Feat/blocking function call (#2247)

This commit is contained in:
Yeuoly 2024-01-30 15:25:37 +08:00 committed by GitHub
parent 1ea18a2922
commit 6d5b386394
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
33 changed files with 429 additions and 94 deletions

View File

@ -11,6 +11,7 @@ from core.application_queue_manager import ApplicationQueueManager, PublishFrom
from core.memory.token_buffer_memory import TokenBufferMemory
from core.model_manager import ModelInstance
from core.model_runtime.entities.llm_entities import LLMUsage
from core.model_runtime.entities.model_entities import ModelFeature
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
from core.moderation.base import ModerationException
from core.tools.entities.tool_entities import ToolRuntimeVariablePool
@ -194,6 +195,13 @@ class AssistantApplicationRunner(AppRunner):
memory=memory,
)
# change function call strategy based on LLM model
llm_model = cast(LargeLanguageModel, model_instance.model_type_instance)
model_schema = llm_model.get_model_schema(model_instance.model, model_instance.credentials)
if set([ModelFeature.MULTI_TOOL_CALL, ModelFeature.TOOL_CALL]).intersection(model_schema.features):
agent_entity.strategy = AgentEntity.Strategy.FUNCTION_CALLING
# start agent runner
if agent_entity.strategy == AgentEntity.Strategy.CHAIN_OF_THOUGHT:
assistant_cot_runner = AssistantCotApplicationRunner(
@ -209,9 +217,9 @@ class AssistantApplicationRunner(AppRunner):
prompt_messages=prompt_message,
variables_pool=tool_variables,
db_variables=tool_conversation_variables,
model_instance=model_instance
)
invoke_result = assistant_cot_runner.run(
model_instance=model_instance,
conversation=conversation,
message=message,
query=query,
@ -229,10 +237,10 @@ class AssistantApplicationRunner(AppRunner):
memory=memory,
prompt_messages=prompt_message,
variables_pool=tool_variables,
db_variables=tool_conversation_variables
db_variables=tool_conversation_variables,
model_instance=model_instance
)
invoke_result = assistant_fc_runner.run(
model_instance=model_instance,
conversation=conversation,
message=message,
query=query,

View File

@ -1,7 +1,7 @@
import logging
import json
from typing import Optional, List, Tuple, Union
from typing import Optional, List, Tuple, Union, cast
from datetime import datetime
from mimetypes import guess_extension
@ -27,7 +27,10 @@ from core.entities.application_entities import ModelConfigEntity, \
AgentEntity, AppOrchestrationConfigEntity, ApplicationGenerateEntity, InvokeFrom
from core.model_runtime.entities.message_entities import PromptMessage, PromptMessageTool
from core.model_runtime.entities.llm_entities import LLMUsage
from core.model_runtime.entities.model_entities import ModelFeature
from core.model_runtime.utils.encoders import jsonable_encoder
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
from core.model_manager import ModelInstance
from core.file.message_file_parser import FileTransferMethod
logger = logging.getLogger(__name__)
@ -45,6 +48,7 @@ class BaseAssistantApplicationRunner(AppRunner):
prompt_messages: Optional[List[PromptMessage]] = None,
variables_pool: Optional[ToolRuntimeVariablePool] = None,
db_variables: Optional[ToolConversationVariables] = None,
model_instance: ModelInstance = None
) -> None:
"""
Agent runner
@ -71,6 +75,7 @@ class BaseAssistantApplicationRunner(AppRunner):
self.history_prompt_messages = prompt_messages
self.variables_pool = variables_pool
self.db_variables_pool = db_variables
self.model_instance = model_instance
# init callback
self.agent_callback = DifyAgentCallbackHandler()
@ -95,6 +100,14 @@ class BaseAssistantApplicationRunner(AppRunner):
MessageAgentThought.message_id == self.message.id,
).count()
# check if model supports stream tool call
llm_model = cast(LargeLanguageModel, model_instance.model_type_instance)
model_schema = llm_model.get_model_schema(model_instance.model, model_instance.credentials)
if model_schema and ModelFeature.STREAM_TOOL_CALL in (model_schema.features or []):
self.stream_tool_call = True
else:
self.stream_tool_call = False
def _repacket_app_orchestration_config(self, app_orchestration_config: AppOrchestrationConfigEntity) -> AppOrchestrationConfigEntity:
"""
Repacket app orchestration config

View File

@ -20,8 +20,7 @@ from core.features.assistant_base_runner import BaseAssistantApplicationRunner
from models.model import Conversation, Message
class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
def run(self, model_instance: ModelInstance,
conversation: Conversation,
def run(self, conversation: Conversation,
message: Message,
query: str,
) -> Union[Generator, LLMResult]:
@ -82,6 +81,8 @@ class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
llm_usage.prompt_price += usage.prompt_price
llm_usage.completion_price += usage.completion_price
model_instance = self.model_instance
while function_call_state and iteration_step <= max_iteration_steps:
# continue to run until there is not any tool call
function_call_state = False
@ -390,7 +391,7 @@ class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
# remove Action: xxx from agent thought
agent_thought = re.sub(r'Action:.*', '', agent_thought, flags=re.IGNORECASE)
if action_name and action_input:
if action_name and action_input is not None:
return AgentScratchpadUnit(
agent_response=content,
thought=agent_thought,

