
||||
region_id="test_region",
|
||||
instance_id="test_id",
|
||||
account="test_account",
|
||||
account_password="test_passwd",
|
||||
namespace="difytest_namespace",
|
||||
collection="difytest_collection",
|
||||
namespace_password="test_passwd",
|
||||
),
|
||||
)
|
||||
|
||||
def run_all_tests(self):
|
||||
self.vector.delete()
|
||||
return super().run_all_tests()
|
||||
|
||||
def test_chroma_vector(setup_mock_redis):
|
||||
AnalyticdbVectorTest().run_all_tests()
|
|
@ -108,6 +108,15 @@ x-shared-env: &shared-api-worker-env
|
|||
CHROMA_DATABASE: ${CHROMA_DATABASE:-default_database}
|
||||
CHROMA_AUTH_PROVIDER: ${CHROMA_AUTH_PROVIDER:-chromadb.auth.token_authn.TokenAuthClientProvider}
|
||||
CHROMA_AUTH_CREDENTIALS: ${CHROMA_AUTH_CREDENTIALS:-}
|
||||
# AnalyticDB configuration
|
||||
ANALYTICDB_KEY_ID: ${ANALYTICDB_KEY_ID:-}
|
||||
ANALYTICDB_KEY_SECRET: ${ANALYTICDB_KEY_SECRET:-}
|
||||
ANALYTICDB_REGION_ID: ${ANALYTICDB_REGION_ID:-}
|
||||
ANALYTICDB_INSTANCE_ID: ${ANALYTICDB_INSTANCE_ID:-}
|
||||
ANALYTICDB_ACCOUNT: ${ANALYTICDB_ACCOUNT:-}
|
||||
ANALYTICDB_PASSWORD: ${ANALYTICDB_PASSWORD:-}
|
||||
ANALYTICDB_NAMESPACE: ${ANALYTICDB_NAMESPACE:-dify}
|
||||
ANALYTICDB_NAMESPACE_PASSWORD: ${ANALYTICDB_NAMESPACE_PASSWORD:-}
|
||||
OPENSEARCH_HOST: ${OPENSEARCH_HOST:-opensearch}
|
||||
OPENSEARCH_PORT: ${OPENSEARCH_PORT:-9200}
|
||||
OPENSEARCH_USER: ${OPENSEARCH_USER:-admin}
|
||||
|
|
Loading…
Reference in New Issue
Block a user