View File

@ -5,7 +5,7 @@ from typing import Union, Generator, Dict, Any, Tuple, List
from core.model_runtime.entities.message_entities import PromptMessage, UserPromptMessage,\
SystemPromptMessage, AssistantPromptMessage, ToolPromptMessage, PromptMessageTool
from core.model_runtime.entities.llm_entities import LLMResultChunk, LLMResult, LLMUsage
from core.model_runtime.entities.llm_entities import LLMResultChunk, LLMResult, LLMUsage, LLMResultChunkDelta
from core.model_manager import ModelInstance
from core.application_queue_manager import PublishFrom
@ -20,8 +20,7 @@ from models.model import Conversation, Message, MessageAgentThought
logger = logging.getLogger(__name__)
class AssistantFunctionCallApplicationRunner(BaseAssistantApplicationRunner):
def run(self, model_instance: ModelInstance,
conversation: Conversation,
def run(self, conversation: Conversation,
message: Message,
query: str,
) -> Generator[LLMResultChunk, None, None]:
@ -81,6 +80,8 @@ class AssistantFunctionCallApplicationRunner(BaseAssistantApplicationRunner):
llm_usage.prompt_price += usage.prompt_price
llm_usage.completion_price += usage.completion_price
model_instance = self.model_instance
while function_call_state and iteration_step <= max_iteration_steps:
function_call_state = False
@ -101,12 +102,12 @@ class AssistantFunctionCallApplicationRunner(BaseAssistantApplicationRunner):
# recale llm max tokens
self.recale_llm_max_tokens(self.model_config, prompt_messages)
# invoke model
chunks: Generator[LLMResultChunk, None, None] = model_instance.invoke_llm(
chunks: Union[Generator[LLMResultChunk, None, None], LLMResult] = model_instance.invoke_llm(
prompt_messages=prompt_messages,
model_parameters=app_orchestration_config.model_config.parameters,
tools=prompt_messages_tools,
stop=app_orchestration_config.model_config.stop,
stream=True,
stream=self.stream_tool_call,
user=self.user_id,
callbacks=[],
)
@ -122,11 +123,41 @@ class AssistantFunctionCallApplicationRunner(BaseAssistantApplicationRunner):
current_llm_usage = None
for chunk in chunks:
if self.stream_tool_call:
for chunk in chunks:
# check if there is any tool call
if self.check_tool_calls(chunk):
function_call_state = True
tool_calls.extend(self.extract_tool_calls(chunk))
tool_call_names = ';'.join([tool_call[1] for tool_call in tool_calls])
try:
tool_call_inputs = json.dumps({
tool_call[1]: tool_call[2] for tool_call in tool_calls
}, ensure_ascii=False)
except json.JSONDecodeError as e:
# ensure ascii to avoid encoding error
tool_call_inputs = json.dumps({
tool_call[1]: tool_call[2] for tool_call in tool_calls
})
if chunk.delta.message and chunk.delta.message.content:
if isinstance(chunk.delta.message.content, list):
for content in chunk.delta.message.content:
response += content.data
else:
response += chunk.delta.message.content
if chunk.delta.usage:
increase_usage(llm_usage, chunk.delta.usage)
current_llm_usage = chunk.delta.usage
yield chunk
else:
result: LLMResult = chunks
# check if there is any tool call
if self.check_tool_calls(chunk):
if self.check_blocking_tool_calls(result):
function_call_state = True
tool_calls.extend(self.extract_tool_calls(chunk))
tool_calls.extend(self.extract_blocking_tool_calls(result))
tool_call_names = ';'.join([tool_call[1] for tool_call in tool_calls])
try:
tool_call_inputs = json.dumps({
@ -138,18 +169,44 @@ class AssistantFunctionCallApplicationRunner(BaseAssistantApplicationRunner):
tool_call[1]: tool_call[2] for tool_call in tool_calls
})
if chunk.delta.message and chunk.delta.message.content:
if isinstance(chunk.delta.message.content, list):
for content in chunk.delta.message.content:
if result.usage:
increase_usage(llm_usage, result.usage)
current_llm_usage = result.usage
if result.message and result.message.content:
if isinstance(result.message.content, list):
for content in result.message.content:
response += content.data
else:
response += chunk.delta.message.content
response += result.message.content
if chunk.delta.usage:
increase_usage(llm_usage, chunk.delta.usage)
current_llm_usage = chunk.delta.usage
if not result.message.content:
result.message.content = ''
yield chunk
yield LLMResultChunk(
model=model_instance.model,
prompt_messages=result.prompt_messages,
system_fingerprint=result.system_fingerprint,
delta=LLMResultChunkDelta(
index=0,
message=result.message,
usage=result.usage,
)
)
if tool_calls:
prompt_messages.append(AssistantPromptMessage(
content='',
name='',
tool_calls=[AssistantPromptMessage.ToolCall(
id=tool_call[0],
type='function',
function=AssistantPromptMessage.ToolCall.ToolCallFunction(
name=tool_call[1],
arguments=json.dumps(tool_call[2], ensure_ascii=False)
)
) for tool_call in tool_calls]
))
# save thought
self.save_agent_thought(
@ -167,6 +224,12 @@ class AssistantFunctionCallApplicationRunner(BaseAssistantApplicationRunner):
final_answer += response + '\n'
# update prompt messages
if response.strip():
prompt_messages.append(AssistantPromptMessage(
content=response,
))
# call tools
tool_responses = []
for tool_call_id, tool_call_name, tool_call_args in tool_calls:
@ -256,12 +319,6 @@ class AssistantFunctionCallApplicationRunner(BaseAssistantApplicationRunner):
)
self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER)
# update prompt messages
if response.strip():
prompt_messages.append(AssistantPromptMessage(
content=response,
))
# update prompt tool
for prompt_tool in prompt_messages_tools:
self.update_prompt_message_tool(tool_instances[prompt_tool.name], prompt_tool)
@ -287,6 +344,14 @@ class AssistantFunctionCallApplicationRunner(BaseAssistantApplicationRunner):
if llm_result_chunk.delta.message.tool_calls:
return True
return False
def check_blocking_tool_calls(self, llm_result: LLMResult) -> bool:
"""
Check if there is any blocking tool call in llm result
"""
if llm_result.message.tool_calls:
return True
return False
def extract_tool_calls(self, llm_result_chunk: LLMResultChunk) -> Union[None, List[Tuple[str, str, Dict[str, Any]]]]:
"""
@ -304,6 +369,23 @@ class AssistantFunctionCallApplicationRunner(BaseAssistantApplicationRunner):
))
return tool_calls
def extract_blocking_tool_calls(self, llm_result: LLMResult) -> Union[None, List[Tuple[str, str, Dict[str, Any]]]]:
"""
Extract blocking tool calls from llm result
Returns:
List[Tuple[str, str, Dict[str, Any]]]: [(tool_call_id, tool_call_name, tool_call_args)]
"""
tool_calls = []
for prompt_message in llm_result.message.tool_calls:
tool_calls.append((
prompt_message.id,
prompt_message.function.name,
json.loads(prompt_message.function.arguments),
))
return tool_calls
def organize_prompt_messages(self, prompt_template: str,
query: str = None,

View File

@ -78,6 +78,7 @@ class ModelFeature(Enum):
MULTI_TOOL_CALL = "multi-tool-call"
AGENT_THOUGHT = "agent-thought"
VISION = "vision"
STREAM_TOOL_CALL = "stream-tool-call"
class DefaultParameterName(Enum):

View File

@ -36,6 +36,7 @@ LLM_BASE_MODELS = [
features=[
ModelFeature.AGENT_THOUGHT,
ModelFeature.MULTI_TOOL_CALL,
ModelFeature.STREAM_TOOL_CALL,
],
fetch_from=FetchFrom.CUSTOMIZABLE_MODEL,
model_properties={
@ -80,6 +81,7 @@ LLM_BASE_MODELS = [
features=[
ModelFeature.AGENT_THOUGHT,
ModelFeature.MULTI_TOOL_CALL,
ModelFeature.STREAM_TOOL_CALL,
],
fetch_from=FetchFrom.CUSTOMIZABLE_MODEL,
model_properties={
@ -124,6 +126,7 @@ LLM_BASE_MODELS = [
features=[
ModelFeature.AGENT_THOUGHT,
ModelFeature.MULTI_TOOL_CALL,
ModelFeature.STREAM_TOOL_CALL,
],
fetch_from=FetchFrom.CUSTOMIZABLE_MODEL,
model_properties={
@ -198,6 +201,7 @@ LLM_BASE_MODELS = [
features=[
ModelFeature.AGENT_THOUGHT,
ModelFeature.MULTI_TOOL_CALL,
ModelFeature.STREAM_TOOL_CALL,
],
fetch_from=FetchFrom.CUSTOMIZABLE_MODEL,
model_properties={
@ -272,6 +276,7 @@ LLM_BASE_MODELS = [
features=[
ModelFeature.AGENT_THOUGHT,
ModelFeature.MULTI_TOOL_CALL,
ModelFeature.STREAM_TOOL_CALL,
],
fetch_from=FetchFrom.CUSTOMIZABLE_MODEL,
model_properties={

View File

@ -324,6 +324,7 @@ class AzureOpenAILargeLanguageModel(_CommonAzureOpenAI, LargeLanguageModel):
tools: Optional[list[PromptMessageTool]] = None) -> Generator:
index = 0
full_assistant_content = ''
delta_assistant_message_function_call_storage: ChoiceDeltaFunctionCall = None
real_model = model
system_fingerprint = None
completion = ''
@ -333,12 +334,32 @@ class AzureOpenAILargeLanguageModel(_CommonAzureOpenAI, LargeLanguageModel):
delta = chunk.choices[0]
if delta.finish_reason is None and (delta.delta.content is None or delta.delta.content == ''):
if delta.finish_reason is None and (delta.delta.content is None or delta.delta.content == '') and \
delta.delta.function_call is None:
continue
# assistant_message_tool_calls = delta.delta.tool_calls
assistant_message_function_call = delta.delta.function_call
# extract tool calls from response
if delta_assistant_message_function_call_storage is not None:
# handle process of stream function call
if assistant_message_function_call:
# message has not ended ever
delta_assistant_message_function_call_storage.arguments += assistant_message_function_call.arguments
continue
else:
# message has ended
assistant_message_function_call = delta_assistant_message_function_call_storage
delta_assistant_message_function_call_storage = None
else:
if assistant_message_function_call:
# start of stream function call
delta_assistant_message_function_call_storage = assistant_message_function_call
if delta_assistant_message_function_call_storage.arguments is None:
delta_assistant_message_function_call_storage.arguments = ''
continue
# extract tool calls from response
# tool_calls = self._extract_response_tool_calls(assistant_message_tool_calls)
function_call = self._extract_response_function_call(assistant_message_function_call)
@ -489,7 +510,7 @@ class AzureOpenAILargeLanguageModel(_CommonAzureOpenAI, LargeLanguageModel):
else:
raise ValueError(f"Got unknown type {message}")
if message.name is not None:
if message.name:
message_dict["name"] = message.name
return message_dict
@ -586,7 +607,6 @@ class AzureOpenAILargeLanguageModel(_CommonAzureOpenAI, LargeLanguageModel):
num_tokens = 0
for tool in tools:
num_tokens += len(encoding.encode('type'))
num_tokens += len(encoding.encode(tool.get("type")))
num_tokens += len(encoding.encode('function'))
# calculate num tokens for function object

View File

@ -5,7 +5,7 @@ from typing import Generator, List, Optional, cast
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta
from core.model_runtime.entities.message_entities import (AssistantPromptMessage, PromptMessage, PromptMessageFunction,
PromptMessageTool, SystemPromptMessage, UserPromptMessage)
PromptMessageTool, SystemPromptMessage, UserPromptMessage, ToolPromptMessage)
from core.model_runtime.errors.invoke import (InvokeAuthorizationError, InvokeBadRequestError, InvokeConnectionError,
InvokeError, InvokeRateLimitError, InvokeServerUnavailableError)
from core.model_runtime.errors.validate import CredentialsValidateFailedError
@ -194,6 +194,10 @@ class ChatGLMLargeLanguageModel(LargeLanguageModel):
elif isinstance(message, SystemPromptMessage):
message = cast(SystemPromptMessage, message)
message_dict = {"role": "system", "content": message.content}
elif isinstance(message, ToolPromptMessage):
# check if last message is user message
message = cast(ToolPromptMessage, message)
message_dict = {"role": "function", "content": message.content}
else:
raise ValueError(f"Unknown message type {type(message)}")

View File

@ -4,6 +4,8 @@ label:
model_type: llm
features:
- agent-thought
- tool-call
- stream-tool-call
model_properties:
mode: chat
context_size: 16384

View File

@ -4,6 +4,8 @@ label:
model_type: llm
features:
- agent-thought
- tool-call
- stream-tool-call
model_properties:
mode: chat
context_size: 32768

View File

@ -16,7 +16,7 @@ class MinimaxChatCompletion(object):
"""
def generate(self, model: str, api_key: str, group_id: str,
prompt_messages: List[MinimaxMessage], model_parameters: dict,
tools: Dict[str, Any], stop: List[str] | None, stream: bool, user: str) \
tools: List[Dict[str, Any]], stop: List[str] | None, stream: bool, user: str) \
-> Union[MinimaxMessage, Generator[MinimaxMessage, None, None]]:
"""
generate chat completion
@ -162,7 +162,6 @@ class MinimaxChatCompletion(object):
continue
for choice in choices:
print(choice)
message = choice['delta']
yield MinimaxMessage(
content=message,

View File

@ -17,7 +17,7 @@ class MinimaxChatCompletionPro(object):
"""
def generate(self, model: str, api_key: str, group_id: str,
prompt_messages: List[MinimaxMessage], model_parameters: dict,
tools: Dict[str, Any], stop: List[str] | None, stream: bool, user: str) \
tools: List[Dict[str, Any]], stop: List[str] | None, stream: bool, user: str) \
-> Union[MinimaxMessage, Generator[MinimaxMessage, None, None]]:
"""
generate chat completion
@ -82,6 +82,10 @@ class MinimaxChatCompletionPro(object):
**extra_kwargs
}
if tools:
body['functions'] = tools
body['function_call'] = { 'type': 'auto' }
try:
response = post(
url=url, data=dumps(body), headers=headers, stream=stream, timeout=(10, 300))
@ -135,6 +139,7 @@ class MinimaxChatCompletionPro(object):
"""
handle stream chat generate response
"""
function_call_storage = None
for line in response.iter_lines():
if not line:
continue
@ -148,7 +153,7 @@ class MinimaxChatCompletionPro(object):
msg = data['base_resp']['status_msg']
self._handle_error(code, msg)
if data['reply']:
if data['reply'] or 'usage' in data and data['usage']:
total_tokens = data['usage']['total_tokens']
message = MinimaxMessage(
role=MinimaxMessage.Role.ASSISTANT.value,
@ -160,6 +165,12 @@ class MinimaxChatCompletionPro(object):
'total_tokens': total_tokens
}
message.stop_reason = data['choices'][0]['finish_reason']
if function_call_storage:
function_call_message = MinimaxMessage(content='', role=MinimaxMessage.Role.ASSISTANT.value)
function_call_message.function_call = function_call_storage
yield function_call_message
yield message
return
@ -168,11 +179,28 @@ class MinimaxChatCompletionPro(object):
continue
for choice in choices:
message = choice['messages'][0]['text']
if not message:
continue
message = choice['messages'][0]
if 'function_call' in message:
if not function_call_storage:
function_call_storage = message['function_call']
if 'arguments' not in function_call_storage or not function_call_storage['arguments']:
function_call_storage['arguments'] = ''
continue
else:
function_call_storage['arguments'] += message['function_call']['arguments']
continue
else:
if function_call_storage:
message['function_call'] = function_call_storage
function_call_storage = None
yield MinimaxMessage(
content=message,
role=MinimaxMessage.Role.ASSISTANT.value
)
minimax_message = MinimaxMessage(content='', role=MinimaxMessage.Role.ASSISTANT.value)
if 'function_call' in message:
minimax_message.function_call = message['function_call']
if 'text' in message:
minimax_message.content = message['text']
yield minimax_message

View File

@ -2,7 +2,7 @@ from typing import Generator, List
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta
from core.model_runtime.entities.message_entities import (AssistantPromptMessage, PromptMessage, PromptMessageTool,
SystemPromptMessage, UserPromptMessage)
SystemPromptMessage, UserPromptMessage, ToolPromptMessage)
from core.model_runtime.errors.invoke import (InvokeAuthorizationError, InvokeBadRequestError, InvokeConnectionError,
InvokeError, InvokeRateLimitError, InvokeServerUnavailableError)
from core.model_runtime.errors.validate import CredentialsValidateFailedError
@ -84,6 +84,13 @@ class MinimaxLargeLanguageModel(LargeLanguageModel):
"""
client: MinimaxChatCompletionPro = self.model_apis[model]()
if tools:
tools = [{
"name": tool.name,
"description": tool.description,
"parameters": tool.parameters
} for tool in tools]
response = client.generate(
model=model,
api_key=credentials['minimax_api_key'],
@ -109,7 +116,19 @@ class MinimaxLargeLanguageModel(LargeLanguageModel):
elif isinstance(prompt_message, UserPromptMessage):
return MinimaxMessage(role=MinimaxMessage.Role.USER.value, content=prompt_message.content)
elif isinstance(prompt_message, AssistantPromptMessage):
if prompt_message.tool_calls:
message = MinimaxMessage(
role=MinimaxMessage.Role.ASSISTANT.value,
content=''
)
message.function_call={
'name': prompt_message.tool_calls[0].function.name,
'arguments': prompt_message.tool_calls[0].function.arguments
}
return message
return MinimaxMessage(role=MinimaxMessage.Role.ASSISTANT.value, content=prompt_message.content)
elif isinstance(prompt_message, ToolPromptMessage):
return MinimaxMessage(role=MinimaxMessage.Role.FUNCTION.value, content=prompt_message.content)
else:
raise NotImplementedError(f'Prompt message type {type(prompt_message)} is not supported')
@ -151,6 +170,28 @@ class MinimaxLargeLanguageModel(LargeLanguageModel):
finish_reason=message.stop_reason if message.stop_reason else None,
),
)
elif message.function_call:
if 'name' not in message.function_call or 'arguments' not in message.function_call:
continue
yield LLMResultChunk(
model=model,
prompt_messages=prompt_messages,
delta=LLMResultChunkDelta(
index=0,
message=AssistantPromptMessage(
content='',
tool_calls=[AssistantPromptMessage.ToolCall(
id='',
type='function',
function=AssistantPromptMessage.ToolCall.ToolCallFunction(
name=message.function_call['name'],
arguments=message.function_call['arguments']
)
)]
),
),
)
else:
yield LLMResultChunk(
model=model,

View File

@ -7,13 +7,23 @@ class MinimaxMessage:
USER = 'USER'
ASSISTANT = 'BOT'
SYSTEM = 'SYSTEM'
FUNCTION = 'FUNCTION'
role: str = Role.USER.value
content: str
usage: Dict[str, int] = None
stop_reason: str = ''
function_call: Dict[str, Any] = None
def to_dict(self) -> Dict[str, Any]:
if self.function_call and self.role == MinimaxMessage.Role.ASSISTANT.value:
return {
'sender_type': 'BOT',
'sender_name': '专家',
'text': '',
'function_call': self.function_call
}
return {
'sender_type': self.role,
'sender_name': '' if self.role == 'USER' else '专家',

View File

@ -6,6 +6,7 @@ model_type: llm
features:
- multi-tool-call
- agent-thought
- stream-tool-call
model_properties:
mode: chat
context_size: 4096

View File

@ -6,6 +6,7 @@ model_type: llm
features:
- multi-tool-call
- agent-thought
- stream-tool-call
model_properties:
mode: chat
context_size: 16385

View File

@ -6,6 +6,7 @@ model_type: llm
features:
- multi-tool-call
- agent-thought
- stream-tool-call
model_properties:
mode: chat
context_size: 16385

View File

@ -6,6 +6,7 @@ model_type: llm
features:
- multi-tool-call
- agent-thought
- stream-tool-call
model_properties:
mode: chat
context_size: 16385

View File

@ -6,6 +6,7 @@ model_type: llm
features:
- multi-tool-call
- agent-thought
- stream-tool-call
model_properties:
mode: chat
context_size: 4096

View File

@ -6,6 +6,7 @@ model_type: llm
features:
- multi-tool-call
- agent-thought
- stream-tool-call
model_properties:
mode: chat
context_size: 128000

View File

@ -6,6 +6,7 @@ model_type: llm
features:
- multi-tool-call
- agent-thought
- stream-tool-call
model_properties:
mode: chat
context_size: 128000

View File

@ -6,6 +6,7 @@ model_type: llm
features:
- multi-tool-call
- agent-thought
- stream-tool-call
model_properties:
mode: chat
context_size: 32768

View File

@ -6,6 +6,7 @@ model_type: llm
features:
- multi-tool-call
- agent-thought
- stream-tool-call
model_properties:
mode: chat
context_size: 128000

View File

@ -6,6 +6,7 @@ model_type: llm
features:
- multi-tool-call
- agent-thought
- stream-tool-call
model_properties:
mode: chat
context_size: 8192

View File

@ -671,7 +671,7 @@ class OpenAILargeLanguageModel(_CommonOpenAI, LargeLanguageModel):
else:
raise ValueError(f"Got unknown type {message}")
if message.name is not None:
if message.name:
message_dict["name"] = message.name
return message_dict

View File

@ -3,14 +3,14 @@ from typing import Generator, Iterator, List, Optional, Union, cast
from core.model_runtime.entities.common_entities import I18nObject
from core.model_runtime.entities.llm_entities import LLMMode, LLMResult, LLMResultChunk, LLMResultChunkDelta
from core.model_runtime.entities.message_entities import (AssistantPromptMessage, PromptMessage, PromptMessageTool,
SystemPromptMessage, UserPromptMessage)
SystemPromptMessage, UserPromptMessage, ToolPromptMessage)
from core.model_runtime.entities.model_entities import (AIModelEntity, FetchFrom, ModelPropertyKey, ModelType,
ParameterRule, ParameterType)
ParameterRule, ParameterType, ModelFeature)
from core.model_runtime.errors.invoke import (InvokeAuthorizationError, InvokeBadRequestError, InvokeConnectionError,
InvokeError, InvokeRateLimitError, InvokeServerUnavailableError)
from core.model_runtime.errors.validate import CredentialsValidateFailedError
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
from core.model_runtime.model_providers.xinference.llm.xinference_helper import (XinferenceHelper,
from core.model_runtime.model_providers.xinference.xinference_helper import (XinferenceHelper,
XinferenceModelExtraParameter)
from core.model_runtime.utils import helper
from openai import (APIConnectionError, APITimeoutError, AuthenticationError, ConflictError, InternalServerError,
@ -33,6 +33,12 @@ class XinferenceAILargeLanguageModel(LargeLanguageModel):
see `core.model_runtime.model_providers.__base.large_language_model.LargeLanguageModel._invoke`
"""
if 'temperature' in model_parameters:
if model_parameters['temperature'] < 0.01:
model_parameters['temperature'] = 0.01
elif model_parameters['temperature'] > 1.0:
model_parameters['temperature'] = 0.99
return self._generate(
model=model, credentials=credentials, prompt_messages=prompt_messages, model_parameters=model_parameters,
tools=tools, stop=stop, stream=stream, user=user,
@ -65,6 +71,9 @@ class XinferenceAILargeLanguageModel(LargeLanguageModel):
credentials['completion_type'] = 'completion'
else:
raise ValueError(f'xinference model ability {extra_param.model_ability} is not supported')
if extra_param.support_function_call:
credentials['support_function_call'] = True
except RuntimeError as e:
raise CredentialsValidateFailedError(f'Xinference credentials validate failed: {e}')
@ -220,6 +229,9 @@ class XinferenceAILargeLanguageModel(LargeLanguageModel):
elif isinstance(message, SystemPromptMessage):
message = cast(SystemPromptMessage, message)
message_dict = {"role": "system", "content": message.content}
elif isinstance(message, ToolPromptMessage):
message = cast(ToolPromptMessage, message)
message_dict = {"tool_call_id": message.tool_call_id, "role": "tool", "content": message.content}
else:
raise ValueError(f"Unknown message type {type(message)}")
@ -237,7 +249,7 @@ class XinferenceAILargeLanguageModel(LargeLanguageModel):
label=I18nObject(
zh_Hans='温度',
en_US='Temperature'
)
),
),
ParameterRule(
name='top_p',
@ -282,6 +294,8 @@ class XinferenceAILargeLanguageModel(LargeLanguageModel):
completion_type = LLMMode.COMPLETION.value
else:
raise ValueError(f'xinference model ability {extra_args.model_ability} is not supported')
support_function_call = credentials.get('support_function_call', False)
entity = AIModelEntity(
model=model,
@ -290,6 +304,9 @@ class XinferenceAILargeLanguageModel(LargeLanguageModel):
),
fetch_from=FetchFrom.CUSTOMIZABLE_MODEL,
model_type=ModelType.LLM,
features=[
ModelFeature.TOOL_CALL
] if support_function_call else [],
model_properties={
ModelPropertyKey.MODE: completion_type,
},
@ -310,6 +327,12 @@ class XinferenceAILargeLanguageModel(LargeLanguageModel):
extra_model_kwargs can be got by `XinferenceHelper.get_xinference_extra_parameter`
"""
if 'server_url' not in credentials:
raise CredentialsValidateFailedError('server_url is required in credentials')
if credentials['server_url'].endswith('/'):
credentials['server_url'] = credentials['server_url'][:-1]
client = OpenAI(
base_url=f'{credentials["server_url"]}/v1',
api_key='abc',

View File

@ -2,7 +2,7 @@ import time
from typing import Optional
from core.model_runtime.entities.common_entities import I18nObject
from core.model_runtime.entities.model_entities import AIModelEntity, FetchFrom, ModelType, PriceType
from core.model_runtime.entities.model_entities import AIModelEntity, FetchFrom, ModelType, PriceType, ModelPropertyKey
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
from core.model_runtime.errors.invoke import (InvokeAuthorizationError, InvokeBadRequestError, InvokeConnectionError,
InvokeError, InvokeRateLimitError, InvokeServerUnavailableError)
@ -10,6 +10,7 @@ from core.model_runtime.errors.validate import CredentialsValidateFailedError
from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
from xinference_client.client.restful.restful_client import Client, RESTfulEmbeddingModelHandle, RESTfulModelHandle
from core.model_runtime.model_providers.xinference.xinference_helper import XinferenceHelper
class XinferenceTextEmbeddingModel(TextEmbeddingModel):
"""
@ -35,7 +36,10 @@ class XinferenceTextEmbeddingModel(TextEmbeddingModel):
"""
server_url = credentials['server_url']
model_uid = credentials['model_uid']
if server_url.endswith('/'):
server_url = server_url[:-1]
client = Client(base_url=server_url)
try:
@ -102,8 +106,15 @@ class XinferenceTextEmbeddingModel(TextEmbeddingModel):
:return:
"""
try:
server_url = credentials['server_url']
model_uid = credentials['model_uid']
extra_args = XinferenceHelper.get_xinference_extra_parameter(server_url=server_url, model_uid=model_uid)
if extra_args.max_tokens:
credentials['max_tokens'] = extra_args.max_tokens
self._invoke(model=model, credentials=credentials, texts=['ping'])
except InvokeAuthorizationError:
except (InvokeAuthorizationError, RuntimeError):
raise CredentialsValidateFailedError('Invalid api key')
@property
@ -160,6 +171,7 @@ class XinferenceTextEmbeddingModel(TextEmbeddingModel):
"""
used to define customizable model schema
"""
entity = AIModelEntity(
model=model,
label=I18nObject(
@ -167,7 +179,10 @@ class XinferenceTextEmbeddingModel(TextEmbeddingModel):
),
fetch_from=FetchFrom.CUSTOMIZABLE_MODEL,
model_type=ModelType.TEXT_EMBEDDING,
model_properties={},
model_properties={
ModelPropertyKey.MAX_CHUNKS: 1,
ModelPropertyKey.CONTEXT_SIZE: 'max_tokens' in credentials and credentials['max_tokens'] or 512,
},
parameter_rules=[]
)

View File

@ -1,6 +1,7 @@
from threading import Lock
from time import time
from typing import List
from os import path
from requests import get
from requests.adapters import HTTPAdapter
@ -12,11 +13,16 @@ class XinferenceModelExtraParameter(object):
model_format: str
model_handle_type: str
model_ability: List[str]
max_tokens: int = 512
support_function_call: bool = False
def __init__(self, model_format: str, model_handle_type: str, model_ability: List[str]) -> None:
def __init__(self, model_format: str, model_handle_type: str, model_ability: List[str],
support_function_call: bool, max_tokens: int) -> None:
self.model_format = model_format
self.model_handle_type = model_handle_type
self.model_ability = model_ability
self.support_function_call = support_function_call
self.max_tokens = max_tokens
cache = {}
cache_lock = Lock()
@ -49,7 +55,7 @@ class XinferenceHelper:
get xinference model extra parameter like model_format and model_handle_type
"""
url = f'{server_url}/v1/models/{model_uid}'
url = path.join(server_url, 'v1/models', model_uid)
# this methid is surrounded by a lock, and default requests may hang forever, so we just set a Adapter with max_retries=3
session = Session()
@ -66,10 +72,12 @@ class XinferenceHelper:
response_json = response.json()
model_format = response_json['model_format']
model_ability = response_json['model_ability']
model_format = response_json.get('model_format', 'ggmlv3')
model_ability = response_json.get('model_ability', [])
if model_format == 'ggmlv3' and 'chatglm' in response_json['model_name']:
if response_json.get('model_type') == 'embedding':
model_handle_type = 'embedding'
elif model_format == 'ggmlv3' and 'chatglm' in response_json['model_name']:
model_handle_type = 'chatglm'
elif 'generate' in model_ability:
model_handle_type = 'generate'
@ -78,8 +86,13 @@ class XinferenceHelper:
else:
raise NotImplementedError(f'xinference model handle type {model_handle_type} is not supported')
support_function_call = 'tools' in model_ability
max_tokens = response_json.get('max_tokens', 512)
return XinferenceModelExtraParameter(
model_format=model_format,
model_handle_type=model_handle_type,
model_ability=model_ability
model_ability=model_ability,
support_function_call=support_function_call,
max_tokens=max_tokens
)

View File

@ -2,6 +2,10 @@ model: glm-3-turbo
label:
en_US: glm-3-turbo
model_type: llm
features:
- multi-tool-call
- agent-thought
- stream-tool-call
model_properties:
mode: chat
parameter_rules:

View File

@ -2,6 +2,10 @@ model: glm-4
label:
en_US: glm-4
model_type: llm
features:
- multi-tool-call
- agent-thought
- stream-tool-call
model_properties:
mode: chat
parameter_rules:

View File

@ -194,6 +194,27 @@ class ZhipuAILargeLanguageModel(_CommonZhipuaiAI, LargeLanguageModel):
'content': prompt_message.content,
'tool_call_id': prompt_message.tool_call_id
})
elif isinstance(prompt_message, AssistantPromptMessage):
if prompt_message.tool_calls:
params['messages'].append({
'role': 'assistant',
'content': prompt_message.content,
'tool_calls': [
{
'id': tool_call.id,
'type': tool_call.type,
'function': {
'name': tool_call.function.name,
'arguments': tool_call.function.arguments
}
} for tool_call in prompt_message.tool_calls
]
})
else:
params['messages'].append({
'role': 'assistant',
'content': prompt_message.content
})
else:
params['messages'].append({
'role': prompt_message.role.value,

View File

@ -47,7 +47,7 @@ dashscope[tokenizer]~=1.14.0
huggingface_hub~=0.16.4
transformers~=4.31.0
pandas==1.5.3
xinference-client~=0.6.4
xinference-client~=0.8.1
safetensors==0.3.2
zhipuai==1.0.7
werkzeug~=3.0.1

View File

@ -19,58 +19,86 @@ class MockXinferenceClass(object):
raise RuntimeError('404 Not Found')
if 'generate' == model_uid:
return RESTfulGenerateModelHandle(model_uid, base_url=self.base_url)
return RESTfulGenerateModelHandle(model_uid, base_url=self.base_url, auth_headers={})
if 'chat' == model_uid:
return RESTfulChatModelHandle(model_uid, base_url=self.base_url)
return RESTfulChatModelHandle(model_uid, base_url=self.base_url, auth_headers={})
if 'embedding' == model_uid:
return RESTfulEmbeddingModelHandle(model_uid, base_url=self.base_url)
return RESTfulEmbeddingModelHandle(model_uid, base_url=self.base_url, auth_headers={})
if 'rerank' == model_uid:
return RESTfulRerankModelHandle(model_uid, base_url=self.base_url)
return RESTfulRerankModelHandle(model_uid, base_url=self.base_url, auth_headers={})
raise RuntimeError('404 Not Found')
def get(self: Session, url: str, **kwargs):
if '/v1/models/' in url:
response = Response()
response = Response()
if 'v1/models/' in url:
# get model uid
model_uid = url.split('/')[-1]
if not re.match(r'[a-f0-9]{8}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{12}', model_uid) and \
model_uid not in ['generate', 'chat', 'embedding', 'rerank']:
response.status_code = 404
raise ConnectionError('404 Not Found')
return response
# check if url is valid
if not re.match(r'^(https?):\/\/[^\s\/$.?#].[^\s]*$', url):
response.status_code = 404
raise ConnectionError('404 Not Found')
return response
if model_uid in ['generate', 'chat']:
response.status_code = 200
response._content = b'''{
"model_type": "LLM",
"address": "127.0.0.1:43877",
"accelerators": [
"0",
"1"
],
"model_name": "chatglm3-6b",
"model_lang": [
"en"
],
"model_ability": [
"generate",
"chat"
],
"model_description": "latest chatglm3",
"model_format": "pytorch",
"model_size_in_billions": 7,
"quantization": "none",
"model_hub": "huggingface",
"revision": null,
"context_length": 2048,
"replica": 1
}'''
return response
elif model_uid == 'embedding':
response.status_code = 200
response._content = b'''{
"model_type": "embedding",
"address": "127.0.0.1:43877",
"accelerators": [
"0",
"1"
],
"model_name": "bge",
"model_lang": [
"en"
],
"revision": null,
"max_tokens": 512
}'''
return response
elif 'v1/cluster/auth' in url:
response.status_code = 200
response._content = b'''{
"model_type": "LLM",
"address": "127.0.0.1:43877",
"accelerators": [
"0",
"1"
],
"model_name": "chatglm3-6b",
"model_lang": [
"en"
],
"model_ability": [
"generate",
"chat"
],
"model_description": "latest chatglm3",
"model_format": "pytorch",
"model_size_in_billions": 7,
"quantization": "none",
"model_hub": "huggingface",
"revision": null,
"context_length": 2048,
"replica": 1
"auth": true
}'''
return response
def _check_cluster_authenticated(self):
self._cluster_authed = True
def rerank(self: RESTfulRerankModelHandle, documents: List[str], query: str, top_n: int) -> dict:
# check if self._model_uid is a valid uuid
if not re.match(r'[a-f0-9]{8}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{12}', self._model_uid) and \
@ -133,6 +161,7 @@ MOCK = os.getenv('MOCK_SWITCH', 'false').lower() == 'true'
def setup_xinference_mock(request, monkeypatch: MonkeyPatch):
if MOCK:
monkeypatch.setattr(Client, 'get_model', MockXinferenceClass.get_chat_model)
monkeypatch.setattr(Client, '_check_cluster_authenticated', MockXinferenceClass._check_cluster_authenticated)
monkeypatch.setattr(Session, 'get', MockXinferenceClass.get)
monkeypatch.setattr(RESTfulEmbeddingModelHandle, 'create_embedding', MockXinferenceClass.create_embedding)
monkeypatch.setattr(RESTfulRerankModelHandle, 'rerank', MockXinferenceClass.rerank)